JP2004054145A - Propagation time compensation optical fiber and optical fiber housing device - Google Patents

Propagation time compensation optical fiber and optical fiber housing device Download PDF

Info

Publication number
JP2004054145A
JP2004054145A JP2002214574A JP2002214574A JP2004054145A JP 2004054145 A JP2004054145 A JP 2004054145A JP 2002214574 A JP2002214574 A JP 2002214574A JP 2002214574 A JP2002214574 A JP 2002214574A JP 2004054145 A JP2004054145 A JP 2004054145A
Authority
JP
Japan
Prior art keywords
optical fiber
dispersion
temperature
transmission
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002214574A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
山本 貴司
Hidehiko Takara
高良 秀彦
Tetsuo Inui
乾 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002214574A priority Critical patent/JP2004054145A/en
Publication of JP2004054145A publication Critical patent/JP2004054145A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission system which reduces the influence of a dispersion slope of an optical transmission line. <P>SOLUTION: The surface of an optical fiber 10 is coated with a liquid crystal polymer 13 having a coefficient of expansion of a code reverse from the code of quartz of the optical fiber 10, by which the physical expansion and contraction by a temperature change are suppressed and the stabilization of the propagation time of signals is thereby realized. More particularly, the dependence of a secondary variance value on temperature is considered, by which the deterioration in the transmission line by a temperature fluctuation is reduced. The temperature on the periphery of the optical fiber for dispersion compensation existing within a station house is precisely controlled by a temperature control circuit, by which the optical fiber housing device for suppressing the sum of the dependence of the dispersion slope of the optical fiber for transmission outside the station house and the optical fiber for dispersion compensation within the station house on temperature is provided as well. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、伝送光ファイバの分散スロープの温度依存性に起因する、WDM(wavelength division multiplex:波長分割多重方式)伝送信号光の波形劣化を抑制することのできる伝搬時間補償光ファイバおよび光ファイバ収容装置に関する。
【0002】
【従来の技術】
光ファイバが有する分散は、光通信における信号光パルスの波形劣化をもたらすものであり、その補償は必須の技術である。
【0003】
また、光ファイバの2次分散値は、光ファイバの置かれている環境の温度変化により変化することが知られている。ある温度において、2次分散補償が施された従来システムにおいても、温度が変化して光ファイバの2次分散値が変わると、パルス波形の劣化が生じてしまうという問題がある。近年、伝送速度が向上するにつれ、この温度変化に起因する2次分散変動がもたらす波形劣化は益々大きくなる傾向にある。
【0004】
そこで、この2次分散の温度依存性を補償する適応分散等化技術の開発が行われている。この技術を実現するためには、2次分散量のチューニングが可能な光部品が必要となる。具体的には、光ファイバグレーティング(参考文献(1))、Virtually Imaged Phased Array(VIPA:虚像化フェイズドアレイ)(参考文献(2))、Arrayed−waveguide grating(AWG:アレイ導波路格子)(参考文献(3))、Lattice−Form Programmable Optical Filter on a Planar Lightwave Circuit(PLC)(プレーナ型光波回路に組み込みの格子型プログラマブル光フィルタ)(参考文献(4))を用いる適応分散等化の方法が提案されている。
参考文献
(1)B. J. Eggleton他、IEEE PHOTONICS TECHNOLOGY LETTERS, Vol.12, No.8,P.1022, 2000.
(2)M. Shirasaki他、OFC2001, TuS1, 2001.
(3)M. C. Parker他、OFC2000, WM16, 2000.
(4)K. Takiguchi他、IEEE JOURNAL OF SELECTED TOPICS IN QUANTUMELECTRONICS, Vol.2, p.270, 1996.
