WO2009081905A1 - Optical waveguide type wavelength dispersion compensation device and method for manufacturing the device - Google Patents

Optical waveguide type wavelength dispersion compensation device and method for manufacturing the device Download PDF

Info

Publication number
WO2009081905A1
WO2009081905A1 PCT/JP2008/073318 JP2008073318W WO2009081905A1 WO 2009081905 A1 WO2009081905 A1 WO 2009081905A1 JP 2008073318 W JP2008073318 W JP 2008073318W WO 2009081905 A1 WO2009081905 A1 WO 2009081905A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical waveguide
dispersion compensation
npwg
compensation device
Prior art date
Application number
PCT/JP2008/073318
Other languages
French (fr)
Japanese (ja)
Inventor
Ning Guan
Kensuke Ogawa
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Publication of WO2009081905A1 publication Critical patent/WO2009081905A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion

Definitions

  • the present invention relates to a small-sized optical waveguide type chromatic dispersion compensation device that compensates for chromatic dispersion of an optical fiber and a method for manufacturing the same.
  • This device can be used for an optical fiber communication network or the like.
  • DWDM Dense Wavelength-Division Multiplexing
  • an optical fiber as the transmission line that has as little chromatic dispersion as possible in the transmission band, while preventing chromatic dispersion from becoming zero in order to suppress nonlinear effects.
  • optical fibers that have already been laid in a wide range are often used in a wavelength region with large dispersion.
  • S-SMF standard single-mode fiber
  • a standard single-mode fiber (S-SMF) having zero dispersion near a wavelength of 1.3 ⁇ m has a wavelength of 1.53 to 1.63 ⁇ m due to the practical use of an erbium-doped fiber amplifier. Used in belts.
  • a dispersion shifted fiber in which zero dispersion is shifted to a wavelength near 1.55 ⁇ m may be used not only in the C band but also in the S band and the L band.
  • DSF Dispersion Shifted Fiber
  • NZ-DSF non-zero dispersion shifted fibers
  • dispersion compensation using a dispersion compensation fiber is the most practical technique (see, for example, Patent Documents 1 and 2).
  • DCF Dispersion Compensation Fiber
  • the refractive index distribution of the optical fiber is controlled so that a desired dispersion compensation amount can be obtained.
  • the DCF usually requires the same length as the optical fiber to be compensated. Therefore, when this DCF is modularized, not only a large installation space is required, but also propagation loss cannot be ignored.
  • DCF requires precise control of the refractive index distribution, which is not only difficult to manufacture, but also often makes it difficult to satisfy the dispersion compensation amount required in a wide band.
  • Fiber Bragg Grating is one of the techniques often used for dispersion compensation (see, for example, Patent Document 3).
  • the FBG performs dispersion compensation by irradiating the fiber with UV light, thereby changing the refractive index of the fiber core and forming a grating due to the different refractive index. This makes it possible to realize a small device for dispersion compensation, but it is difficult to control the change in refractive index.
  • An optical planar circuit can perform dispersion compensation using an optical circuit constructed on a plane.
  • Lattice type PLC is one example (see, for example, Non-Patent Document 1).
  • the lattice type PLC controls the dispersion by cascading coupled resonators and is based on the principle of a digital IIR (Infinite Impulse Response) filter. Therefore, the amount of dispersion to be realized is limited.
  • a VIPA (Virtually Imaged Phased Array) type dispersion compensator is a dispersion compensation device composed of a wavelength dispersion element (VIPA plate) in which a reflection film is coated on both surfaces of a thin plate and a reflection mirror (for example, see Patent Document 6). ).
  • VIPA plate wavelength dispersion element
  • This device adjusts the dispersion with a three-dimensional structure. Therefore, it is structurally complicated and requires extremely high accuracy in manufacturing.
  • Dispersion compensation using DCF requires a large space due to the use of a long fiber and is difficult to reduce in size. In addition, there is a limit to the dispersion compensation characteristics that can be realized.
  • Dispersion compensation using FBG is limited in the dispersion compensation characteristics that can be realized.
  • Dispersion compensation using FBG superposition has a limit in the dispersion compensation characteristics that can be realized.
  • 4: Dispersion compensation using a lattice-type PLC has a small amount of dispersion compensation that can be realized.
  • the PLC using AWG has a complicated structure, is difficult to manufacture, and increases the cost. In addition, the required space is large and it is difficult to reduce the size of the device. 6: The VIPA type dispersion compensator has a complicated structure, is difficult to manufacture, and increases the cost.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical waveguide type chromatic dispersion compensation device that can be reduced in size, has excellent dispersion compensation characteristics, can be easily manufactured, and can be manufactured at low cost.
  • the optical waveguide type chromatic dispersion compensation device of the present invention is an optical waveguide in which the equivalent refractive index of the core varies nonuniformly in the light propagation direction by changing the physical dimension of the core embedded in the cladding.
  • the optical waveguide has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated within the wavelength region of these channels.
  • the width of the core is unevenly distributed over the light propagation direction.
  • the width of the core is unevenly distributed over the light propagation direction so that both sides of the core in the width direction are symmetrical from the center of the core.
  • the width of the core is unevenly distributed in the light propagation direction so that both sides of the core in the width direction are asymmetric from the center of the core.
  • the width of the core is unevenly distributed over the light propagation direction only on one side of the core in the width direction from the center of the core.
  • the core is linearly provided in the optical waveguide.
  • the core is provided in a meandering manner in the optical waveguide.
  • One end of the optical waveguide is a transmissive end, the other end of the optical waveguide is a reflective end; the transmissive end is terminated at a non-reflective end; and a circulator or a directional coupler is used at the reflective end.
  • the light output is taken out.
  • the optical waveguide preferably has a dispersion compensation characteristic that cancels the chromatic dispersion of the compensated optical fiber having a predetermined length in a predetermined wavelength band.
  • the optical waveguide has a dispersion D of ⁇ 3000 ps / nm ⁇ D ⁇ 3000 ps / with a center wavelength ⁇ c in the range of 1490 nm ⁇ ⁇ c ⁇ 1613 nm and an operating band ⁇ BW in the range of 0.1 nm ⁇ ⁇ BW ⁇ 60 nm.
  • the ratio RDS dispersion slope for the dispersion is preferably has a characteristic in the range of -0.1nm -1 ⁇ RDS ⁇ 0.1nm -1.
  • the equivalent refractive index distribution of the core over the light propagation direction of the optical waveguide is solved as an inverse scattering problem that numerically derives a potential function from the spectral data of the reflection coefficient using the Zakharov-Shabat equation; It is preferably designed by a design method that estimates the potential for realizing a desired reflection spectrum from the values obtained in the scattering problem.
  • the equivalent refractive index distribution of the core across the light propagation direction of the optical waveguide is obtained by using a wave equation that introduces a variable that is an amplitude of a power wave propagating forward and backward of the optical waveguide. It is reduced to the Zakharov-Shabat equation having a potential derived from the logarithmic derivative of the refractive index, and is solved as an inverse scattering problem that numerically derives the potential function from the spectral data of the reflection coefficient; Estimating a potential for realizing a desired reflection spectrum; obtaining an equivalent refractive index based on this potential; a predetermined thickness of the core, an equivalent refractive index, a dimension of the core, which are obtained in advance; From the above relationship, it is preferable to calculate the width distribution of the core over the light propagation direction of the optical waveguide.
  • the equivalent refractive index distribution of the core across the light propagation direction of the optical waveguide has a substantially periodic structure at the scale of the center wavelength of the band for dispersion compensation, and is determined by the inverse scattering problem at a scale larger than the center wavelength. It preferably has a two-layer structure of an aperiodic structure.
  • an optical waveguide type chromatic dispersion compensation device of the present invention In the method of manufacturing an optical waveguide type chromatic dispersion compensation device of the present invention, a lower cladding layer of an optical waveguide is provided; and then a core layer having a refractive index larger than that of the lower cladding layer is provided on the lower cladding layer; Next, a predetermined core shape designed so that the equivalent refractive index of the core varies non-uniformly in the light propagation direction is left on the core layer, and a core is formed by removing the other portions; Next, it is preferable to manufacture an optical waveguide by providing a clad covering the core.
  • the optical waveguide type chromatic dispersion compensation device described in (1) above has an optical waveguide in which the equivalent refractive index of the core embedded in the clad varies nonuniformly in the light propagation direction as the reflective chromatic dispersion compensation means. Therefore, the size can be reduced as compared with the prior art using a dispersion compensating fiber and the installation space can be reduced.
  • the optical waveguide type chromatic dispersion compensation device described in the above (1) can obtain excellent dispersion compensation characteristics such as a wider dispersion compensation characteristic that can be realized as compared with dispersion compensation using a conventional FBG.
  • the optical waveguide type chromatic dispersion compensation device described in the above (1) has a simple structure and can be manufactured at a lower cost than conventional dispersion compensation devices such as PLC and VIPA.
  • the optical waveguide type chromatic dispersion compensation device described in (1) has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated within the wavelength region of each channel. . Therefore, the length of the required optical waveguide is shortened, the device can be miniaturized, and the transmission loss of the optical waveguide can be reduced.
  • FIG. 1 is a schematic perspective view showing the structure of an NPWG used in the dispersion compensation device of the present invention.
  • FIG. 2A is a graph showing group delay characteristics of the NPWG when the NPWG performs dispersion compensation for the entire wavelength band to be compensated.
  • FIG. 2B is a diagram schematically illustrating the relationship between the wavelength of light and reflection at the core of the NPWG when the NPWG performs dispersion compensation for the entire wavelength band to be compensated.
  • FIG. 3A is a graph showing group delay characteristics of the NPWG when the NPWG divides the wavelength band to be compensated into a plurality of channels and performs dispersion compensation on each channel.
  • FIG. 1 is a schematic perspective view showing the structure of an NPWG used in the dispersion compensation device of the present invention.
  • FIG. 2A is a graph showing group delay characteristics of the NPWG when the NPWG performs dispersion compensation for the entire wavelength band to be compensated.
  • FIG. 2B is a
  • FIG. 3B is a diagram schematically showing the relationship between the wavelength and reflection of light in the NPWG core when the NPWG divides the wavelength band to be compensated into a plurality of channels and performs dispersion compensation in each channel. is there.
  • FIG. 4A is a schematic plan view showing an example of a core width distribution shape.
  • FIG. 4B is a schematic plan view showing a modification of the distribution shape of the core width.
  • FIG. 5 is a schematic plan view illustrating the case where the cores are provided in a meandering manner.
  • FIG. 6 is a block diagram showing an embodiment of the dispersion compensation device of the present invention.
  • FIG. 7 is a graph showing the potential distribution of the NPWG of Example 1.
  • FIG. 8 is a graph showing the group delay characteristics of the NPWG according to the first embodiment.
  • FIG. 9 is a graph showing the reflectance characteristics of the NPWG of Example 1.
  • FIG. 11 is a graph showing the core width distribution of the NPWG of Example 1.
  • FIG. 12 is a graph showing the distribution of the equivalent refractive index of the NPWG of Example 1.
  • FIG. 13 is a partially enlarged view of FIG.
  • FIG. 14 is a partially enlarged view of FIG. FIG.
  • FIG. 15 is a graph showing the distribution of the core width of the NPWG when a high initial refractive index is used in the NPWG of Example 1.
  • FIG. 16 is a graph showing an equivalent refractive index distribution of NPWG when a high initial refractive index is used in the NPWG of Example 1.
  • FIG. 17 is a graph showing the potential distribution of the NPWG of Example 2.
  • FIG. 18 is a graph showing the group delay characteristics of the NPWG of the same example.
  • FIG. 19 is a graph showing the reflectance characteristics of the NPWG of the same example.
  • FIG. 20 is a graph showing the core width distribution of the NPWG of the same example.
  • FIG. 21 is a graph showing the distribution of the equivalent refractive index of the NPWG of the same example.
  • FIG. 22 is a graph showing the potential distribution of the NPWG of Example 3.
  • FIG. 23 is a graph showing the group delay characteristics of the NPWG of the same example.
  • FIG. 24 is a graph showing the reflectance characteristics of the NPWG of the same example.
  • FIG. 25 is a graph showing the core width distribution of the NPWG of the same example.
  • FIG. 26 is a graph showing an equivalent refractive index distribution of the NPWG of the same example.
  • FIG. 27 is a graph showing the potential distribution of the NPWG of Example 4.
  • FIG. 28 is a graph showing the group delay characteristics of the NPWG of the same example.
  • FIG. 29 is a graph showing the reflectance characteristics of the NPWG of this example.
  • FIG. 30 is a graph showing the core width distribution of the NPWG of the same example.
  • FIG. 31 is a graph showing an equivalent refractive index distribution of the NPWG of the same example.
  • FIG. 32 is a graph showing the potential distribution of the NPWG of Example 5.
  • FIG. 33 is a graph showing the group delay characteristic of the NPWG of the same example.
  • FIG. 34 is a graph showing the reflectance characteristics of the NPWG of this example.
  • FIG. 35 is a graph showing the core width distribution of the NPWG of the same example.
  • FIG. 36 is a graph showing an equivalent refractive index distribution of the NPWG of the same example.
  • FIG. 37 is a graph showing the potential distribution of the NPWG of Example 6.
  • FIG. 38 is a graph showing the group delay characteristics of the NPWG of the same example.
  • FIG. 39 is a graph showing the reflectance characteristics of the NPWG of this example.
  • FIG. 40 is a graph showing the core width distribution of the NPWG of the same example.
  • FIG. 41 is a graph showing an equivalent refractive index distribution of the NPWG of the same example.
  • FIG. 42 is a graph showing the potential distribution of the NPWG of Example 7.
  • FIG. 43 is a graph showing the group delay characteristics of the NPWG of the same example.
  • FIG. 44 is a graph showing the reflectance characteristics of the NPWG of the same example.
  • FIG. 45 is a graph showing the core width distribution of the NPWG of the same example.
  • FIG. 46 is a graph showing an equivalent refractive index distribution of the NPWG of the same example.
  • FIG. 47 is a graph showing the potential distribution of the NPWG of Example 8.
  • FIG. 48 is a graph showing the group delay characteristics of the NPWG of the same example.
  • FIG. 49 is a graph showing the reflectance characteristics of the NPWG of this example.
  • FIG. 50 is a graph showing the core width distribution of the NPWG of the same example.
  • FIG. 51 is a graph showing an equivalent refractive index distribution of the NPWG of the same example.
  • FIG. 52 is a graph showing the potential distribution of the NPWG of Example 9.