【0005】
【発明が解決しようとする課題】
上記のようなこれまで提案された従来の分散適応等化の方法は、2次分散の温度変化のみに対処しており、分散スロープ(2次分散の波長微分)の温度依存性は考慮されていなかった。しかしながら、実際には光ファイバの2次分散の温度依存性は波長によって変化することが最近分かった。この現象は、即ち、分散スロープが温度依存性を有することを意味する。
【0006】
図1は、1.3μmの零分散光ファイバ(Single mode fiber:SMF)と1.3μmの逆分散ファイバ(Reverse dispersion fiber:RDF)の2次分散の温度依存係数dD/dTが、波長により、どのように変化するかを測定した一例を示す。4つの波長(1535nm、1545nm、1555nm、1565nm)における点を結んだ直線の傾きdD/dTdλが、分散スロープS(=dD/dλ)の温度依存係数α(=dS/dT)を与える。SMFとRDFの分散スロープの温度依存係数αT−SMF,αT−RDFはそれぞれ、1.79×10−6(ps/nm/km/deg)、1.48×10−5(ps/nm/km/deg)であった。従って、分散スロープの温度依存係数は、より大きい4次分散を有するRDFの方がSMFよりも一桁大きい値となっている。この原因は、温度変化により2次分散曲線(分散対波長をプロットした曲線)がシフトした場合、2次分散曲線の曲率が大きい、即ち4次分散(分散スロープの波長微分)の大きな光ファイバほど、各波長における分散の傾き(即ち、分散スロープ)の変化が大きくなるからであると考えられる。
【0007】
光伝送システムにおける光信号の波長帯域をΔλ(nm)、および伝送用光ファイバの分散スロープの温度依存係数および長さをそれぞれα(ps/nm/km/deg)、L(km)、温度変動をΔT(deg)とすると、2次分散変化量ΔD(ps/nm)は次式(1)で表される。
【0008】
【数4】

Figure 2004054145
【0009】
したがって、例えば伝送路がRDFと同様の値α=1.48×10−5(ps/nm/km/deg)を有するとし、光ファイバ長をL=1000(km)、温度変化をΔT=50(deg:摂氏温度の度)、および波長帯域をΔλ=100(nm)とした場合、(1)式から、2次分散変化量はΔD=74.0(ps/nm)となる。つまり、WDM伝送システムの運用初期に波長帯域100nmの全範囲において2次分散を0に設定したとしても、分散スロープの温度依存性により、最短波長と最長波長のチャンネルで62.5(ps/nm)の2次分散の差が生じることになる。この場合は、40Gbit/s/chのWDM伝送システム(許容2次分散が約40ps/nm)への適用は困難である。
【0010】
以上述べたように、光ファイバが有する分散スロープの温度依存性により、高速・広帯域のWDM伝送では、温度変化によってチャンネル間で異なる値の2次分散が生じて、チャンネルによって許容2次分散値を超えてしまうという解決すべき課題がある。
【0011】
本発明は、上述のような課題を解決するためになされたもので、その目的は、WDM伝送において、伝送路の分散スロープの温度依存性を抑制することのできる伝搬時間補償光ファイバ、および光ファイバ収容装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明の伝送用光ファイバは、ビットエラーレートが10−9以下になる許容2次分散が−ΔD(ps/nm、但しΔD>0)以上、ΔD以下であって、伝送用光ファイバが受ける温度変化がΔT(deg)、光信号の波長帯域がΔλ(nm)である光伝送システムで使用される全長L(km)の伝送用光ファイバにおいて、次式
【0013】
【数5】
Figure 2004054145
【0014】
を満足するように、伝搬時間差係数K(ps/km/deg)が設定されていることを特徴とする。
【0015】
ここで、好ましくは、上記の光ファイバの表面にコーティング処理を施すことにより熱膨張係数を調整し、上記式
【0016】
【数6】
Figure 2004054145
【0017】
を満足するように伝搬時間差係数K(ps/km/deg)が設定されているとすることができる。
【0018】
また、好ましくは、上記の光ファイバの表面が液晶ポリマーでコーティングされているとすることができる。
【0019】
また、上記目的を達成するため、本発明の光ファイバ収容装置は、ビットエラーレートが10−9以下になる許容2次分散が−ΔD(ps/nm、但しΔD>0)以上、ΔD以下で、光信号の波長帯域がΔλ(nm)である光伝送システムにおいて、伝送路が、長さL(km)、分散スロープ温度係数αT1(ps/nm/km/deg)を有する伝送用光ファイバと、この伝送用光ファイバと連結して、長さL(km)、分散スロープ温度係数αT2(ps/nm/km/deg)を有する分散補償用光ファイバとからなり、その長さL(km)の伝送用光ファイバが受ける温度変化がΔT(deg)である場合において、次式、
【0020】
【数7】
Figure 2004054145
【0021】
を満たすように、上記長さL(km)の分散補償用光ファイバが受ける温度変化ΔS(deg)が設定されることを特徴とする。
【0022】
ここで、好ましくは、上記光ファイバ収容装置は、分散補償用光ファイバを収容し、かつ設定された上記の温度変化ΔS(deg)の値を基に分散補償用光ファイバの周囲の温度を制御する温度制御手段を有する。
【0023】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
(第1の実施形態)
図2は、本発明の第1の実施形態における伝搬時間補償光ファイバの構造を示す図で、(A)は外形を示し、(B)はその断面を拡大して示す。図2に示すように、本実施形態の伝搬時間補償光ファイバ10は、コア11、クラッド12から成る光ファイバの表面に液晶ポリマー13のコーティングが施されて構成されている。
【0024】
本実施形態の原理は、光ファイバ10の石英とは逆符号の膨張係数を有する液晶ポリマー13で光ファイバ10の表面のコーティングを行い、これにより温度変化による物理的な伸縮を抑制することにより、信号の伝搬時間の安定化を実現するというものである。ここで、光ファイバ心線の単位長さ(1km)、単位温度変化(1deg)あたりの伝搬時間差係数K(ps/km/deg)は次式(5)で与えられる。
【0025】
【数8】
Figure 2004054145
【0026】
但し、Nは光ファイバの群屈折率、cは真空中の光速、Aは屈折率の温度変化率、Bは歪みによる屈折率変化率、Eは光ファイバ心線の等化線膨張係数、Eglassは光ファイバ(ガラス)の線膨張係数である。この伝搬時間差係数Kの波長による2回微分dK/dλは、分散スロープの温度係数α(ps/nm/km/deg)と等価である。
【0027】
光伝送システムにおける光信号の波長帯域をΔλ(nm)、および液晶ポリマー13を施した伝送用光ファイバ10の伝搬時間差係数と長さをそれぞれK(ps/km/deg)、L(km)、1年を通しての温度変化をΔT(deg)とすると、2次分散変化量ΔD(ps/nm)は次式(6)で表される。
【0028】
【数9】
Figure 2004054145
【0029】
したがって、伝送システムのビットエラーレートが10−9以下になる許容2次分散の範囲が−ΔD(ps/nm、但しΔD>0)以上、ΔD以下である場合には、次式(7)を満たすような伝搬時間差係数Kが得られるように、液晶ポリマー13のコーティングを施した光ファイバ10を用いることによって、分散スロープの温度依存性の影響を抑制することが可能となる。
【0030】
【数10】
Figure 2004054145
【0031】
(第2の実施形態)
図3は、本発明の第2の実施形態における光ファイバ収容装置の構成を示す。図3において、14は局舎内に配置された光ファイバ収容装置、15は光ファイバ収容装置14内の温度を制御する温度制御回路、16は局舎外の伝送用光ファイバ、17は光ファイバ収容装置14内に収容され局舎外の伝送用光ファイバ16と連続している分散補償用光ファイバである。
【0032】
本実施形態の原理は、局舍内にある分散補償用光ファイバ17の周辺の温度を光ファイバ収容装置14の温度制御回路15により精密に制御することにより、局舍外の伝送用光ファイバ16と局舍内の分散補償用光ファイバ17の分散スロープの温度依存性の影響の和を抑制しようというものである。
【0033】
本発明に係る光ファイバ収容装置14は温度制御回路15を含み、局舍内の分散補償用光ファイバ17を収容する。伝送用光ファイバ16は、長さL(km)、分散スロープ温度係数αT1(ps/nm/km/deg)を有し、光ファイバ収容装置14内の分散補償用光ファイバ17は、長さL(km)、分散スロープ温度係数αT2(ps/nm/km/deg)を有するとする。伝送システムのビットエラーレートが10−9以下になる許容2次分散の範囲が、−ΔD(ps/nm、但しΔD>0)以上、ΔD以下であり、伝送用光ファイバが受ける1年を通しての温度変化がΔT(deg)である場合において、次式
【0034】
【数11】
Figure 2004054145
【0035】
を満たすように、光ファイバ収容装置14内の分散補償用光ファイバ17が受ける温度変化ΔS(deg)を設定する。この温度変化ΔS(deg)の設定値(演算値)を基に、分散補償用光ファイバ17の周辺の温度を温度制御回路15により精密に制御する。これにより、伝送用光ファイバ16と分散補償用光ファイバ17の分散スロープの温度依存性の影響を抑制することが可能となる。
【0036】
(他の実施形態)
本発明の第1の実施形態では、光ファイバの表面に液晶ポリマーのコーティングを施した構成を例示したが、本発明はこれに限定されず、熱膨張係数を調整するのに役立つ他のコーティング材も含まれる。
【0037】
また、本発明の第1と第2の実施形態を組み合わせた実施形態も本発明に含まれる。
【0038】
【発明の効果】
以上説明したように、本発明を適用した伝搬時間補償光ファイバおよび光ファイバ収容装置によれば、分散スロープの温度依存性の影響を抑制することができ、この抑制の実現により、WDM伝送における伝送距離の拡大、ならびに1波長あたりの伝送速度の向上を実現することが可能となる。
【図面の簡単な説明】
【図1】光ファイバの2次分散の温度係数の波長依存性を示す線図である。
【図2】本発明の第1実施形態における伝搬時間補償光ファイバの構成を示し、(A)はその外観を示す斜視図、(B)はその断面を拡大して示す断面図である。
【図3】本発明の第2実施形態における光ファイバ収容装置の構成を示す模式図である。
【符号の説明】
10 伝搬時間補償光ファイバ
11 コア
12 クラッド
13 液晶ポリマー
14 光ファイバ収容装置
15 温度制御回路
16 伝送用光ファイバ
17 分散補償用光ファイバ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a propagation time compensating optical fiber and an optical fiber housing capable of suppressing waveform deterioration of a WDM (wavelength division multiplex) transmission signal light due to the temperature dependence of a dispersion slope of a transmission optical fiber. Equipment related.
[0002]
[Prior art]
The dispersion of an optical fiber causes waveform deterioration of a signal light pulse in optical communication, and its compensation is an essential technique.
[0003]
Further, it is known that the secondary dispersion value of an optical fiber changes due to a temperature change in an environment where the optical fiber is placed. Even at a certain temperature, even in the conventional system in which the secondary dispersion compensation is performed, if the temperature changes and the secondary dispersion value of the optical fiber changes, there is a problem that the pulse waveform is deteriorated. In recent years, as the transmission speed increases, the waveform degradation caused by the secondary dispersion fluctuation due to this temperature change tends to increase.