  • FIG. 53 is a graph showing the group delay characteristics of the NPWG of the same example.
  • FIG. 54 is a graph showing the reflectance characteristics of the NPWG of this example.
  • FIG. 55 is a graph showing the core width distribution of the NPWG of the same example.
  • FIG. 56 is a graph showing an equivalent refractive index distribution of the NPWG of the same example.
  • Non-reflective termination 20 Dispersion compensation device
  • the dispersion compensation device of the present invention has an optical waveguide in which the equivalent refractive index of the core embedded in the clad varies nonuniformly in the light propagation direction as a reflection type chromatic dispersion compensation means.
  • non-uniform means that the physical dimension changes with the traveling direction of the waveguide.
  • This optical waveguide has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated within the wavelength region of each channel.
  • the dispersion compensation device of the present invention is generally configured by an optical waveguide 10 and a circulator 15 connected to the reflection end 13 side.
  • the transmission end 14 of the optical waveguide 10 is a non-reflection terminal 16.
  • the circulator 15 is connected to a compensated optical fiber (not shown) on its input side (input).
  • a downstream optical fiber is connected to the output side (output) of the circulator 15. This downstream optical fiber is used in the optical transmission line.
  • the dispersion compensation device 20 of the present invention is a reflection type device, and an optical signal input from the compensated optical fiber to the input side of the circulator 15 is reflected by entering the optical waveguide 10, and the reflected wave passes through the circulator 15. Is output.
  • FIG. 1 is a schematic perspective view showing an embodiment of an optical waveguide 10.
  • reference numeral 10 denotes an optical waveguide
  • 11 denotes a core
  • 12 denotes a cladding.
  • the optical waveguide 10 of the present embodiment is a non-uniform width core in which the width w of the core 11 is changed over the longitudinal direction (z) as means for changing the equivalent refractive index of the core 11 non-uniformly along the light propagation direction.
  • NPWG Planar Waveguide
  • the NPWG 10 of the present embodiment has a core 11 in the clad 12.
  • the core 11, as shown in FIG. 1, has a constant height h 3. Further, the width w of the core 11 varies non-uniformly in the longitudinal direction (z) direction, and changes the local equivalent refractive index of the propagation mode of the waveguide. Due to this change in refractive index, the NPWG 10 is provided with a reflective chromatic dispersion compensation function.
  • a quartz glass material can be used.
  • the clad may be made of pure quartz glass, and the core may be made of germanium-added quartz glass. It is also possible to use a resin material.
  • the operational principle of the NPWG 10 is similar to the FBG grating at first glance. However, regarding the change of the equivalent refractive index, the refractive index of the core medium is changed in the FBG, whereas in the NPWG 10 of the present embodiment, the equivalent refractive index is changed by changing the width of the core 11 along the longitudinal direction. It is changing. Thus, regarding the change of the equivalent refractive index, the operating principle is completely different between the two. In the NPWG 10, the variation rate of the equivalent refractive index obtained by changing the width of the core 11 along the longitudinal direction is larger than that in the FBG, and fine and accurate control is easy. Since the structure of the NPWG 10 is planar, it can be manufactured in a large amount by a known manufacturing process, and the cost can be reduced.
  • FIG. 2A is a graph showing group delay (Group delay) characteristics of the NPWG 10.
  • FIG. 2B is a diagram schematically illustrating the relationship between the wavelength of light and the reflection in the core 11.
  • the required dispersion characteristics When compensating for the chromatic dispersion of an optical fiber, the required dispersion characteristics often change monotonously. As a result, the wider the band to be compensated, the higher the absolute delay amount ( ⁇ max ⁇ min in FIG. 2A) within the band. As shown in FIGS. 2A and 2B, the NPWG reflects a signal in a wavelength band with a fast delay ( ⁇ 1 in FIGS. 2A and 2B) in front of the device, and a wavelength band with a slow delay ( ⁇ n in FIGS. 2A and 2B). ) Is reflected in the back of the device. Therefore, when the absolute delay amount is high, the required device length becomes long. That is, the required device length L can be estimated by the following equation (A).
  • n eff is the equivalent refractive index of the waveguide
  • ⁇ max and ⁇ min are the maximum delay amount and the minimum delay amount, respectively.
  • FIGS. 2A and 2B the present invention does not perform dispersion compensation in the entire area to be subjected to dispersion compensation, but divides the area to be compensated into a plurality of channels as shown in FIGS. 3A and 3B. Thus, a method of performing dispersion compensation in each channel is used.
  • FIG. 3A is a graph showing group delay characteristics of the NPWG 10.
  • FIG. 3B is a diagram schematically illustrating the relationship between the wavelength of light and the reflection in the core 11. As shown in FIG.
  • the region to be compensated is divided into a plurality of channels such as channels of wavelengths ⁇ 11 to ⁇ 12 and channels of wavelengths ⁇ 21 to ⁇ 22. Dispersion compensation is performed in each channel. That is, what is characteristic of the present invention is that the reflection spectrum indicated by the desired dispersion compensation device is divided into wavelength bands (channels) that require dispersion compensation, and the required compensation group delay is indicated within each wavelength band. Is to set.
  • the required waveguide length is shortened, and not only the device is reduced, but also the loss of the waveguide can be reduced.
  • the NPWG 10 having a structure in which the core 11 in which the height (thickness) is constant and the width varies non-uniformly in the longitudinal direction is embedded in the clad 11, but the optical fiber used in the present invention is exemplified.
  • the waveguide is not limited to this example, and various modifications can be made.
  • the core 11 may have a width distribution that is unevenly distributed in the light propagation direction so that both sides of the core 11 in the width direction are symmetrical.
  • FIG. 4B a structure in which the both sides in the width direction of the core 11 from the center of the core 11 are asymmetrically distributed in the light propagation direction may be used. As shown in FIG.
  • the core 11 may have a structure in which the core 11 is provided in a meandering manner as shown in FIG. 5 in addition to a structure in which the core 11 is provided linearly along the longitudinal direction (z) of the NPWG 10.
  • the NPWG 10 can be further downsized.
  • the NPWG 10 which is a main component of the dispersion compensation device 20 of the present invention, is manufactured as follows, for example.
  • the cladding 12 covering the core 11 is provided, and the NPWG 10 is manufactured.
  • the distribution of the core width can be designed by using the inverse scattering problem method for obtaining a necessary width distribution from a desired reflection spectrum.
  • the electromagnetic field propagating to the NPWG 10 is formulated as follows (reference: JE Sipe, L. Poladian, and C. Martijn de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A, vol. 11, no. 4, pp. 1307-1320, 1994). Assuming that the time variation of the electromagnetic field is exp ( ⁇ i ⁇ t), the electromagnetic field propagating to the NPWG 10 by the Maxwell equation is expressed by the following expressions (1) and (2). In the above formulas (1) and (2), E and H represent the complex amplitudes of the electric field and magnetic field, respectively, and n represents the refractive index of the waveguide.
  • Zakharov-Shabat equations can be solved as inverse scattering problems. That is, the following formula (10)
  • the potential function u (x) can be solved numerically from the spectral data of the reflection coefficient defined in (Reference: PV Frangos and DL Jaggard, “A numerical solution to the Zakharov-Shabat inverse scattering problem,” IEEE Trans. Antennas and Propag., Vol. 39, no. 1, pp. 74-79, 1991). If this is applied to the above-mentioned inverse scattering problem, a potential for realizing a desired reflection spectrum can be obtained.
  • the reflection spectrum refers to complex reflection data obtained from the group delay amount and the reflectance with respect to the wavelength.
  • the local equivalent refractive index n (x) can be obtained by the following equation (11).
  • the core width w (x) is obtained.
  • spectral data is created so as to be opposite to the dispersion of the optical fiber to be compensated (so that dispersion compensation can be performed), and the design method is used. If the inverse problem is solved and the NPWG 10 is manufactured, a small and high-performance dispersion compensation device can be realized. When this method is used, interference between channels that occurs in a method of superimposing FBGs (see, for example, Patent Document 4) does not occur because the design method is considered. Further, the NPWG obtained by this design has a structure different from that disclosed in Patent Document 4.
  • the core 11 of the NPWG 10 it is preferable to form the core 11 by photolithography using a mask having the shape of the core width w (x) described above.
  • Materials and procedures used for this photolithography method can be implemented using materials and procedures used for photolithography methods well known in the field of semiconductor manufacturing.
  • the cladding layer or core layer can be formed by using a well-known film forming technique used in the production of a general optical waveguide.
  • the dispersion compensation device 20 of the present invention after manufacturing the NPWG 10 as described above, terminates the transmissive end 14 of the NPWG 10 with a non-reflection termination 16. Further, a circulator 15 or a directional coupler is connected to the reflection end 13 of the NPWG 10. Thus, the dispersion compensation device 20 shown in FIG. 6 is obtained.
  • the NPWG 10 of the dispersion compensation device 20 has reflectivity characteristics that can compensate for the chromatic dispersion of the compensated optical fiber. Therefore, the optical signal output from the compensated optical fiber is reflected by the NPWG 10. In this case, the chromatic dispersion of the optical signal is corrected and output.
  • the optical signal output from the dispersion compensation device 20 is input to the downstream optical fiber connected to the output side of the circulator 15 and propagates through the fiber.
  • the NPWG was designed so that the wavelength region for dispersion compensation is divided into 10 channels satisfying the frequency f of 193.4 + 0.1 nTHz ⁇ f ⁇ 193.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 5 ⁇ n ⁇ 4.
  • dispersion compensation is performed in each channel.
  • Example 1 the reflection spectrum shown by the dispersion compensation device is divided into the 10 channels, and the width of the waveguide is designed by setting so as to compensate for the dispersion within each wavelength band. .
  • Each of these channels fills the ITU grid interval.
  • the dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 7 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 1550.12 nm.
  • the relationship between the equivalent refractive index at a wavelength of 1550 nm and the width of the waveguide is as shown in FIG.
  • the thickness of the clad is sufficiently larger than that of the core.
  • the width distribution of the core of the NPWG realizing the characteristics shown in FIGS. 8 and 9 is as shown in FIG.
  • the distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
  • FIG. 13 shows an enlarged view of a part of FIG.
  • FIG. 14 shows an enlarged view of a part of FIG.
  • the NPWG according to the present embodiment has a periodic structure in which the period is about 1 ⁇ 2 of the center wavelength on the scale of the center wavelength of the band for dispersion compensation.
  • this NPWG has a two-layered structure such as a periodic structure at the center wavelength scale and a non-periodic structure determined by an inverse problem at a scale much larger than the wavelength.
  • FIG. 15 shows the distribution in the core width direction when a higher reference refractive index n (0) than in the above example is used.
  • the distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
  • the material of the core and the clad is not limited to quartz glass, and other transparent materials that are conventionally known in the optical field such as silicon compounds and polymers can also be used.
  • the device can be further reduced and the transmission loss can be reduced.
  • the NPWG was designed so that the wavelength region for dispersion compensation is divided into 20 channels satisfying the frequency f of 193.4 + 0.1 nTHz ⁇ f ⁇ 193.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 10 ⁇ n ⁇ 9.
  • dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 17 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 1550.12 nm.
  • the group delay characteristic shown in FIG. 18 and the reflectance characteristic shown in FIG. 19 are obtained.
  • spectral data (designed) used for design and obtained spectral data (realized) are shown.
  • the core width distribution of the NPWG realizing the characteristics shown in FIGS. 18 and 19 is as shown in FIG.
  • the distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
  • the potential fluctuation is larger than that in the first embodiment because the compensation band (channel) is increased. Further, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased.
  • the length of the device is the same as in the first embodiment. That is, in this embodiment, dispersion compensation in a larger number of bands can be realized with the dispersion compensation device having the same length as that of the first embodiment.
  • the NPWG was designed so that the wavelength region for dispersion compensation was divided into 50 channels with the frequency f satisfying 193.4 + 0.1 nTHz ⁇ f ⁇ 193.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 25 ⁇ n ⁇ 24.
  • dispersion compensation device dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. This is a dispersion compensation device that covers the entire C band.
  • the dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 22 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 1550.12 nm.
  • the group delay characteristic shown in FIG. 23 and the reflectance characteristic shown in FIG. 24 are obtained.
  • spectral data (designed) used for design and obtained spectral data (realized) are shown.
  • the core width distribution of the NPWG realizing the characteristics shown in FIGS. 23 and 24 is as shown in FIG.
  • the distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
  • the potential fluctuation is larger than that in the first embodiment because the compensation band (channel) is increased.
  • the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased.
  • the length of the device is the same as in the first embodiment. That is, in this embodiment, dispersion compensation in a larger number of bands can be realized with the dispersion compensation device having the same length as that of the first embodiment.
  • the NPWG was designed so that the wavelength region for dispersion compensation was divided into 10 channels satisfying the frequency f of 188.4 + 0.1 nTHz ⁇ f ⁇ 188.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 5 ⁇ n ⁇ 4.
  • dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval.
  • the dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 27 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 1591.26 nm.
  • the core width distribution of the NPWG realizing the characteristics shown in FIGS. 28 and 29 is as shown in FIG.
  • the distribution of the equivalent refractive index of NPWG at that time is as shown in FIG.
  • the NPWG was designed so that the wavelength region for dispersion compensation was divided into 20 channels satisfying the frequency f of 188.4 + 0.1 nTHz ⁇ f ⁇ 188.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 10 ⁇ n ⁇ 9.
  • dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval.
  • the dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 32 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 1591.26 nm.
  • the group delay characteristic shown in FIG. 33 and the reflectance characteristic shown in FIG. 32 are obtained.
  • spectral data (designed) used for design and obtained spectral data (realized) are shown.
  • the core width distribution of the NPWG realizing the characteristics shown in FIGS. 33 and 34 is as shown in FIG.
  • the distribution of the equivalent refractive index of the waveguide at that time is as shown in FIG.
  • the fluctuation in potential was larger than that in Example 4 because the compensation band (channel) was increased. Further, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased.
  • the length of the device is the same as in the fourth embodiment. That is, in this embodiment, dispersion compensation for a larger number of bands can be realized with a dispersion compensation device having the same length as that of the fourth embodiment.
  • the NPWG was designed so that the wavelength region for dispersion compensation was divided into 40 channels satisfying the frequency f of 188.4 + 0.1 nTHz ⁇ f ⁇ 188.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 20 ⁇ n ⁇ 19.
  • dispersion compensation device of this embodiment can cover almost the entire L band.
  • the dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 37 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 1591.26 nm.
  • the core width distribution of the NPWG realizing the characteristics shown in FIGS. 38 and 39 is as shown in FIG.