[0004]
Therefore, an adaptive dispersion equalization technique for compensating for the temperature dependence of the secondary dispersion has been developed. In order to realize this technique, an optical component capable of tuning the secondary dispersion amount is required. Specifically, an optical fiber grating (reference document (1)), a Virtually Imaged Phased Array (VIPA: virtualized phased array) (reference document (2)), an arrayed-waveguide grating (AWG: array waveguide grating) (reference Reference (3)), a method of adaptive dispersion equalization using a Lattice-Form Programmable Optical Filter on a Planar Lightwave Circuit (PLC) (a lattice-type programmable optical filter incorporated in a planar lightwave circuit) (Reference (4)). Proposed.
Reference (1) B. J. Eggleton et al., IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 12, No. 8, p. 1022, 2000.
(2) M.P. Shiraki et al., OFC 2001, TuS 1, 2001.
(3) M.P. C. Parker et al., OFC2000, WM16, 2000.
(4) K. Takeguchi et al., IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol. 2, p. 270, 1996.
[0005]
[Problems to be solved by the invention]
The conventional dispersion adaptive equalization methods proposed so far as described above deal only with the temperature change of the secondary dispersion, and the temperature dependence of the dispersion slope (the wavelength derivative of the secondary dispersion) is taken into consideration. Did not. However, it has recently been found that the temperature dependence of the secondary dispersion of an optical fiber varies with wavelength. This phenomenon means that the dispersion slope has temperature dependence.
[0006]
FIG. 1 shows that the temperature dependence coefficient dD / dT of the secondary dispersion of a 1.3 μm single-mode fiber (SMF) and a 1.3 μm reverse dispersion fiber (RDF) depends on the wavelength. An example of how the change is measured is shown. The slope d 2 D / dTdλ of the straight line connecting the points at the four wavelengths (1535 nm, 1545 nm, 1555 nm, 1565 nm) gives the temperature dependence coefficient α T (= dS / dT) of the dispersion slope S (= dD / dλ). . The temperature dependence coefficients α T-SMF and α T- RDF of the dispersion slopes of SMF and RDF are 1.79 × 10 −6 (ps / nm 2 / km / deg) and 1.48 × 10 −5 (ps / nm 2 / km / deg). Accordingly, the temperature dependence coefficient of the dispersion slope is one order of magnitude higher for the RDF having the higher fourth-order dispersion than for the SMF. The cause is that, when the secondary dispersion curve (curve plotting dispersion versus wavelength) shifts due to a temperature change, the curvature of the secondary dispersion curve is large, that is, an optical fiber having a large fourth-order dispersion (wavelength derivative of dispersion slope) is larger. This is considered to be because the change in the dispersion slope (that is, dispersion slope) at each wavelength increases.