  • the distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
  • the fluctuation in potential was larger than that in Example 4 because the compensation band (channel) was increased.
  • the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased.
  • the length of the device is the same as in the fourth embodiment. That is, in this embodiment, dispersion compensation for a larger number of bands can be realized with a dispersion compensation device having the same length as that of the fourth embodiment.
  • the NPWG was designed so that the wavelength region for dispersion compensation is divided into 10 channels satisfying the frequency f of 198.4 + 0.1 nTHz ⁇ f ⁇ 198.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 5 ⁇ n ⁇ 4.
  • dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval.
  • the dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 42 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 151.05 nm.
  • the core width distribution of the NPWG realizing the characteristics shown in FIGS. 43 and 44 is as shown in FIG.
  • the distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
  • the NPWG was designed so that the wavelength region for dispersion compensation is divided into 20 channels satisfying the frequency f of 198.4 + 0.1 nTHz ⁇ f ⁇ 198.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 10 ⁇ n ⁇ 9.
  • dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval.
  • the dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 47 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 151.05 nm.
  • the group delay characteristic shown in FIG. 48 and the reflectance characteristic shown in FIG. 49 are obtained.
  • spectral data (designed) used for design and obtained spectral data (realized) are shown.
  • the core width distribution of the NPWG realizing the characteristics shown in FIGS. 48 and 49 is as shown in FIG.
  • the distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
  • the fluctuation in potential was larger than that in Example 7 because the compensation band (channel) was increased. Further, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased.
  • the length of the device is the same as in the seventh embodiment. That is, in this example, dispersion compensation for a larger number of bands could be realized with a dispersion compensation device having the same length as that of Example 7.
  • the NPWG was designed so that the wavelength region for dispersion compensation is divided into 50 channels in which the frequency f satisfies 198.4 + 0.1 nTHz ⁇ f ⁇ 198.5 + 0.1 nTHz.
  • n represents an integer satisfying ⁇ 25 ⁇ n ⁇ 24.
  • dispersion compensation device dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval.
  • the dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
  • FIG. 52 is a graph showing the NPWG potential distribution of the dispersion compensation device fabricated in this example.
  • the horizontal axis in the figure represents a location standardized at a center wavelength of 151.05 nm.
  • the group delay characteristic shown in FIG. 53 and the reflectance characteristic shown in FIG. 54 are obtained.
  • spectral data (designed) used for design and obtained spectral data (realized) are shown.
  • the core width distribution of the NPWG realizing the characteristics shown in FIGS. 53 and 54 is as shown in FIG.
  • the distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
  • the fluctuation in potential was larger than that in Example 7 because the compensation band (channel) was increased.
  • the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased.
  • the length of the device is the same as in the seventh embodiment. That is, in this example, dispersion compensation for a larger number of bands could be realized with a dispersion compensation device having the same length as that of Example 7.
  • the dispersion compensation device is a reflection-type chromatic dispersion compensation means that converts an optical waveguide whose equivalent refractive index of the core is nonuniformly changed in the light propagation direction by changing the physical dimension of the core embedded in the clad.
  • the optical waveguide has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated within the wavelength region of these channels.

Abstract

An optical waveguide type wavelength dispersion compensation device is provided with an optical waveguide as a reflection type wavelength dispersion compensation means, wherein the optical waveguide is configured to change a physical size of a core embedded in a clad, so that an equivalent refractive index of the core changes unevenly over a light traveling direction. A dispersion compensating wavelength region of the optical waveguide is divided into a plurality of channels and the optical waveguide has a dispersion compensation characteristic in which the dispersion is compensated within the wavelength region of the channels.

Description

光導波路型波長分散補償デバイスとその製造方法Optical waveguide type chromatic dispersion compensation device and manufacturing method thereof
 本発明は、光ファイバの波長分散を補償する小型の光導波路型波長分散補償デバイスとその製造方法とに関する。このデバイスは、光ファイバ通信網などに使用できる。
 本願は、2007年12月21日に、日本国に出願された特願2007-331176号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a small-sized optical waveguide type chromatic dispersion compensation device that compensates for chromatic dispersion of an optical fiber and a method for manufacturing the same. This device can be used for an optical fiber communication network or the like.
This application claims priority based on Japanese Patent Application No. 2007-331176 for which it applied to Japan on December 21, 2007, and uses the content here.
 光通信において、高密度波長多重(DWDM:Dense Wavelength-Division Multiplexing)伝送の広帯域化・高速化が急速に進められている。高速伝送を行うためには、この伝送線路として、伝送帯域で波長分散ができるだけ小さく、一方で非線形効果を抑制するために波長分散が零にはならない光ファイバを用いることが望ましい。しかし、既に広範囲に敷設されている光ファイバでは、分散が大きい波長領域で使われることが多い。
 例えば、波長1.3μm付近で零分散を有する標準シングルモードファイバ(S-SMF:Standard Single-Mode Fiber)は、エルビウム添加光ファイバ増幅器が実用化されたことにより、波長1.53~1.63μm帯で使われている。また、零分散を波長1.55μm付近にシフトさせた分散シフトファイバ(DSF:Dispersion Shifted Fiber)は、Cバンドだけでなく、SバンドやLバンドで使われることがある。その他、波長1.55μmでゼロ分散にならない各種ノンゼロ分散シフトファイバ(NZ-DSF:Non-Zero Dispersion Shifted Fiber)がある。これらの光ファイバをDWDMで使用する場合、広い波長範囲にわたる残留分散の補償技術が重要である。
In optical communication, widening and speeding up of Dense Wavelength-Division Multiplexing (DWDM) transmission are rapidly progressing. In order to perform high-speed transmission, it is desirable to use an optical fiber as the transmission line that has as little chromatic dispersion as possible in the transmission band, while preventing chromatic dispersion from becoming zero in order to suppress nonlinear effects. However, optical fibers that have already been laid in a wide range are often used in a wavelength region with large dispersion.
For example, a standard single-mode fiber (S-SMF) having zero dispersion near a wavelength of 1.3 μm has a wavelength of 1.53 to 1.63 μm due to the practical use of an erbium-doped fiber amplifier. Used in belts. In addition, a dispersion shifted fiber (DSF: Dispersion Shifted Fiber) in which zero dispersion is shifted to a wavelength near 1.55 μm may be used not only in the C band but also in the S band and the L band. In addition, there are various non-zero dispersion shifted fibers (NZ-DSF) that do not become zero dispersion at a wavelength of 1.55 μm. When these optical fibers are used in DWDM, a technique for compensating for residual dispersion over a wide wavelength range is important.
 分散補償には、様々な技術が用いられている。その中でも、分散補償ファイバ(DCF:Dispersion Compensation Fiber)を用いる分散補償が、最も実用化された技術である(例えば、特許文献1、2参照)。DCFは、所望の分散補償量が得られるように、光ファイバの屈折率分布が制御されている。しかし、DCFは通常、補償の対象となる光ファイバと同程度の長さが必要となる。そのため、このDCFをモジュール化した場合、大きな設置スペースが必要となるだけでなく、伝搬損失も無視できなくなる。また、DCFには正確な屈折率分布の制御が必要であり、作製が難しいという面があるだけでなく、広帯域で要求される分散補償量を満たすことが困難になることも多い。 Various techniques are used for dispersion compensation. Among these, dispersion compensation using a dispersion compensation fiber (DCF: Dispersion Compensation Fiber) is the most practical technique (see, for example, Patent Documents 1 and 2). In the DCF, the refractive index distribution of the optical fiber is controlled so that a desired dispersion compensation amount can be obtained. However, the DCF usually requires the same length as the optical fiber to be compensated. Therefore, when this DCF is modularized, not only a large installation space is required, but also propagation loss cannot be ignored. In addition, DCF requires precise control of the refractive index distribution, which is not only difficult to manufacture, but also often makes it difficult to satisfy the dispersion compensation amount required in a wide band.
 ファイバブラッググレーティング(FBG:Fiber Bragg Grating)も、分散補償によく用いられる技術の一つである(例えば、特許文献3参照)。FBGは、ファイバにUV光を照射することにより、ファイバコアの屈折率を変化させ、屈折率が異なることによるグレーティングを形成させることで分散補償を行う。これにより、分散補償用の小型デバイスは実現可能となるが、屈折率変化の制御が難しい。さらに、ファイバの屈折率の変化に限度があるため、実現できる分散補償特性に限界がある。また、FBGを用いたデバイスの小型化と大量生産にも限界がある。 Fiber Bragg Grating (FBG) is one of the techniques often used for dispersion compensation (see, for example, Patent Document 3). The FBG performs dispersion compensation by irradiating the fiber with UV light, thereby changing the refractive index of the fiber core and forming a grating due to the different refractive index. This makes it possible to realize a small device for dispersion compensation, but it is difficult to control the change in refractive index. Furthermore, since there is a limit to the change in the refractive index of the fiber, there is a limit to the dispersion compensation characteristics that can be realized. In addition, there is a limit to miniaturization and mass production of devices using FBG.
 分散補償を行う領域をチャンネル毎に分けて、各々のチャンネル内で分散補償を行うチャープしたFBGを、一箇所に重ね合わせる構造も提案されている(例えば、特許文献4参照)。これを用いることにより、必要となるファイバの長さが短くなる。しかし、この従来技術では、単に複数のFBGを重ね合わせるように設計されているため、各チャンネルの構造が接近し、各々のチャンネル特性に影響を及ぼす。そのため、実現できる分散補償特性に限界がある。
 また、FBGを重ね合わせるために要求される屈折率の変化は、UV照射で得られないため、実現できない構造も生じる。
There has also been proposed a structure in which a region where dispersion compensation is performed is divided for each channel and chirped FBGs for which dispersion compensation is performed in each channel are overlapped at one place (see, for example, Patent Document 4). By using this, the required fiber length is shortened. However, in this prior art, since it is designed to simply superimpose a plurality of FBGs, the structure of each channel approaches and affects each channel characteristic. Therefore, there is a limit to the dispersion compensation characteristics that can be realized.
In addition, since a change in refractive index required for superimposing FBGs cannot be obtained by UV irradiation, some structures cannot be realized.
 光平面回路(PLC:Planar Lightwave Circuit)は、平面に構築される光回路を用いて、分散補償を行える。ラティス型PLCはその一例である(例えば、非特許文献1参照)。しかし、ラティス型PLCは、結合共振器をカスケード接続して分散を制御しており、デジタルIIR(Infinite Impulse Response)フィルターの原理に基づいている。そのため、実現する分散量が限られている。 An optical planar circuit (PLC: Planar Lightwave Circuit) can perform dispersion compensation using an optical circuit constructed on a plane. Lattice type PLC is one example (see, for example, Non-Patent Document 1). However, the lattice type PLC controls the dispersion by cascading coupled resonators and is based on the principle of a digital IIR (Infinite Impulse Response) filter. Therefore, the amount of dispersion to be realized is limited.
 アレイ導波路格子(AWG:Arrayed Waveguide Grating)で分波し、チャンネルごとに行路差を付け、遅延時間を調整した後に、コリメートレンズで再び合波する仕組みも考えられている(例えば、特許文献5参照)。しかしながら、この方法では構造が複雑で作製が難しいだけでなく、必要とするスペースが大きい。 There is also considered a mechanism in which demultiplexing is performed with an arrayed waveguide grating (AWG), a path difference is added for each channel, a delay time is adjusted, and then re-multiplexing with a collimator lens (for example, Patent Document 5). reference). However, this method not only has a complicated structure and is difficult to manufacture, but also requires a large space.
 VIPA(Virtually Imaged Phased Array)型分散補償器は、薄板の両面に反射膜をコーティングした波長分散素子(VIPA板)と、反射ミラーとから構成された分散補償デバイスである(例えば、特許文献6参照)。このデバイスは、3次元の構造で分散を調整している。そのため、構造的に複雑であり、製造上、極めて高い精度が要求される。
日本国特許第3857211号公報 日本国特許第3819264号公報 特開2004-325549号公報 WO03/010586号パンフレット K. Takiguchi, et. al, "Dispersion slope equalizer for dispersion shifted fiber using a lattice-form programmable optical filter on a planar lightwave circuit," J. Lightwave Technol., pp. 1647-1656, vol. 16, no. 9, 1998 日本国特許第3852409号公報 特開2005-275101号公報
A VIPA (Virtually Imaged Phased Array) type dispersion compensator is a dispersion compensation device composed of a wavelength dispersion element (VIPA plate) in which a reflection film is coated on both surfaces of a thin plate and a reflection mirror (for example, see Patent Document 6). ). This device adjusts the dispersion with a three-dimensional structure. Therefore, it is structurally complicated and requires extremely high accuracy in manufacturing.
Japanese Patent No. 3857211 Japanese Patent No. 3819264 JP 2004-325549 A WO03 / 010586 pamphlet K. Takiguchi, et. Al, "Dispersion slope equalizer for dispersion shifted fiber using a lattice-form programmable optical filter on a planar lightwave circuit," J. Lightwave Technol., Pp. 1647-1656, vol. 16, no. 9 , 1998 Japanese Patent No. 3852409 JP 2005-275101 A
 前述した従来技術における問題点は、次の通りである。
1:DCFを用いる分散補償は、長尺ファイバの使用で必要スペースが大きく、小型化が困難である。また実現できる分散補償特性に限界がある。
2:FBGを用いる分散補償は、実現できる分散補償特性に限界がある。
3:FBGの重ね合わせを用いる分散補償は、実現できる分散補償特性に限界がある。
4:ラティス型PLCを用いる分散補償は、実現可能な分散補償量が小さい。
5:AWGを用いたPLCは、構造が複雑であり、製造が難しく、コストが高くなってしまう。また、要求スペースが大きく、デバイスの小型化が困難である。
6:VIPA型分散補償器は、構造が複雑であり、製造が難しく、コストが高くなってしまう。
The problems in the prior art described above are as follows.
1: Dispersion compensation using DCF requires a large space due to the use of a long fiber and is difficult to reduce in size. In addition, there is a limit to the dispersion compensation characteristics that can be realized.
2: Dispersion compensation using FBG is limited in the dispersion compensation characteristics that can be realized.
3: Dispersion compensation using FBG superposition has a limit in the dispersion compensation characteristics that can be realized.
4: Dispersion compensation using a lattice-type PLC has a small amount of dispersion compensation that can be realized.
5: The PLC using AWG has a complicated structure, is difficult to manufacture, and increases the cost. In addition, the required space is large and it is difficult to reduce the size of the device.
6: The VIPA type dispersion compensator has a complicated structure, is difficult to manufacture, and increases the cost.
 本発明は、前記事情に鑑みてなされ、小型化でき、優れた分散補償特性を有し、製造が容易で低コスト化が可能な光導波路型波長分散補償デバイスの提供を目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical waveguide type chromatic dispersion compensation device that can be reduced in size, has excellent dispersion compensation characteristics, can be easily manufactured, and can be manufactured at low cost.
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
(1)本発明の光導波路型波長分散補償デバイスは、クラッドに埋め込まれたコアの物理的寸法を変えることにより、このコアの等価屈折率が光伝搬方向にわたって不均一に変化した光導波路を、反射型の波長分散補償手段として有し;前記光導波路は、分散補償する波長領域が複数のチャンネルに区切られ、これらチャンネルの前記波長領域内で分散が補償される分散補償特性を有する。
The present invention employs the following means in order to solve the above problems and achieve the object.
(1) The optical waveguide type chromatic dispersion compensation device of the present invention is an optical waveguide in which the equivalent refractive index of the core varies nonuniformly in the light propagation direction by changing the physical dimension of the core embedded in the cladding. The optical waveguide has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated within the wavelength region of these channels.
(2)前記コアの幅が、前記光伝搬方向にわたって不均一に分布しているのが好ましい。 (2) It is preferable that the width of the core is unevenly distributed over the light propagation direction.
(3)前記コアの幅が、前記コアの中心から前記コアの幅方向の両側が対称となるように、前記光伝搬方向にわたって不均一に分布しているのが好ましい。 (3) It is preferable that the width of the core is unevenly distributed over the light propagation direction so that both sides of the core in the width direction are symmetrical from the center of the core.
(4)前記コアの幅が、前記コアの中心から前記コアの幅方向の両側が非対称となるように、前記光伝搬方向にわたって不均一に分布しているのが好ましい。 (4) It is preferable that the width of the core is unevenly distributed in the light propagation direction so that both sides of the core in the width direction are asymmetric from the center of the core.
(5)前記コアの幅が、前記コアの中心から前記コアの幅方向の両側のうち、一方の側のみが前記光伝搬方向にわたって不均一に分布しているのが好ましい。 (5) It is preferable that the width of the core is unevenly distributed over the light propagation direction only on one side of the core in the width direction from the center of the core.
(6)前記コアが、前記光導波路内に直線状に設けられているのが好ましい。 (6) It is preferable that the core is linearly provided in the optical waveguide.
(7)前記コアが、前記光導波路内に蛇行状に設けられている構成としてもよいのが好ましい。 (7) It is preferable that the core is provided in a meandering manner in the optical waveguide.
(8)前記光導波路の一端が透過端であり、前記光導波路の他端が反射端であり;前記透過端が無反射終端で終端され;前記反射端でサーキュレータ又は方向性結合器を介して光出力が取り出される;のが好ましい。 (8) One end of the optical waveguide is a transmissive end, the other end of the optical waveguide is a reflective end; the transmissive end is terminated at a non-reflective end; and a circulator or a directional coupler is used at the reflective end. Preferably, the light output is taken out.
(9)前記光導波路は、所定の波長帯域にて、所定の長さの被補償光ファイバの波長分散を打ち消す分散補償特性を有するのが好ましい。 (9) The optical waveguide preferably has a dispersion compensation characteristic that cancels the chromatic dispersion of the compensated optical fiber having a predetermined length in a predetermined wavelength band.
(10)前記光導波路は、中心波長λが1490nm≦λ≦1613nmの範囲、動作帯域ΔBWが0.1nm≦ΔBW≦60nmの範囲にて、分散Dが-3000ps/nm≦D≦3000ps/nmの範囲、分散に対する分散スロープの比RDSが-0.1nm-1≦RDS≦0.1nm-1の範囲の特性を有するのが好ましい。 (10) The optical waveguide has a dispersion D of −3000 ps / nm ≦ D ≦ 3000 ps / with a center wavelength λ c in the range of 1490 nm ≦ λ c ≦ 1613 nm and an operating band ΔBW in the range of 0.1 nm ≦ ΔBW ≦ 60 nm. nm range, the ratio RDS dispersion slope for the dispersion is preferably has a characteristic in the range of -0.1nm -1 ≦ RDS ≦ 0.1nm -1.
(11)前記光導波路の前記光伝搬方向にわたる前記コアの等価屈折率分布が、Zakharov-Shabat方程式を用いて、反射係数のスペクトルデータからポテンシャル関数を数値的に導く逆散乱問題として解き;この逆散乱問題で得られた値から、所望の反射スペクトルを実現するためのポテンシャルを推測する設計法で設計される;のが好ましい。 (11) The equivalent refractive index distribution of the core over the light propagation direction of the optical waveguide is solved as an inverse scattering problem that numerically derives a potential function from the spectral data of the reflection coefficient using the Zakharov-Shabat equation; It is preferably designed by a design method that estimates the potential for realizing a desired reflection spectrum from the values obtained in the scattering problem.
(12)前記光導波路の光伝搬方向にわたる前記コアの等価屈折率分布が、前記光導波路の前方及び後方に伝搬する電力波の振幅なる変数を導入した波動方程式を用いて、前記光導波路の等価屈折率の対数の微分から導かれるポテンシャルを有するZakharov-Shabat方程式に帰着させ、反射係数のスペクトルデータからポテンシャル関数を数値的に導く逆散乱問題として解き;この逆散乱問題で得られた値から、所望の反射スペクトルを実現するためのポテンシャルを推測し;このポテンシャルに基づいて等価屈折率を求め;予め求められた、所定の前記コアの厚さと、前記等価屈折率と、前記コアの寸法と、の関係から、前記光導波路の光伝搬方向にわたる前記コアの幅分布を算出して設計される;のが好ましい。 (12) The equivalent refractive index distribution of the core across the light propagation direction of the optical waveguide is obtained by using a wave equation that introduces a variable that is an amplitude of a power wave propagating forward and backward of the optical waveguide. It is reduced to the Zakharov-Shabat equation having a potential derived from the logarithmic derivative of the refractive index, and is solved as an inverse scattering problem that numerically derives the potential function from the spectral data of the reflection coefficient; Estimating a potential for realizing a desired reflection spectrum; obtaining an equivalent refractive index based on this potential; a predetermined thickness of the core, an equivalent refractive index, a dimension of the core, which are obtained in advance; From the above relationship, it is preferable to calculate the width distribution of the core over the light propagation direction of the optical waveguide.
(13)前記光導波路の前記光伝搬方向にわたる前記コアの等価屈折率分布は、分散補償する帯域の中心波長のスケールではほぼ周期構造であり;中心波長より大きいスケールでは、前記逆散乱問題で決まる非周期構造の二階層構造を有する;のが好ましい。 (13) The equivalent refractive index distribution of the core across the light propagation direction of the optical waveguide has a substantially periodic structure at the scale of the center wavelength of the band for dispersion compensation, and is determined by the inverse scattering problem at a scale larger than the center wavelength. It preferably has a two-layer structure of an aperiodic structure.
(14)本発明の光導波路型波長分散補償デバイスの製造方法は、光導波路の下クラッド層を設け;次いで、前記下クラッド層上に、下クラッド層よりも屈折率の大きいコア層を設け;次いで、前記コア層に、コアの等価屈折率が光伝搬方向にわたって不均一に変化するように設計された所定のコア形状を残し、それ以外の部分を除去する加工を施してコアを形成し;次いで、前記コアを覆うクラッドを設けることによって光導波路を製造するのが好ましい。 (14) In the method of manufacturing an optical waveguide type chromatic dispersion compensation device of the present invention, a lower cladding layer of an optical waveguide is provided; and then a core layer having a refractive index larger than that of the lower cladding layer is provided on the lower cladding layer; Next, a predetermined core shape designed so that the equivalent refractive index of the core varies non-uniformly in the light propagation direction is left on the core layer, and a core is formed by removing the other portions; Next, it is preferable to manufacture an optical waveguide by providing a clad covering the core.
 上記(1)に記載の光導波路型波長分散補償デバイスは、クラッドに埋め込まれたコアの等価屈折率が光伝搬方向にわたって不均一に変化する光導波路を反射型の波長分散補償手段として有する。そのため、分散補償ファイバ等を用いる従来技術に比べて小型化でき、設置スペースが少なくて済む。
 また上記(1)に記載の光導波路型波長分散補償デバイスは、従来のFBGを用いた分散補償に比べ、実現できる分散補償特性が広くなるなど、優れた分散補償特性を得られる。
 また上記(1)に記載の光導波路型波長分散補償デバイスは、PLCやVIPA等の従来の分散補償デバイスに比べ、構造が簡単で低コストで製造できる。
 また上記(1)に記載の光導波路型波長分散補償デバイスは、分散補償する波長領域が複数のチャンネルに区切られ、各チャンネルの波長領域内で分散が補償される分散補償特性を有している。そのため、必要な光導波路の長さが短かくなり、デバイスが小型化できるとともに、光導波路の伝送損失を低くできる。
The optical waveguide type chromatic dispersion compensation device described in (1) above has an optical waveguide in which the equivalent refractive index of the core embedded in the clad varies nonuniformly in the light propagation direction as the reflective chromatic dispersion compensation means. Therefore, the size can be reduced as compared with the prior art using a dispersion compensating fiber and the installation space can be reduced.
In addition, the optical waveguide type chromatic dispersion compensation device described in the above (1) can obtain excellent dispersion compensation characteristics such as a wider dispersion compensation characteristic that can be realized as compared with dispersion compensation using a conventional FBG.
In addition, the optical waveguide type chromatic dispersion compensation device described in the above (1) has a simple structure and can be manufactured at a lower cost than conventional dispersion compensation devices such as PLC and VIPA.
The optical waveguide type chromatic dispersion compensation device described in (1) has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated within the wavelength region of each channel. . Therefore, the length of the required optical waveguide is shortened, the device can be miniaturized, and the transmission loss of the optical waveguide can be reduced.
 上記(14)に記載の光導波路型波長分散補償デバイスの製造方法によれば、前述したように優れた分散補償特性を有する小型の分散補償デバイスを、低コストで効率よく製造できる。 According to the method for manufacturing an optical waveguide type chromatic dispersion compensation device described in (14) above, a small dispersion compensation device having excellent dispersion compensation characteristics as described above can be efficiently manufactured at low cost.