[0007]
The wavelength band of the optical signal in the optical transmission system is Δλ (nm), and the temperature-dependent coefficient and the length of the dispersion slope of the transmission optical fiber are α T (ps / nm 2 / km / deg) and L (km), respectively. Assuming that the temperature fluctuation is ΔT (deg), the secondary dispersion change amount ΔD (ps / nm) is expressed by the following equation (1).
[0008]
(Equation 4)
Figure 2004054145
[0009]
Thus, for example, the transmission path is to have a value similar to the RDF α T = 1.48 × 10 -5 (ps / nm 2 / km / deg), the optical fiber length L = 1000 (km), the temperature change When ΔT = 50 (deg: degrees Celsius) and the wavelength band is Δλ = 100 (nm), the secondary dispersion change amount is ΔD = 74.0 (ps / nm) from equation (1). . That is, even if the secondary dispersion is set to 0 in the entire range of the wavelength band of 100 nm in the early stage of the operation of the WDM transmission system, the temperature dependence of the dispersion slope causes the shortest wavelength and the longest wavelength to be 62.5 (ps / nm). ) Will result in a difference in the secondary dispersion. In this case, it is difficult to apply to a 40 Gbit / s / ch WDM transmission system (allowable second-order dispersion is about 40 ps / nm).
[0010]
As described above, due to the temperature dependence of the dispersion slope of an optical fiber, in high-speed and wideband WDM transmission, a secondary dispersion of a different value occurs between channels due to a temperature change, and an allowable secondary dispersion value varies depending on the channel. There is a problem that needs to be solved.
[0011]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to provide a propagation time compensating optical fiber capable of suppressing the temperature dependence of a dispersion slope of a transmission line in WDM transmission, and an optical fiber. An object of the present invention is to provide a fiber housing device.
[0012]
[Means for Solving the Problems]
To achieve the above object, the transmission optical fiber of the present invention has an allowable second-order dispersion at which the bit error rate is 10 −9 or less, −ΔD 0 (ps / nm, where ΔD 0 > 0) or more, and ΔD 0 or less. In a transmission optical fiber having a total length L (km) used in an optical transmission system in which the temperature change received by the transmission optical fiber is ΔT (deg) and the wavelength band of the optical signal is Δλ (nm), Formula [0013]
(Equation 5)
Figure 2004054145
[0014]
Is characterized in that a propagation time difference coefficient K (ps / km / deg) is set so as to satisfy
[0015]
Here, preferably, the surface of the optical fiber is subjected to a coating treatment to adjust the coefficient of thermal expansion, and the above equation
(Equation 6)
Figure 2004054145
[0017]
Is satisfied, the propagation time difference coefficient K (ps / km / deg) may be set.
[0018]
Preferably, the surface of the optical fiber is coated with a liquid crystal polymer.
[0019]
In order to achieve the above object, the optical fiber accommodating apparatus of the present invention has an allowable second-order dispersion at which the bit error rate is 10 −9 or less, −ΔD 0 (ps / nm, where ΔD 0 > 0) or more, and ΔD 0 or more. In an optical transmission system in which the wavelength band of an optical signal is not more than 0 and the wavelength band of the optical signal is Δλ (nm), the transmission path has a length L 1 (km) and a dispersion slope temperature coefficient α T1 (ps / nm 2 / km / deg). And a dispersion compensating optical fiber having a length L 2 (km) and a dispersion slope temperature coefficient α T2 (ps / nm 2 / km / deg) connected to the transmission optical fiber. When the temperature change received by the transmission optical fiber having the length L 1 (km) is ΔT 1 (deg), the following equation is obtained.
[0020]
(Equation 7)
Figure 2004054145
[0021]
The temperature change ΔS (deg) received by the dispersion compensating optical fiber having the length L 2 (km) is set so as to satisfy the following condition.