図1は、本発明の分散補償デバイスで用いたNPWGの構造を示す概略斜視図である。FIG. 1 is a schematic perspective view showing the structure of an NPWG used in the dispersion compensation device of the present invention. 図2Aは、NPWGが補償対象の波長帯域全体の分散補償を行う場合の、NPWGの群遅延(Group delay)特性を示すグラフである。FIG. 2A is a graph showing group delay characteristics of the NPWG when the NPWG performs dispersion compensation for the entire wavelength band to be compensated. 図2Bは、NPWGが補償対象の波長帯域全体の分散補償を行う場合の、NPWGのコアにおける光の波長と反射との関係を模式的に示す図である。FIG. 2B is a diagram schematically illustrating the relationship between the wavelength of light and reflection at the core of the NPWG when the NPWG performs dispersion compensation for the entire wavelength band to be compensated. 図3Aは、NPWGが、補償対象の波長帯域を複数のチャンネルに分けて、それぞれのチャンネルで分散補償を行う場合の、NPWGの群遅延特性を示すグラフである。FIG. 3A is a graph showing group delay characteristics of the NPWG when the NPWG divides the wavelength band to be compensated into a plurality of channels and performs dispersion compensation on each channel. 図3Bは、NPWGが、補償対象の波長帯域を複数のチャンネルに分けて、それぞれのチャンネルで分散補償を行う場合の、NPWGのコアにおける光の波長と反射との関係を模式的に示す図である。FIG. 3B is a diagram schematically showing the relationship between the wavelength and reflection of light in the NPWG core when the NPWG divides the wavelength band to be compensated into a plurality of channels and performs dispersion compensation in each channel. is there. 図4Aは、コアの幅の分布形状の一例を示す概略平面図である。FIG. 4A is a schematic plan view showing an example of a core width distribution shape. 図4Bは、コアの幅の分布形状の変形例を示す概略平面図である。FIG. 4B is a schematic plan view showing a modification of the distribution shape of the core width. 図5は、コアを蛇行状に設けた場合を例示する概略平面図である。FIG. 5 is a schematic plan view illustrating the case where the cores are provided in a meandering manner. 図6は、本発明の分散補償デバイスの一実施形態を示す構成図である。FIG. 6 is a block diagram showing an embodiment of the dispersion compensation device of the present invention. 図7は、実施例1のNPWGのポテンシャル分布を示すグラフである。FIG. 7 is a graph showing the potential distribution of the NPWG of Example 1. 図8は、実施例1のNPWGの群遅延特性を示すグラフである。FIG. 8 is a graph showing the group delay characteristics of the NPWG according to the first embodiment. 図9は、実施例1のNPWGの反射率特性を示すグラフである。FIG. 9 is a graph showing the reflectance characteristics of the NPWG of Example 1. 図10は、h=6μm、比屈折率差Δ=0.6%のコアを使用した場合、波長1550nmでの等価屈折率とコア幅の関係を示すグラフである。FIG. 10 is a graph showing the relationship between the equivalent refractive index and the core width at a wavelength of 1550 nm when a core having h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is used. 図11は、実施例1のNPWGのコア幅分布を示すグラフである。FIG. 11 is a graph showing the core width distribution of the NPWG of Example 1. 図12は、実施例1のNPWGの等価屈折率の分布を示すグラフである。FIG. 12 is a graph showing the distribution of the equivalent refractive index of the NPWG of Example 1. 図13は、図11の部分拡大図である。FIG. 13 is a partially enlarged view of FIG. 図14は、図12の部分拡大図である。FIG. 14 is a partially enlarged view of FIG. 図15は、実施例1のNPWGで高い初期屈折率を用いた場合のNPWGのコア幅の分布を示すグラフである。FIG. 15 is a graph showing the distribution of the core width of the NPWG when a high initial refractive index is used in the NPWG of Example 1. 図16は、実施例1のNPWGで高い初期屈折率を用いた場合のNPWGの等価屈折率分布を示すグラフである。FIG. 16 is a graph showing an equivalent refractive index distribution of NPWG when a high initial refractive index is used in the NPWG of Example 1. 図17は、実施例2のNPWGのポテンシャル分布を示すグラフである。FIG. 17 is a graph showing the potential distribution of the NPWG of Example 2. 図18は、同実施例のNPWGの群遅延特性を示すグラフである。FIG. 18 is a graph showing the group delay characteristics of the NPWG of the same example. 図19は、同実施例のNPWGの反射率特性を示すグラフである。FIG. 19 is a graph showing the reflectance characteristics of the NPWG of the same example. 図20は、同実施例のNPWGのコア幅分布を示すグラフである。FIG. 20 is a graph showing the core width distribution of the NPWG of the same example. 図21は、同実施例のNPWGの等価屈折率の分布を示すグラフである。FIG. 21 is a graph showing the distribution of the equivalent refractive index of the NPWG of the same example. 図22は、実施例3のNPWGのポテンシャル分布を示すグラフである。FIG. 22 is a graph showing the potential distribution of the NPWG of Example 3. 図23は、同実施例のNPWGの群遅延特性を示すグラフである。FIG. 23 is a graph showing the group delay characteristics of the NPWG of the same example. 図24は、同実施例のNPWGの反射率特性を示すグラフである。FIG. 24 is a graph showing the reflectance characteristics of the NPWG of the same example. 図25は、同実施例のNPWGのコア幅分布を示すグラフである。FIG. 25 is a graph showing the core width distribution of the NPWG of the same example. 図26は、同実施例のNPWGの等価屈折率の分布を示すグラフである。FIG. 26 is a graph showing an equivalent refractive index distribution of the NPWG of the same example. 図27は、実施例4のNPWGのポテンシャル分布を示すグラフである。FIG. 27 is a graph showing the potential distribution of the NPWG of Example 4. 図28は、同実施例のNPWGの群遅延特性を示すグラフである。FIG. 28 is a graph showing the group delay characteristics of the NPWG of the same example. 図29は、同実施例のNPWGの反射率特性を示すグラフである。FIG. 29 is a graph showing the reflectance characteristics of the NPWG of this example. 図30は、同実施例のNPWGのコア幅分布を示すグラフである。FIG. 30 is a graph showing the core width distribution of the NPWG of the same example. 図31は、同実施例のNPWGの等価屈折率の分布を示すグラフである。FIG. 31 is a graph showing an equivalent refractive index distribution of the NPWG of the same example. 図32は、実施例5のNPWGのポテンシャル分布を示すグラフである。FIG. 32 is a graph showing the potential distribution of the NPWG of Example 5. 図33は、同実施例のNPWGの群遅延特性を示すグラフである。FIG. 33 is a graph showing the group delay characteristic of the NPWG of the same example. 図34は、同実施例のNPWGの反射率特性を示すグラフである。FIG. 34 is a graph showing the reflectance characteristics of the NPWG of this example. 図35は、同実施例のNPWGのコア幅分布を示すグラフである。FIG. 35 is a graph showing the core width distribution of the NPWG of the same example. 図36は、同実施例のNPWGの等価屈折率の分布を示すグラフである。FIG. 36 is a graph showing an equivalent refractive index distribution of the NPWG of the same example. 図37は、実施例6のNPWGのポテンシャル分布を示すグラフである。FIG. 37 is a graph showing the potential distribution of the NPWG of Example 6. 図38は、同実施例のNPWGの群遅延特性を示すグラフである。FIG. 38 is a graph showing the group delay characteristics of the NPWG of the same example. 図39は、同実施例のNPWGの反射率特性を示すグラフである。FIG. 39 is a graph showing the reflectance characteristics of the NPWG of this example. 図40は、同実施例のNPWGのコア幅分布を示すグラフである。FIG. 40 is a graph showing the core width distribution of the NPWG of the same example. 図41は、同実施例のNPWGの等価屈折率の分布を示すグラフである。FIG. 41 is a graph showing an equivalent refractive index distribution of the NPWG of the same example. 図42は、実施例7のNPWGのポテンシャル分布を示すグラフである。FIG. 42 is a graph showing the potential distribution of the NPWG of Example 7. 図43は、同実施例のNPWGの群遅延特性を示すグラフである。FIG. 43 is a graph showing the group delay characteristics of the NPWG of the same example. 図44は、同実施例のNPWGの反射率特性を示すグラフである。FIG. 44 is a graph showing the reflectance characteristics of the NPWG of the same example. 図45は、同実施例のNPWGのコア幅分布を示すグラフである。FIG. 45 is a graph showing the core width distribution of the NPWG of the same example. 図46は、同実施例のNPWGの等価屈折率の分布を示すグラフである。FIG. 46 is a graph showing an equivalent refractive index distribution of the NPWG of the same example. 図47は、実施例8のNPWGのポテンシャル分布を示すグラフである。FIG. 47 is a graph showing the potential distribution of the NPWG of Example 8. 図48は、同実施例のNPWGの群遅延特性を示すグラフである。FIG. 48 is a graph showing the group delay characteristics of the NPWG of the same example. 図49は、同実施例のNPWGの反射率特性を示すグラフである。FIG. 49 is a graph showing the reflectance characteristics of the NPWG of this example. 図50は、同実施例のNPWGのコア幅分布を示すグラフである。FIG. 50 is a graph showing the core width distribution of the NPWG of the same example. 図51は、同実施例のNPWGの等価屈折率の分布を示すグラフである。FIG. 51 is a graph showing an equivalent refractive index distribution of the NPWG of the same example. 図52は、実施例9のNPWGのポテンシャル分布を示すグラフである。FIG. 52 is a graph showing the potential distribution of the NPWG of Example 9. 図53は、同実施例のNPWGの群遅延特性を示すグラフである。FIG. 53 is a graph showing the group delay characteristics of the NPWG of the same example. 図54は、同実施例のNPWGの反射率特性を示すグラフである。FIG. 54 is a graph showing the reflectance characteristics of the NPWG of this example. 図55は、同実施例のNPWGのコア幅分布を示すグラフである。FIG. 55 is a graph showing the core width distribution of the NPWG of the same example. 図56は、同実施例のNPWGの等価屈折率の分布を示すグラフである。FIG. 56 is a graph showing an equivalent refractive index distribution of the NPWG of the same example.
符号の説明Explanation of symbols
 10 NPWG
 11 コア
 12 クラッド
 13 反射端
 14 透過端
 15 サーキュレータ
 16 無反射終端
 20 分散補償デバイス
10 NPWG
11 Core 12 Cladding 13 Reflecting end 14 Transmitting end 15 Circulator 16 Non-reflective termination 20 Dispersion compensation device
 本発明の分散補償デバイスは、クラッドに埋め込まれたコアの等価屈折率が、光伝搬方向にわたって不均一に変化する光導波路を、反射型の波長分散補償手段として有する。ここで、不均一とは、物理的寸法が、導波路の進行方向とともに変化していることをいう。
 この光導波路は、分散補償する波長領域が複数のチャンネルに区切られ、各チャンネルの波長領域内で分散が補償される分散補償特性を有している。
The dispersion compensation device of the present invention has an optical waveguide in which the equivalent refractive index of the core embedded in the clad varies nonuniformly in the light propagation direction as a reflection type chromatic dispersion compensation means. Here, non-uniform means that the physical dimension changes with the traveling direction of the waveguide.
This optical waveguide has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated within the wavelength region of each channel.
 以下、図面を参照して、本発明の光導波路型波長分散補償デバイス(以下、分散補償デバイスと略記する。)の実施形態を説明する。
 本発明の分散補償デバイスは、例えば図6に示すように、光導波路10と、その反射端13側に接続されたサーキュレータ15とから概略構成されている。光導波路10の透過端14は、無反射終端16になっている。サーキュレータ15には、その入力側(input)に図示していない被補償光ファイバが接続されている。サーキュレータ15の出力側(output)には、下流側の光ファイバが接続されている。この下流側の光ファイバは、光伝送路内で使用される。
 本発明の分散補償デバイス20は反射型デバイスであり、被補償光ファイバからサーキュレータ15の入力側に入力された光信号は、光導波路10に入って反射され、その反射波がサーキュレータ15を介して出力される。
Embodiments of an optical waveguide type chromatic dispersion compensation device (hereinafter abbreviated as dispersion compensation device) of the present invention will be described below with reference to the drawings.
As shown in FIG. 6, for example, the dispersion compensation device of the present invention is generally configured by an optical waveguide 10 and a circulator 15 connected to the reflection end 13 side. The transmission end 14 of the optical waveguide 10 is a non-reflection terminal 16. The circulator 15 is connected to a compensated optical fiber (not shown) on its input side (input). A downstream optical fiber is connected to the output side (output) of the circulator 15. This downstream optical fiber is used in the optical transmission line.
The dispersion compensation device 20 of the present invention is a reflection type device, and an optical signal input from the compensated optical fiber to the input side of the circulator 15 is reflected by entering the optical waveguide 10, and the reflected wave passes through the circulator 15. Is output.
 図1は、光導波路10の一実施形態を示す概略斜視図である。図1中、符号10は光導波路、11はコア、12はクラッドである。本実施形態の光導波路10は、コア11の等価屈折率を光伝搬方向にわたって不均一に変化させる手段として、コア11の幅wを長手方向(z)にわたって変化させた、非均一な幅のコア11を有する。この光導波路10としては、平面導波路(Non-uniform Planar WaveGuide;以下、NPWGと記す)を用いるのが好ましい。 FIG. 1 is a schematic perspective view showing an embodiment of an optical waveguide 10. In FIG. 1, reference numeral 10 denotes an optical waveguide, 11 denotes a core, and 12 denotes a cladding. The optical waveguide 10 of the present embodiment is a non-uniform width core in which the width w of the core 11 is changed over the longitudinal direction (z) as means for changing the equivalent refractive index of the core 11 non-uniformly along the light propagation direction. 11. As this optical waveguide 10, it is preferable to use a planar waveguide (Non-uniform Planar WaveGide; hereinafter referred to as NPWG).
 本実施形態のNPWG10は、クラッド12中に、コア11を有する。コア11は、図1に示すように、一定の高さhを有する。また、コア11の幅wは、長手方向(z)方向にわたって不均一に変化し、導波路の伝搬モードの局所等価屈折率を変化させている。この屈折率の変化によって、NPWG10に、反射型の波長分散補償機能を持たせている。 The NPWG 10 of the present embodiment has a core 11 in the clad 12. The core 11, as shown in FIG. 1, has a constant height h 3. Further, the width w of the core 11 varies non-uniformly in the longitudinal direction (z) direction, and changes the local equivalent refractive index of the propagation mode of the waveguide. Due to this change in refractive index, the NPWG 10 is provided with a reflective chromatic dispersion compensation function.
 このNPWG10としては、石英ガラス系材料を用いることができる。その場合、例えば、クラッドを純石英ガラスで作製し、コアはゲルマニウム添加石英ガラスを用いればよい。また樹脂系材料の使用も可能である。 As the NPWG 10, a quartz glass material can be used. In that case, for example, the clad may be made of pure quartz glass, and the core may be made of germanium-added quartz glass. It is also possible to use a resin material.
 NPWG10の動作原理は、FBGのグレーティングと一見類似している。しかし、等価屈折率の変化に関し、FBGではコア媒質の屈折率を変化させるのに対して、本実施形態のNPWG10では、コア11の幅を長手方向に沿って変化させることで、等価屈折率を変化させている。このように、等価屈折率の変化に関して、その動作原理は両者で全く相違している。
 NPWG10では、コア11の幅を長手方向に沿って変化させることで得られる等価屈折率の変動率が、FBGの場合に比べて大きい上、細かく正確な制御が容易である。
 NPWG10の構造は、平面的となっているため、周知の製造プロセスで大量に製造でき、低コスト化が図れる。
The operational principle of the NPWG 10 is similar to the FBG grating at first glance. However, regarding the change of the equivalent refractive index, the refractive index of the core medium is changed in the FBG, whereas in the NPWG 10 of the present embodiment, the equivalent refractive index is changed by changing the width of the core 11 along the longitudinal direction. It is changing. Thus, regarding the change of the equivalent refractive index, the operating principle is completely different between the two.
In the NPWG 10, the variation rate of the equivalent refractive index obtained by changing the width of the core 11 along the longitudinal direction is larger than that in the FBG, and fine and accurate control is easy.
Since the structure of the NPWG 10 is planar, it can be manufactured in a large amount by a known manufacturing process, and the cost can be reduced.
 このような分散補償デバイスは、図2A、2Bに示すように、分散補償の対象とする帯域の全体で、分散を補償するように設計することもできる。図2Aは、NPWG10の群遅延(Group delay)特性を示すグラフである。図2Bは、コア11における光の波長と反射との関係を模式的に示す図である。 Such a dispersion compensation device can also be designed to compensate for the dispersion in the entire band to be subjected to dispersion compensation, as shown in FIGS. 2A and 2B. FIG. 2A is a graph showing group delay (Group delay) characteristics of the NPWG 10. FIG. 2B is a diagram schematically illustrating the relationship between the wavelength of light and the reflection in the core 11.
 光ファイバの波長分散を補償する場合、要求される分散特性は、単調変化することが多い。その結果、補償する帯域が広くなればなるほど、帯域内で絶対遅延量(図2A中のτmax-τmin)が高くなる。NPWGは、図2A、2Bに示すように、遅延が早い波長帯(図2A、2B中のλ)の信号をデバイスの手前で反射させ、遅延が遅い波長帯(図2A、2B中のλn)の信号をデバイスの奥で反射させるように動作する。そのため、絶対遅延量が高い場合、必要とするデバイスの長さが長くなる。つまり、必要とするデバイスの長さLは、おおよそ次式(A)で見積もることができる。
Figure JPOXMLDOC01-appb-I000001
 ただし、cは光速、neffは導波路の等価屈折率、τmaxとτminはそれぞれ最大遅延量と最小遅延量を表す。
 このように、分散補償の対象とする帯域の全体で分散を補償する場合、絶対遅延量が高いと、必要とするデバイスの長さが長くなる。
When compensating for the chromatic dispersion of an optical fiber, the required dispersion characteristics often change monotonously. As a result, the wider the band to be compensated, the higher the absolute delay amount (τmax−τmin in FIG. 2A) within the band. As shown in FIGS. 2A and 2B, the NPWG reflects a signal in a wavelength band with a fast delay (λ 1 in FIGS. 2A and 2B) in front of the device, and a wavelength band with a slow delay (λn in FIGS. 2A and 2B). ) Is reflected in the back of the device. Therefore, when the absolute delay amount is high, the required device length becomes long. That is, the required device length L can be estimated by the following equation (A).
Figure JPOXMLDOC01-appb-I000001
Where c is the speed of light, n eff is the equivalent refractive index of the waveguide, and τmax and τmin are the maximum delay amount and the minimum delay amount, respectively.