[0022]
Preferably, the optical fiber housing device houses the dispersion compensating optical fiber and controls the temperature around the dispersion compensating optical fiber based on the set value of the temperature change ΔS (deg). Temperature control means.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1st Embodiment)
2A and 2B are diagrams showing the structure of a propagation time compensating optical fiber according to the first embodiment of the present invention, wherein FIG. 2A shows an outer shape, and FIG. 2B shows an enlarged cross section. As shown in FIG. 2, the propagation time compensating optical fiber 10 of the present embodiment is configured by coating the surface of an optical fiber comprising a core 11 and a clad 12 with a liquid crystal polymer 13.
[0024]
The principle of the present embodiment is that the surface of the optical fiber 10 is coated with a liquid crystal polymer 13 having a coefficient of expansion opposite to that of quartz of the optical fiber 10, thereby suppressing physical expansion and contraction due to temperature change. This is to stabilize the signal propagation time. Here, the propagation time difference coefficient K (ps / km / deg) per unit length (1 km) and unit temperature change (1 deg) of the optical fiber core is given by the following equation (5).
[0025]
(Equation 8)
Figure 2004054145
[0026]
Here, N is the group refractive index of the optical fiber, c is the speed of light in a vacuum, A is the temperature change rate of the refractive index, B is the refractive index change rate due to strain, E is the equalization linear expansion coefficient of the optical fiber core, and E is glass is a linear expansion coefficient of the optical fiber (glass). The second derivative d 2 K / dλ 2 of the propagation time difference coefficient K with the wavelength is equivalent to the temperature coefficient α T (ps / nm 2 / km / deg) of the dispersion slope.
[0027]
The wavelength band of the optical signal in the optical transmission system is Δλ (nm), and the propagation time difference coefficient and the length of the transmission optical fiber 10 provided with the liquid crystal polymer 13 are K (ps / km / deg), L (km), Assuming that the temperature change throughout the year is ΔT (deg), the secondary dispersion change ΔD (ps / nm) is expressed by the following equation (6).
[0028]
(Equation 9)
Figure 2004054145
[0029]
Therefore, if the allowable second dispersion range in which the bit error rate of the transmission system is 10 −9 or less is −ΔD 0 (ps / nm, where ΔD 0 > 0) and ΔD 0 or less, the following equation ( By using the optical fiber 10 coated with the liquid crystal polymer 13 so as to obtain the propagation time difference coefficient K that satisfies 7), the influence of the temperature dependence of the dispersion slope can be suppressed.
[0030]
(Equation 10)
Figure 2004054145
[0031]
(Second embodiment)
FIG. 3 shows the configuration of the optical fiber housing device according to the second embodiment of the present invention. In FIG. 3, reference numeral 14 denotes an optical fiber housing device arranged in a station building, 15 denotes a temperature control circuit for controlling the temperature in the optical fiber housing device 14, 16 denotes a transmission optical fiber outside the station building, and 17 denotes an optical fiber. The optical fiber for dispersion compensation is housed in the housing device 14 and is continuous with the transmission optical fiber 16 outside the office.
[0032]
The principle of the present embodiment is that the temperature around the dispersion compensating optical fiber 17 in the office is precisely controlled by the temperature control circuit 15 of the optical fiber housing device 14 so that the transmission optical fiber 16 outside the office is controlled. This is intended to suppress the sum of the effects of the temperature dependence of the dispersion slope of the dispersion compensating optical fiber 17 in the station.
[0033]
The optical fiber accommodating device 14 according to the present invention includes a temperature control circuit 15 and accommodates an optical fiber 17 for dispersion compensation in a local office. The transmission optical fiber 16 has a length L 1 (km) and a dispersion slope temperature coefficient α T1 (ps / nm 2 / km / deg), and the dispersion compensating optical fiber 17 in the optical fiber housing device 14 It has a length L 2 (km) and a dispersion slope temperature coefficient α T2 (ps / nm 2 / km / deg). The allowable second dispersion range where the bit error rate of the transmission system is 10 −9 or less is −ΔD 0 (ps / nm, where ΔD 0 > 0) and ΔD 0 or less, and the transmission optical fiber receives 1 When the temperature change throughout the year is ΔT 1 (deg),
[Equation 11]
Figure 2004054145
[0035]
The temperature change ΔS (deg) received by the dispersion compensating optical fiber 17 in the optical fiber housing device 14 is set so as to satisfy the following equation. The temperature around the dispersion compensating optical fiber 17 is precisely controlled by the temperature control circuit 15 based on the set value (computed value) of the temperature change ΔS (deg). This makes it possible to suppress the influence of the temperature dependence of the dispersion slope of the transmission optical fiber 16 and the dispersion compensation optical fiber 17.