As described above, when dispersion is compensated for the entire band to be subjected to dispersion compensation, if the absolute delay amount is high, the required device length becomes long.
 本発明は、図2A、2Bに示すように、分散補償の対象となる全領域での分散補償を行うのではなく、図3A、3Bに示すように、補償対象の領域を複数のチャンネルに分けて、各々のチャンネル内で分散補償を行う方式を用いる。図3Aは、NPWG10の群遅延(Group delay)特性を示すグラフである。図3Bは、コア11における光の波長と反射との関係を模式的に示す図である。図3Aに示すように、本発明の分散補償デバイスで用いているNPWGは、補償対象の領域が、波長λ11~λ12のチャンネル、波長λ21~λ22のチャンネルなどの複数のチャンネルに区分され、それぞれのチャンネルで分散補償が行われる。
 すなわち、本発明で特徴的なことは、所望する分散補償デバイスが示す反射スペクトルを分散補償が必要な波長帯域(チャンネル)にわけられ、その各々の波長帯域内で必要な補償群遅延を示すように設定することである。この方式を用いることにより、図2A、2Bで示した場合と比較し、必要な導波路の長さが短くなり、デバイスが小さくなるだけでなく、導波路の損失を小さくできる。
As shown in FIGS. 2A and 2B, the present invention does not perform dispersion compensation in the entire area to be subjected to dispersion compensation, but divides the area to be compensated into a plurality of channels as shown in FIGS. 3A and 3B. Thus, a method of performing dispersion compensation in each channel is used. FIG. 3A is a graph showing group delay characteristics of the NPWG 10. FIG. 3B is a diagram schematically illustrating the relationship between the wavelength of light and the reflection in the core 11. As shown in FIG. 3A, in the NPWG used in the dispersion compensation device of the present invention, the region to be compensated is divided into a plurality of channels such as channels of wavelengths λ 11 to λ 12 and channels of wavelengths λ 21 to λ 22. Dispersion compensation is performed in each channel.
That is, what is characteristic of the present invention is that the reflection spectrum indicated by the desired dispersion compensation device is divided into wavelength bands (channels) that require dispersion compensation, and the required compensation group delay is indicated within each wavelength band. Is to set. By using this method, compared to the case shown in FIGS. 2A and 2B, the required waveguide length is shortened, and not only the device is reduced, but also the loss of the waveguide can be reduced.
 上記の実施形態では、クラッド11中に、高さ(厚さ)が一定で、幅が長手方向にわたって不均一に変化するコア11が埋設された構造のNPWG10を例示したが、本発明に用いる光導波路は本例示にのみ限定されず、種々の変更が可能である。
 例えば、コア11の幅分布は、図4Aに示すように、コア11の中心からコア11の幅方向の両側が対称となるように、光伝搬方向にわたって不均一に分布した構造でもよい。また、図4Bに示すように、コア11の中心からコア11の幅方向の両側が非対称となるように、光伝搬方向にわたって不均一に分布している構造でもよい。
 コア11は、図1に示すように、NPWG10の長手方向(z)に沿って直線状に設ける構造の他、図5に示すように、蛇行状にコア11を設ける構造としてもよい。このように蛇行状にコア11を設けた構造とすることで、NPWG10をより小型化できる。
In the above embodiment, the NPWG 10 having a structure in which the core 11 in which the height (thickness) is constant and the width varies non-uniformly in the longitudinal direction is embedded in the clad 11, but the optical fiber used in the present invention is exemplified. The waveguide is not limited to this example, and various modifications can be made.
For example, as shown in FIG. 4A, the core 11 may have a width distribution that is unevenly distributed in the light propagation direction so that both sides of the core 11 in the width direction are symmetrical. Further, as shown in FIG. 4B, a structure in which the both sides in the width direction of the core 11 from the center of the core 11 are asymmetrically distributed in the light propagation direction may be used.
As shown in FIG. 1, the core 11 may have a structure in which the core 11 is provided in a meandering manner as shown in FIG. 5 in addition to a structure in which the core 11 is provided linearly along the longitudinal direction (z) of the NPWG 10. By adopting such a structure in which the core 11 is provided in a meandering manner, the NPWG 10 can be further downsized.
 本発明の分散補償デバイス20の主要構成要素であるNPWG10は、例えば、次のように製造される。
(a)まず、NPWG10の下クラッド層を設ける。
(b)次いで、前記下クラッド層上に、下クラッド層よりも屈折率の大きいコア層を設ける。
(c)次いで、前記コア層に、コアの等価屈折率が光伝搬方向にわたって不均一に変化するように設計された所定のコア形状を残し、それ以外の部分を除去する加工を施して、コア11を形成する。
(d)次いで、前記コア11を覆うクラッド12を設け、NPWG10を製造する。
The NPWG 10, which is a main component of the dispersion compensation device 20 of the present invention, is manufactured as follows, for example.
(A) First, a lower cladding layer of the NPWG 10 is provided.
(B) Next, a core layer having a refractive index larger than that of the lower cladding layer is provided on the lower cladding layer.
(C) Next, the core layer is processed so as to leave a predetermined core shape designed so that the equivalent refractive index of the core varies nonuniformly in the light propagation direction and remove the other portions. 11 is formed.
(D) Next, the cladding 12 covering the core 11 is provided, and the NPWG 10 is manufactured.
 このNPWG10のコア11の形成(上述した(c)の工程)に関し、コア幅の分布は、所望の反射スペクトルから必要な幅分布を得る逆散乱問題の手法を用いて設計できる。 Regarding the formation of the core 11 of the NPWG 10 (step (c) described above), the distribution of the core width can be designed by using the inverse scattering problem method for obtaining a necessary width distribution from a desired reflection spectrum.
 まず、NPWG10に伝搬する電磁界を次のように定式化する(参考文献:J. E. Sipe, L. Poladian, and C. Martijn de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A, vol. 11, no. 4, pp. 1307-1320, 1994)。電磁界の時間変動をexp(-iωt)と仮定すると、Maxwell方程式により、NPWG10に伝搬する電磁界は、次式(1)、(2)で表される。      
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
 ただし、上記式(1),(2)で、E,Hはそれぞれ電界と磁界の複素振幅を表し、nは導波路の屈折率を表す。
First, the electromagnetic field propagating to the NPWG 10 is formulated as follows (reference: JE Sipe, L. Poladian, and C. Martijn de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A, vol. 11, no. 4, pp. 1307-1320, 1994). Assuming that the time variation of the electromagnetic field is exp (−iωt), the electromagnetic field propagating to the NPWG 10 by the Maxwell equation is expressed by the following expressions (1) and (2).
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
In the above formulas (1) and (2), E and H represent the complex amplitudes of the electric field and magnetic field, respectively, and n represents the refractive index of the waveguide.
 ここで、次式(3),(4)                  
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
で定義される、zの前方に伝搬する電力波振幅A(z)と、zの後方に伝搬する電力波振幅A(z)とを、上記式(1)と式(2)にそれぞれ導入する。ただし、Z=√μ/εは真空中のインピーダンスを表し、nは参照屈折率を表す。これらの変数から、次式(5),(6)がそれぞれ導かれる:                 
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
ただし、cは真空中の光速を表す。
Here, the following equations (3), (4)
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
The power wave amplitude A + (z) propagating in front of z and the power wave amplitude A (z) propagating in the rear of z are defined in the above equations (1) and (2), respectively. Introduce. However, Z 0 = √μ 0 / ε 0 represents the impedance in vacuum, and n 0 represents the reference refractive index. From these variables, the following equations (5) and (6) are derived, respectively:
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Here, c represents the speed of light in vacuum.
 これらの式(5),(6)は、次式(7)                  
Figure JPOXMLDOC01-appb-I000008
で変数変換を行うと、次式(8)、(9)に示すZakharov-Shabat方程式にそれぞれ帰着される:                  
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
ただし、ωは参照角周波数を表す。
These equations (5) and (6) are expressed by the following equation (7)
Figure JPOXMLDOC01-appb-I000008
If the variable conversion is performed in, the result is reduced to the Zakharov-Shabat equation shown in the following equations (8) and (9):
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
However, ω 0 represents the reference angular frequency.
 これらのZakharov-Shabat方程式は、逆散乱問題として解くことができる。すなわち、次式(10)                  
Figure JPOXMLDOC01-appb-I000011
で定義される反射係数のスペクトルデータから、ポテンシャル関数u(x)を数値的に解くことができる(参考文献:P. V. Frangos and D. L. Jaggard, “A numerical solution to the Zakharov-Shabat inverse scattering problem,” IEEE Trans. Antennas and Propag., vol. 39, no. 1, pp. 74-79, 1991)。これを前記の逆散乱問題に当てはめると、所望の反射スペクトルを実現するためのポテンシャルを求められる。ここで、反射スペクトルとは、波長に対する群遅延量と反射率から得られる複素反射データをいう。
These Zakharov-Shabat equations can be solved as inverse scattering problems. That is, the following formula (10)
Figure JPOXMLDOC01-appb-I000011
The potential function u (x) can be solved numerically from the spectral data of the reflection coefficient defined in (Reference: PV Frangos and DL Jaggard, “A numerical solution to the Zakharov-Shabat inverse scattering problem,” IEEE Trans. Antennas and Propag., Vol. 39, no. 1, pp. 74-79, 1991). If this is applied to the above-mentioned inverse scattering problem, a potential for realizing a desired reflection spectrum can be obtained. Here, the reflection spectrum refers to complex reflection data obtained from the group delay amount and the reflectance with respect to the wavelength.
 ポテンシャルu(x)が得られれば、局所等価屈折率n(x)は、次式(11)のように求められる。                  
Figure JPOXMLDOC01-appb-I000012
If the potential u (x) is obtained, the local equivalent refractive index n (x) can be obtained by the following equation (11).
Figure JPOXMLDOC01-appb-I000012
 さらに、実際作製しようとする導波路のコアの厚みと、コアの屈折率およびクラッドの屈折率から求められる、コアの幅に対する等価屈折率と、の関係から、光の伝搬方向の所定の位置におけるコア幅w(x)を求められる。 Furthermore, from the relationship between the thickness of the core of the waveguide to be actually manufactured and the equivalent refractive index with respect to the core width, which is obtained from the refractive index of the core and the refractive index of the cladding, at a predetermined position in the light propagation direction. The core width w (x) is obtained.
 そして、被補償光ファイバの使用波長と使用帯域及び使用長さを考慮し、被補償光ファイバの分散と逆になるように(分散補償できるように)スペクトルデータを作成し、前記設計手法を用いて逆問題を解き、NPWG10を作製すれば、小型で高性能の分散補償デバイスが実現される。
 この方法を用いれば、FBGを重ね合わせる方法(例えば、特許文献4参照)で起きるチャンネル間の干渉が、設計方法に考慮されているために起きなくなる。また、この設計により得られるNPWGは、特許文献4に開示されたものと異なる構造になる。
Then, in consideration of the wavelength used, the band used, and the length of the optical fiber to be compensated, spectral data is created so as to be opposite to the dispersion of the optical fiber to be compensated (so that dispersion compensation can be performed), and the design method is used. If the inverse problem is solved and the NPWG 10 is manufactured, a small and high-performance dispersion compensation device can be realized.
When this method is used, interference between channels that occurs in a method of superimposing FBGs (see, for example, Patent Document 4) does not occur because the design method is considered. Further, the NPWG obtained by this design has a structure different from that disclosed in Patent Document 4.
 このように、NPWG10のコア11を形成する際、上記のコア幅w(x)の形状を有したマスクを用い、フォトリソグラフィー法によってコア11を形成するのが好ましい。このフォトリソグラフィー法に用いる材料や手順は、半導体製造分野等で周知のフォトリソグラフィー法に用いる材料や手順を用いて実施できる。また、クラッド層やコア層の成膜方法は、一般の光導波路の製造において用いられている周知の成膜技術を用いて実施できる。 Thus, when forming the core 11 of the NPWG 10, it is preferable to form the core 11 by photolithography using a mask having the shape of the core width w (x) described above. Materials and procedures used for this photolithography method can be implemented using materials and procedures used for photolithography methods well known in the field of semiconductor manufacturing. The cladding layer or core layer can be formed by using a well-known film forming technique used in the production of a general optical waveguide.
 本発明の分散補償デバイス20は、前述した通りNPWG10を製造した後、このNPWG10の透過端14を無反射終端16で終端する。さらに、NPWG10の反射端13にサーキュレータ15又は方向性結合器を接続する。以上で、図6に示す分散補償デバイス20が得られる。 The dispersion compensation device 20 of the present invention, after manufacturing the NPWG 10 as described above, terminates the transmissive end 14 of the NPWG 10 with a non-reflection termination 16. Further, a circulator 15 or a directional coupler is connected to the reflection end 13 of the NPWG 10. Thus, the dispersion compensation device 20 shown in FIG. 6 is obtained.
 この分散補償デバイス20のNPWG10は、前述したように、被補償光ファイバの波長分散を補償できるような反射率特性を有しているので、被補償光ファイバから出力された光信号がNPWG10で反射される際に、その光信号の波長分散が補正されて出力される。そして、分散補償デバイス20から出力された光信号は、サーキュレータ15の出力側に接続された下流側の光ファイバに入力され、このファイバ内を伝搬する。 As described above, the NPWG 10 of the dispersion compensation device 20 has reflectivity characteristics that can compensate for the chromatic dispersion of the compensated optical fiber. Therefore, the optical signal output from the compensated optical fiber is reflected by the NPWG 10. In this case, the chromatic dispersion of the optical signal is corrected and output. The optical signal output from the dispersion compensation device 20 is input to the downstream optical fiber connected to the output side of the circulator 15 and propagates through the fiber.