[0036]
(Other embodiments)
In the first embodiment of the present invention, the configuration in which the surface of the optical fiber is coated with a liquid crystal polymer is exemplified. However, the present invention is not limited to this, and other coating materials useful for adjusting the coefficient of thermal expansion are provided. Is also included.
[0037]
Further, an embodiment in which the first and second embodiments of the present invention are combined is also included in the present invention.
[0038]
【The invention's effect】
As described above, according to the propagation time compensating optical fiber and the optical fiber accommodating apparatus to which the present invention is applied, it is possible to suppress the influence of the temperature dependence of the dispersion slope, and to realize the transmission in WDM transmission by realizing this suppression. It is possible to increase the distance and improve the transmission speed per wavelength.
[Brief description of the drawings]
FIG. 1 is a diagram showing the wavelength dependence of the temperature coefficient of the secondary dispersion of an optical fiber.
FIGS. 2A and 2B show a configuration of a propagation time compensating optical fiber according to a first embodiment of the present invention, wherein FIG. 2A is a perspective view showing the appearance thereof, and FIG.
FIG. 3 is a schematic diagram illustrating a configuration of an optical fiber housing device according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Propagation time compensation optical fiber 11 Core 12 Cladding 13 Liquid crystal polymer 14 Optical fiber housing 15 Temperature control circuit 16 Transmission optical fiber 17 Dispersion compensation optical fiber

Claims (5)

ビットエラーレートが10−9以下になる許容2次分散が−ΔD(ps/nm、但しΔD>0)以上、ΔD以下であって、伝送用光ファイバが受ける温度変化がΔT(deg)、光信号の波長帯域がΔλ(nm)である光伝送システムで使用される全長L(km)の伝送用光ファイバにおいて、次式
Figure 2004054145
を満足するように、伝搬時間差係数K(ps/km/deg)が設定されていることを特徴とする伝搬時間補償光ファイバ。
The allowable second-order dispersion at which the bit error rate becomes 10 −9 or less is −ΔD 0 (ps / nm, where ΔD 0 > 0) or more and ΔD 0 or less, and the temperature change received by the transmission optical fiber is ΔT (deg). ), In a transmission optical fiber having a total length L (km) used in an optical transmission system in which the wavelength band of the optical signal is Δλ (nm),
Figure 2004054145
Wherein a propagation time difference coefficient K (ps / km / deg) is set so as to satisfy the following condition.
請求項1に記載の伝搬時間補償光ファイバにおいて、該光ファイバの表面にコーティング処理を施すことにより熱膨張係数を調整し、前記式
Figure 2004054145
を満足するように、伝搬時間差係数K(ps/km/deg)が設定されていることを特徴とする伝搬時間補償光ファイバ。
2. The propagation time compensating optical fiber according to claim 1, wherein a surface of said optical fiber is subjected to a coating treatment to adjust a coefficient of thermal expansion, and
Figure 2004054145
Wherein a propagation time difference coefficient K (ps / km / deg) is set so as to satisfy the following condition.
請求項2に記載の伝搬時間補償光ファイバにおいて、該光ファイバの表面が液晶ポリマーでコーティングされていることを特徴とする伝搬時間補償光ファイバ。3. The propagation time compensating optical fiber according to claim 2, wherein a surface of the optical fiber is coated with a liquid crystal polymer. ビットエラーレートが10−9以下になる許容2次分散が−ΔD(ps/nm、但しΔD>0)以上、ΔD以下で、光信号の波長帯域がΔλ(nm)である光伝送システムにおいて、伝送路が、長さL(km)、分散スロープ温度係数αT1(ps/nm/km/deg)を有する伝送用光ファイバと、該伝送用光ファイバと連続する、長さL(km)、分散スロープ温度係数αT2(ps/nm/km/deg)を有する分散補償用光ファイバとからなり、前記長さL(km)の伝送用光ファイバが受ける温度変化がΔT(deg)である場合において、次式、
Figure 2004054145
を満たすように、前記長さL(km)の分散補償用光ファイバが受ける温度変化ΔS(deg)が設定されることを特徴とする光ファイバ収容装置。
Optical transmission in which the allowable second-order dispersion at which the bit error rate is 10 −9 or less is −ΔD 0 (ps / nm, where ΔD 0 > 0) or more and ΔD 0 or less, and the wavelength band of the optical signal is Δλ (nm). In the system, the transmission line has a length L 1 (km) and a dispersion slope temperature coefficient α T1 (ps / nm 2 / km / deg), and a length continuous with the transmission optical fiber. L 2 (km) and a dispersion compensating optical fiber having a dispersion slope temperature coefficient α T2 (ps / nm 2 / km / deg), and a temperature change received by the transmission optical fiber having the length L 1 (km). Is ΔT 1 (deg), the following equation:
Figure 2004054145
The optical fiber accommodating device, wherein the temperature change ΔS (deg) received by the dispersion compensating optical fiber having the length L 2 (km) is set so as to satisfy the following condition.