<実施例1>
 波長領域[1546.12nm~1554.13nm]において、分散量D=-1700ps/nm、分散に対する分散スロープの比RDS=0.0034nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、193.4+0.1nTHz≦f≦193.5+0.1nTHzを満たす10チャンネルに分かれるよう、NPWGを設計した。ここで、nは-5≦n≦4を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。すなわち、実施例1では、この分散補償デバイスが示す反射スペクトルを上記10のチャンネルに分け、その各々の波長帯域内で上記分散を補償するように設定して、導波路の幅の設計を行った。これらの各チャンネルは、ITUグリッド間隔を満たす。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 1>
In the wavelength region [1546.12 nm to 1554.13 nm], a dispersion compensation device that realizes chromatic dispersion compensation with a dispersion amount D = −1700 ps / nm and a ratio of dispersion slope to dispersion RDS = 0.0036 nm −1 was designed. . At this time, the NPWG was designed so that the wavelength region for dispersion compensation is divided into 10 channels satisfying the frequency f of 193.4 + 0.1 nTHz ≦ f ≦ 193.5 + 0.1 nTHz. Here, n represents an integer satisfying −5 ≦ n ≦ 4. In this dispersion compensation device, dispersion compensation is performed in each channel. That is, in Example 1, the reflection spectrum shown by the dispersion compensation device is divided into the 10 channels, and the width of the waveguide is designed by setting so as to compensate for the dispersion within each wavelength band. . Each of these channels fills the ITU grid interval. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図7は、本実施例で作製した分散補償デバイスのNPWGの、ポテンシャル分布を表すグラフである。図中の横軸は、中心波長1550.12nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図8に示す群遅延特性と、図9に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 7 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 1550.12 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 8 and the reflectance characteristic shown in FIG. 9 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、波長1550nmにおける等価屈折率と導波路の幅との関係は、図10に示すようになる。この際のクラッドの厚さは、コアに比べて十分大きいものとする。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the relationship between the equivalent refractive index at a wavelength of 1550 nm and the width of the waveguide is as shown in FIG. In this case, the thickness of the clad is sufficiently larger than that of the core.
 この導波路構造を用いた場合、図8と図9の各特性を実現するNPWGのコアの幅分布は、図11に示すようになる。そのときのNPWGの等価屈折率の分布は、図12に示すようになる。 When this waveguide structure is used, the width distribution of the core of the NPWG realizing the characteristics shown in FIGS. 8 and 9 is as shown in FIG. The distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
 図11の一部を拡大したものを図13に示す。図12の一部を拡大したものを図14に示す。これら図13、14に示すように、本実施例のNPWGは、分散補償する帯域の中心波長のスケールでは、周期が中心波長の約1/2になる周期構造となっている。すなわち、このNPWGは、中心波長のスケールでは周期構造で、波長よりずっと大きなスケールでは、逆問題で決まる非周期構造のような二階層構造となっている。 FIG. 13 shows an enlarged view of a part of FIG. FIG. 14 shows an enlarged view of a part of FIG. As shown in FIGS. 13 and 14, the NPWG according to the present embodiment has a periodic structure in which the period is about ½ of the center wavelength on the scale of the center wavelength of the band for dispersion compensation. In other words, this NPWG has a two-layered structure such as a periodic structure at the center wavelength scale and a non-periodic structure determined by an inverse problem at a scale much larger than the wavelength.
 同じ材料の導波路構造を用いても、導波路全体の平均等価屈折率を示す参照屈折率n(o)を、導波路の厚さや材料に応じて設定すれば、異なるコア幅をもつNPWGで同じ特性を実現できる。図15は、前記の例より高い参照屈折率n(0)を使った場合のコア幅方向分布を示す。その時のNPWGの等価屈折率の分布は、図16に示すようになる。 Even if the waveguide structure of the same material is used, if the reference refractive index n (o) indicating the average equivalent refractive index of the entire waveguide is set according to the thickness and material of the waveguide, the NPWG having a different core width can be used. The same characteristics can be realized. FIG. 15 shows the distribution in the core width direction when a higher reference refractive index n (0) than in the above example is used. The distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
 コアとクラッドの材料は、石英ガラス系に限定されず、シリコン化合物、ポリマー等の光学分野等で従来周知の他の透明材料を用いることもできる。特に、屈折率の高い材料を用いれば、デバイスをさらに小さくし、伝送損失を下げられる。 The material of the core and the clad is not limited to quartz glass, and other transparent materials that are conventionally known in the optical field such as silicon compounds and polymers can also be used. In particular, if a material having a high refractive index is used, the device can be further reduced and the transmission loss can be reduced.
<実施例2>
 波長領域[1542.14nm~1558.17nm]において、分散量D=-1700ps/nm、分散に対する分散スロープの比RDS=0.0034nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、193.4+0.1nTHz≦f≦193.5+0.1nTHzを満たす20チャンネルに分かれるよう、NPWGを設計した。ここで、nは-10≦n≦9を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。これらの各チャンネルは、ITUグリッド間隔を満たす。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 2>
In the wavelength region [154.14 nm to 1558.17 nm], a dispersion compensation device that realizes chromatic dispersion compensation with a dispersion amount D = −1700 ps / nm and a dispersion slope ratio RDS = 0.0036 nm −1 was designed. . At this time, the NPWG was designed so that the wavelength region for dispersion compensation is divided into 20 channels satisfying the frequency f of 193.4 + 0.1 nTHz ≦ f ≦ 193.5 + 0.1 nTHz. Here, n represents an integer satisfying −10 ≦ n ≦ 9. In this dispersion compensation device, dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図17は、本実施例で作製した分散補償デバイスのNPWGの、ポテンシャル分布を表すグラフである。図中の横軸は、中心波長1550.12nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図18に示す群遅延特性と、図19に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 17 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 1550.12 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 18 and the reflectance characteristic shown in FIG. 19 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、図18と図19の各特性を実現するNPWGのコア幅分布は、図20に示すようになる。そのときのNPWGの等価屈折率の分布は、図21に示すようになる。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the core width distribution of the NPWG realizing the characteristics shown in FIGS. 18 and 19 is as shown in FIG. The distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
 本実施例では、補償の帯域(チャンネル)が増えた分、ポテンシャルの変動が実施例1より大きくなった。また、このポテンシャルの変動を実現するための、NPWGのコア幅変化量も大きくなった。しかし、デバイスの長さは、実施例1と同じである。すなわち、本実施例では、より多くの帯域の分散補償を、実施例1と同じ長さの分散補償デバイスで実現できた。 In this embodiment, the potential fluctuation is larger than that in the first embodiment because the compensation band (channel) is increased. Further, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased. However, the length of the device is the same as in the first embodiment. That is, in this embodiment, dispersion compensation in a larger number of bands can be realized with the dispersion compensation device having the same length as that of the first embodiment.
<実施例3>
 波長領域[1530.33nm~1570.42nm]において、分散量D=-1700ps/nm、分散に対する分散スロープの比RDS=0.0034nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、193.4+0.1nTHz≦f≦193.5+0.1nTHzを満たす50チャンネルに分かれるよう、NPWGを設計した。ここで、nは-25≦n≦24を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。これらの各チャンネルは、ITUグリッド間隔を満たす。これは、Cバンド全域をカバーする分散補償デバイスである。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 3>
In the wavelength region [1530.33 nm to 1570.42 nm], a dispersion compensation device that realizes chromatic dispersion compensation in which the dispersion amount D = −1700 ps / nm and the dispersion slope to dispersion ratio RDS = 0.0036 nm −1 was designed. . At this time, the NPWG was designed so that the wavelength region for dispersion compensation was divided into 50 channels with the frequency f satisfying 193.4 + 0.1 nTHz ≦ f ≦ 193.5 + 0.1 nTHz. Here, n represents an integer satisfying −25 ≦ n ≦ 24. In this dispersion compensation device, dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. This is a dispersion compensation device that covers the entire C band. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図22は、本実施例で作製した分散補償デバイスのNPWGの、ポテンシャル分布を表すグラフである。図中の横軸は、中心波長1550.12nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図23に示す群遅延特性と、図24に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 22 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 1550.12 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 23 and the reflectance characteristic shown in FIG. 24 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、図23と図24の各特性を実現するNPWGのコア幅分布は、図25に示すようになる。そのときのNPWGの等価屈折率の分布は、図26に示すようになる。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the core width distribution of the NPWG realizing the characteristics shown in FIGS. 23 and 24 is as shown in FIG. The distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
 本実施例では、補償の帯域(チャンネル)が増えた分、ポテンシャルの変動が実施例1より大きくなった。また、このポテンシャル変動を実現するための、NPWGのコア幅変化量も大きくなった。しかし、デバイスの長さは、実施例1と同じである。すなわち、本実施例では、より多くの帯域の分散補償を、実施例1と同じ長さの分散補償デバイスで実現できた。 In this embodiment, the potential fluctuation is larger than that in the first embodiment because the compensation band (channel) is increased. In addition, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased. However, the length of the device is the same as in the first embodiment. That is, in this embodiment, dispersion compensation in a larger number of bands can be realized with the dispersion compensation device having the same length as that of the first embodiment.
<実施例4>
 波長領域[1587.04nm~1595.49nm]において、分散量D=-1900ps/nm、分散に対する分散スロープの比RDS=0.003nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、188.4+0.1nTHz≦f≦188.5+0.1nTHzを満たす10チャンネルに分かれるよう、NPWGを設計した。ここで、nは-5≦n≦4を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。これらの各チャンネルは、ITUグリッド間隔を満たす。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 4>
In the wavelength region [1587.04 nm to 1595.49 nm], a dispersion compensation device was designed to realize chromatic dispersion compensation with a dispersion amount D = −1900 ps / nm and a dispersion slope ratio RDS = 0.003 nm −1 . . At this time, the NPWG was designed so that the wavelength region for dispersion compensation was divided into 10 channels satisfying the frequency f of 188.4 + 0.1 nTHz ≦ f ≦ 188.5 + 0.1 nTHz. Here, n represents an integer satisfying −5 ≦ n ≦ 4. In this dispersion compensation device, dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図27は、本実施例で作製した分散補償デバイスのNPWGの、ポテンシャル分布を表すグラフである。図中の横軸は、中心波長1591.26nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図28に示す群遅延特性と、図29に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 27 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 1591.26 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 28 and the reflectance characteristic shown in FIG. 29 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、図28と図29の各特性を実現するNPWGのコア幅分布は、図30に示すようになる。そのときのNPWGの等価屈折率の分布は、図31に示すようになる。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the core width distribution of the NPWG realizing the characteristics shown in FIGS. 28 and 29 is as shown in FIG. The distribution of the equivalent refractive index of NPWG at that time is as shown in FIG.
<実施例5>
 波長領域[1582.85nm~1599.75nm]において、分散量D=-1900ps/nm、分散に対する分散スロープの比RDS=0.003nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、188.4+0.1nTHz≦f≦188.5+0.1nTHzを満たす20チャンネルに分かれるよう、NPWGを設計した。ここで、nは-10≦n≦9を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。これらの各チャンネルは、ITUグリッド間隔を満たす。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 5>
In the wavelength region [158.85 nm to 1599.75 nm], a dispersion compensation device that realizes chromatic dispersion compensation with a dispersion amount D = −1900 ps / nm and a dispersion slope ratio RDS = 0.003 nm −1 was designed. . At this time, the NPWG was designed so that the wavelength region for dispersion compensation was divided into 20 channels satisfying the frequency f of 188.4 + 0.1 nTHz ≦ f ≦ 188.5 + 0.1 nTHz. Here, n represents an integer satisfying −10 ≦ n ≦ 9. In this dispersion compensation device, dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図32は、本実施例で作製した分散補償デバイスのNPWGの、ポテンシャル分布を表すグラフである。図中の横軸は、中心波長1591.26nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図33に示す群遅延特性と、図32に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 32 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 1591.26 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 33 and the reflectance characteristic shown in FIG. 32 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、図33と図34の各特性を実現するNPWGのコア幅分布は、図35に示すようになる。そのときの導波路の等価屈折率の分布は、図36に示すようになる。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the core width distribution of the NPWG realizing the characteristics shown in FIGS. 33 and 34 is as shown in FIG. The distribution of the equivalent refractive index of the waveguide at that time is as shown in FIG.
 本実施例では、補償の帯域(チャンネル)が増えた分、ポテンシャルの変動が実施例4より大きくなった。また、このポテンシャルの変動を実現するための、NPWGのコア幅変化量も大きくなった。しかし、デバイスの長さは、実施例4と同じである。すなわち、本実施例では、より多くの帯域の分散補償を、実施例4と同じ長さの分散補償デバイスで実現できた。 In this example, the fluctuation in potential was larger than that in Example 4 because the compensation band (channel) was increased. Further, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased. However, the length of the device is the same as in the fourth embodiment. That is, in this embodiment, dispersion compensation for a larger number of bands can be realized with a dispersion compensation device having the same length as that of the fourth embodiment.
<実施例6>
 波長領域[1574.54nm~1608.33nm]において、分散量D=-1900ps/nm、分散に対する分散スロープの比RDS=0.003nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、188.4+0.1nTHz≦f≦188.5+0.1nTHzを満たす40チャンネルに分かれるよう、NPWGを設計した。ここで、nは-20≦n≦19を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。これらの各チャンネルは、ITUグリッド間隔を満たす。本実施例の分散補償デバイスは、ほぼLバンドの全域をカバーできる。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 6>
In the wavelength region [1574.54 nm to 1608.33 nm], a dispersion compensation device that realizes chromatic dispersion compensation with a dispersion amount D = −1900 ps / nm and a dispersion slope ratio RDS = 0.003 nm −1 was designed. . At this time, the NPWG was designed so that the wavelength region for dispersion compensation was divided into 40 channels satisfying the frequency f of 188.4 + 0.1 nTHz ≦ f ≦ 188.5 + 0.1 nTHz. Here, n represents an integer satisfying −20 ≦ n ≦ 19. In this dispersion compensation device, dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. The dispersion compensation device of this embodiment can cover almost the entire L band. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図37は、本実施例で作製した分散補償デバイスのNPWGの、ポテンシャル分布を表すグラフである。図中の横軸は、中心波長1591.26nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図38に示す群遅延特性と、図39に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 37 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 1591.26 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 38 and the reflectance characteristic shown in FIG. 39 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、図38と図39の各特性を実現するNPWGのコア幅分布は、図40に示すようになる。そのときのNPWGの等価屈折率の分布は、図41に示すようになる。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the core width distribution of the NPWG realizing the characteristics shown in FIGS. 38 and 39 is as shown in FIG. The distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
 本実施例では、補償の帯域(チャンネル)が増えた分、ポテンシャルの変動が実施例4より大きくなった。また、このポテンシャル変動を実現するためのNPWGのコア幅変化量も大きくなった。しかし、デバイスの長さは、実施例4と同じである。すなわち、本実施例では、より多くの帯域の分散補償を、実施例4と同じ長さの分散補償デバイスで実現できた。 In this example, the fluctuation in potential was larger than that in Example 4 because the compensation band (channel) was increased. In addition, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased. However, the length of the device is the same as in the fourth embodiment. That is, in this embodiment, dispersion compensation for a larger number of bands can be realized with a dispersion compensation device having the same length as that of the fourth embodiment.