請求項4に記載の光ファイバ収容装置において、該光ファイバ収容装置は、前記分散補償用光ファイバを収容し、かつ設定された前記温度変化ΔS(deg)の値を基に該分散補償用光ファイバの周囲の温度を制御する温度制御手段を有することを特徴とする光ファイバ収容装置。5. The optical fiber accommodating device according to claim 4, wherein the optical fiber accommodating device accommodates the dispersion compensating optical fiber, and the dispersion compensating light is set based on a set value of the temperature change ΔS (deg). An optical fiber housing device comprising a temperature control means for controlling a temperature around a fiber.
JP2002214574A 2002-07-23 2002-07-23 Propagation time compensation optical fiber and optical fiber housing device Pending JP2004054145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214574A JP2004054145A (en) 2002-07-23 2002-07-23 Propagation time compensation optical fiber and optical fiber housing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214574A JP2004054145A (en) 2002-07-23 2002-07-23 Propagation time compensation optical fiber and optical fiber housing device

Publications (1)

Publication Number Publication Date
JP2004054145A true JP2004054145A (en) 2004-02-19

Family

ID=31936832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214574A Pending JP2004054145A (en) 2002-07-23 2002-07-23 Propagation time compensation optical fiber and optical fiber housing device

Country Status (1)

Country Link
JP (1) JP2004054145A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070069423A (en) * 2005-12-28 2007-07-03 한국과학기술연구원 Quantum cryptography distribution one way system using the phase stabilized optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070069423A (en) * 2005-12-28 2007-07-03 한국과학기술연구원 Quantum cryptography distribution one way system using the phase stabilized optical fiber

Similar Documents

Publication Publication Date Title
CA2291556C (en) Optical grating device with variable coating
Bona et al. SiON high-refractive-index waveguide and planar lightwave circuits
EP0997764B1 (en) Optical grating devices with adjustable chirp
US7184623B2 (en) Apparatus, system and method for an adiabatic coupler for multi-mode fiber-optic transmission systems
JP4181417B2 (en) Multi-mode interference coupler for WDM applications
WO2000017685A1 (en) Dispersion compensating fiber
US7496261B2 (en) Dispersion compensating optical fiber and dispersion compensating optical fiber module
JPH11202113A (en) Recoatable temperature-nonreactive long-cycle diffraction grating
Glass et al. Advances in fiber optics
CA2344205A1 (en) Dispersion compensating fiber
JP2013201755A (en) Controlling differential group delay in mode division multiplexed optical fiber systems
JP2004524569A5 (en)
US6542666B2 (en) Optical component
US6947633B2 (en) Dispersion compensation
US20130183440A1 (en) Optical waveguide-type wavelength dispersion compensation device and manufacturing method thereof
Doerr et al. Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens
JP2004054145A (en) Propagation time compensation optical fiber and optical fiber housing device
JP2002507760A (en) Passive compensation optical fiber
KR20040068304A (en) Low MPI dispersion compensating fiber
US20020181878A1 (en) Dynamic chromatic dispersion control using coupled optical waveguides
WO2009081905A1 (en) Optical waveguide type wavelength dispersion compensation device and method for manufacturing the device
WO2009081901A1 (en) Optical waveguide, method for manufacturing the optical waveguide, and optical device provided with the optical waveguide
WO2009081904A1 (en) Optical waveguide type wavelength dispersion compensation device and method for manufacturing the same
JP3974471B2 (en) Optical transmission system
EP1273937A1 (en) Unit for compensating the chromatic dispersion in a reconfigurable manner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060901