<実施例7>
 波長領域[1507.25nm~1514.87nm]において、分散量D=-1400ps/nm、分散に対する分散スロープの比RDS=0.005nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、198.4+0.1nTHz≦f≦198.5+0.1nTHzを満たす10チャンネルに分かれるよう、NPWGを設計した。ここで、nは-5≦n≦4を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。これらの各チャンネルは、ITUグリッド間隔を満たす。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 7>
In the wavelength region [1507.25 nm to 1514.87 nm], a dispersion compensation device was designed that realizes chromatic dispersion compensation with a dispersion amount D = −1400 ps / nm and a dispersion slope ratio RDS = 0.005 nm −1 . . At this time, the NPWG was designed so that the wavelength region for dispersion compensation is divided into 10 channels satisfying the frequency f of 198.4 + 0.1 nTHz ≦ f ≦ 198.5 + 0.1 nTHz. Here, n represents an integer satisfying −5 ≦ n ≦ 4. In this dispersion compensation device, dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図42は、本実施例で作製した分散補償デバイスのNPWGの、ポテンシャル分布を表すグラフである。図中の横軸は、中心波長1511.05nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図43に示す群遅延特性と、図44に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 42 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 151.05 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 43 and the reflectance characteristic shown in FIG. 44 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、図43と図44の各特性を実現するNPWGのコア幅分布は、図45に示すようになる。そのときのNPWGの等価屈折率の分布は、図46に示すようになる。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the core width distribution of the NPWG realizing the characteristics shown in FIGS. 43 and 44 is as shown in FIG. The distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
<実施例8>
 波長領域[1503.47nm~1518.71nm]において、分散量D=-1400ps/nm、分散に対する分散スロープの比RDS=0.005nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、198.4+0.1nTHz≦f≦198.5+0.1nTHzを満たす20チャンネルに分かれるよう、NPWGを設計した。ここで、nは-10≦n≦9を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。これらの各チャンネルは、ITUグリッド間隔を満たす。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 8>
In the wavelength region [1503.47 nm to 1518.71 nm], a dispersion compensation device that realizes chromatic dispersion compensation in which the dispersion amount D = −1400 ps / nm and the dispersion slope to dispersion ratio RDS = 0.005 nm −1 was designed. . At this time, the NPWG was designed so that the wavelength region for dispersion compensation is divided into 20 channels satisfying the frequency f of 198.4 + 0.1 nTHz ≦ f ≦ 198.5 + 0.1 nTHz. Here, n represents an integer satisfying −10 ≦ n ≦ 9. In this dispersion compensation device, dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図47は、本実施例で作製した分散補償デバイスのNPWGの、ポテンシャル分布を表すグラフである。図中の横軸は、中心波長1511.05nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図48に示す群遅延特性と、図49に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 47 is a graph showing the potential distribution of the NPWG of the dispersion compensation device manufactured in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 151.05 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 48 and the reflectance characteristic shown in FIG. 49 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、図48と図49の各特性を実現するNPWGのコア幅分布は、図50に示すようになる。そのときのNPWGの等価屈折率の分布は、図51に示すようになる。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the core width distribution of the NPWG realizing the characteristics shown in FIGS. 48 and 49 is as shown in FIG. The distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
 本実施例では、補償の帯域(チャンネル)が増えた分、ポテンシャルの変動が実施例7より大きくなった。また、このポテンシャルの変動を実現するための、NPWGのコア幅変化量も大きくなった。しかし、デバイスの長さは、実施例7と同じである。すなわち、本実施例では、より多くの帯域の分散補償を、実施例7と同じ長さの分散補償デバイスで実現できた。 In this example, the fluctuation in potential was larger than that in Example 7 because the compensation band (channel) was increased. Further, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased. However, the length of the device is the same as in the seventh embodiment. That is, in this example, dispersion compensation for a larger number of bands could be realized with a dispersion compensation device having the same length as that of Example 7.
<実施例9>
 波長領域[1492.25nm~1530.33nm]において、分散量D=-1400ps/nm、分散に対する分散スロープの比RDS=0.005nm-1となる波長分散の補償を実現する分散補償デバイスを設計した。この際、分散補償する波長領域は、周波数fが、198.4+0.1nTHz≦f≦198.5+0.1nTHzを満たす50チャンネルに分かれるよう、NPWGを設計した。ここで、nは-25≦n≦24を満たす整数を表す。この分散補償デバイスでは、それぞれのチャンネル内で分散補償を行っている。これらの各チャンネルは、ITUグリッド間隔を満たす。本実施例の分散補償デバイスは、長さ100kmのS-SMFの残留分散を補償できる。
<Example 9>
In the wavelength region [149.25 nm to 1530.33 nm], a dispersion compensation device that realizes chromatic dispersion compensation with a dispersion amount D = −1400 ps / nm and a dispersion slope ratio RDS = 0.005 nm −1 was designed. . At this time, the NPWG was designed so that the wavelength region for dispersion compensation is divided into 50 channels in which the frequency f satisfies 198.4 + 0.1 nTHz ≦ f ≦ 198.5 + 0.1 nTHz. Here, n represents an integer satisfying −25 ≦ n ≦ 24. In this dispersion compensation device, dispersion compensation is performed in each channel. Each of these channels fills the ITU grid interval. The dispersion compensation device of this embodiment can compensate for the residual dispersion of S-SMF having a length of 100 km.
 図52は、本実施例で作製した分散補償デバイスのNPWGのポテンシャル分布を表すグラフである。図中の横軸は、中心波長1511.05nmで規格された場所を表す。このポテンシャル分布を上述したように用いると、図53に示す群遅延特性と、図54に示す反射率特性が得られる。両図には、設計に用いたスペクトルデータ(designed)と得られたスペクトルデータ(realized)が示されている。 FIG. 52 is a graph showing the NPWG potential distribution of the dispersion compensation device fabricated in this example. The horizontal axis in the figure represents a location standardized at a center wavelength of 151.05 nm. When this potential distribution is used as described above, the group delay characteristic shown in FIG. 53 and the reflectance characteristic shown in FIG. 54 are obtained. In both figures, spectral data (designed) used for design and obtained spectral data (realized) are shown.
 本実施例のNPWGを、高さh=6μm、比屈折率差Δ=0.6%となるコアが、石英ガラスからなるクラッドに埋め込まれた導波路構造とした。この導波路構造では、図53と図54の各特性を実現するNPWGのコア幅分布は、図55に示すようになる。そのときのNPWGの等価屈折率の分布は、図56に示すようになる。 The NPWG of this example has a waveguide structure in which a core having a height h 3 = 6 μm and a relative refractive index difference Δ = 0.6% is embedded in a clad made of quartz glass. In this waveguide structure, the core width distribution of the NPWG realizing the characteristics shown in FIGS. 53 and 54 is as shown in FIG. The distribution of the equivalent refractive index of the NPWG at that time is as shown in FIG.
 本実施例では、補償の帯域(チャンネル)が増えた分、ポテンシャルの変動が実施例7より大きくなった。また、このポテンシャル変動を実現するための、NPWGのコア幅変化量も大きくなった。しかし、デバイスの長さは、実施例7と同じである。すなわち、本実施例では、より多くの帯域の分散補償を、実施例7と同じ長さの分散補償デバイスで実現できた。 In this example, the fluctuation in potential was larger than that in Example 7 because the compensation band (channel) was increased. In addition, the amount of change in the core width of the NPWG for realizing this potential fluctuation has also increased. However, the length of the device is the same as in the seventh embodiment. That is, in this example, dispersion compensation for a larger number of bands could be realized with a dispersion compensation device having the same length as that of Example 7.
 本発明の分散補償デバイスは、クラッドに埋め込まれたコアの物理的寸法を変えることにより、このコアの等価屈折率が光伝搬方向にわたって不均一に変化した光導波路を、反射型の波長分散補償手段として有し;前記光導波路は、分散補償する波長領域が複数のチャンネルに区切られ、これらチャンネルの前記波長領域内で分散が補償される分散補償特性を有する。 The dispersion compensation device according to the present invention is a reflection-type chromatic dispersion compensation means that converts an optical waveguide whose equivalent refractive index of the core is nonuniformly changed in the light propagation direction by changing the physical dimension of the core embedded in the clad. The optical waveguide has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated within the wavelength region of these channels.

Claims (14)

  1.  クラッドに埋め込まれたコアの物理的寸法を変えることにより、このコアの等価屈折率が光伝搬方向にわたって不均一に変化した光導波路を、反射型の波長分散補償手段として有し;
     前記光導波路は、分散補償する波長領域が複数のチャンネルに区切られ、これらチャンネルの前記波長領域内で分散が補償される分散補償特性を有する;
     ことを特徴とする光導波路型波長分散補償デバイス。
    An optical waveguide in which the equivalent refractive index of the core is changed nonuniformly in the light propagation direction by changing the physical dimension of the core embedded in the clad as a reflection type chromatic dispersion compensation means;
    The optical waveguide has a dispersion compensation characteristic in which a wavelength region for dispersion compensation is divided into a plurality of channels, and dispersion is compensated in the wavelength region of these channels;
    An optical waveguide type chromatic dispersion compensation device.
  2.  前記コアの幅が、前記光伝搬方向にわたって不均一に分布している
     ことを特徴とする請求項1に記載の光導波路型波長分散補償デバイス。
    The optical waveguide type chromatic dispersion compensating device according to claim 1, wherein the width of the core is unevenly distributed in the light propagation direction.
  3.  前記コアの幅が、前記コアの中心から前記コアの幅方向の両側が対称となるように、前記光伝搬方向にわたって不均一に分布している
     ことを特徴とする請求項2に記載の光導波路型波長分散補償デバイス。
    3. The optical waveguide according to claim 2, wherein the width of the core is unevenly distributed over the light propagation direction so that both sides of the core in the width direction are symmetrical from the center of the core. 4. Type chromatic dispersion compensation device.
  4.  前記コアの幅が、前記コアの中心から前記コアの幅方向の両側が非対称となるように、前記光伝搬方向にわたって不均一に分布している
     ことを特徴とする請求項2に記載の光導波路型波長分散補償デバイス。
    3. The optical waveguide according to claim 2, wherein the width of the core is unevenly distributed in the light propagation direction so that both sides of the core in the width direction are asymmetric from the center of the core. Type chromatic dispersion compensation device.
  5.  前記コアの幅が、前記コアの中心から前記コアの幅方向の両側のうち、一方の側のみが前記光伝搬方向にわたって不均一に分布している
     ことを特徴とする請求項2に記載の光導波路型波長分散補償デバイス。
    3. The light guide according to claim 2, wherein the width of the core is unevenly distributed over the light propagation direction only on one side of both sides of the core in the width direction from the center of the core. Waveguide-type chromatic dispersion compensation device.
  6.  前記コアが、前記光導波路内に直線状に設けられている
     ことを特徴とする請求項1に記載の光導波路型波長分散補償デバイス。
    The optical waveguide type chromatic dispersion compensation device according to claim 1, wherein the core is linearly provided in the optical waveguide.
  7.  前記コアが、前記光導波路内に蛇行状に設けられている
     ことを特徴とする請求項1に記載の光導波路型波長分散補償デバイス。
    The optical waveguide type chromatic dispersion compensating device according to claim 1, wherein the core is provided in a meandering manner in the optical waveguide.
  8.  前記光導波路の一端が透過端であり、前記光導波路の他端が反射端であり;
     前記透過端が無反射終端で終端され;
     前記反射端でサーキュレータ又は方向性結合器を介して光出力が取り出される;
     ことを特徴とする請求項1に記載の光導波路型波長分散補償デバイス。
    One end of the optical waveguide is a transmission end, and the other end of the optical waveguide is a reflection end;
    The transmissive end is terminated with a non-reflective termination;
    A light output is extracted at the reflection end via a circulator or a directional coupler;
    The optical waveguide type chromatic dispersion compensation device according to claim 1.
  9.  前記光導波路は、所定の波長帯域にて、所定の長さの被補償光ファイバの波長分散を打ち消す分散補償特性を有する
     ことを特徴とする請求項1に記載の光導波路型波長分散補償デバイス。
    The optical waveguide type chromatic dispersion compensation device according to claim 1, wherein the optical waveguide has a dispersion compensation characteristic that cancels chromatic dispersion of a compensated optical fiber having a predetermined length in a predetermined wavelength band.
  10.  前記光導波路は、中心波長λが1490nm≦λ≦1613nmの範囲、動作帯域ΔBWが0.1nm≦ΔBW≦60nmの範囲にて、
     分散Dが-3000ps/nm≦D≦3000ps/nmの範囲、分散に対する分散スロープの比RDSが-0.1nm-1≦RDS≦0.1nm-1の範囲の特性を有する
     ことを特徴とする請求項1に記載の光導波路型波長分散補償デバイス。
    The optical waveguide has a center wavelength λ c in the range of 1490 nm ≦ λ c ≦ 1613 nm and an operating band ΔBW in the range of 0.1 nm ≦ ΔBW ≦ 60 nm.
    The dispersion D has characteristics in the range of −3000 ps / nm ≦ D ≦ 3000 ps / nm, and the ratio RDS of the dispersion slope to the dispersion is in the range of −0.1 nm −1 ≦ RDS ≦ 0.1 nm −1. Item 4. An optical waveguide type chromatic dispersion compensation device according to Item 1.
  11.  前記光導波路の前記光伝搬方向にわたる前記コアの等価屈折率分布が、
     Zakharov-Shabat方程式を用いて、反射係数のスペクトルデータからポテンシャル関数を数値的に導く逆散乱問題として解き;
     この逆散乱問題で得られた値から、所望の反射スペクトルを実現するためのポテンシャルを推測する設計法で設計される;
     ことを特徴とする請求項1に記載の光導波路型波長分散補償デバイス。
    The equivalent refractive index distribution of the core over the light propagation direction of the optical waveguide is
    Solve as an inverse scattering problem that numerically derives the potential function from the spectral data of the reflection coefficient, using the Zakharov-Shabat equation;
    Designed with a design method that estimates the potential to achieve the desired reflection spectrum from the values obtained from this inverse scattering problem;
    The optical waveguide type chromatic dispersion compensation device according to claim 1.
  12.  前記光導波路の光伝搬方向にわたる前記コアの等価屈折率分布が、
     前記光導波路の前方及び後方に伝搬する電力波の振幅なる変数を導入した波動方程式を用いて、前記光導波路の等価屈折率の対数の微分から導かれるポテンシャルを有するZakharov-Shabat方程式に帰着させ、反射係数のスペクトルデータからポテンシャル関数を数値的に導く逆散乱問題として解き;
     この逆散乱問題で得られた値から、所望の反射スペクトルを実現するためのポテンシャルを推測し;
     このポテンシャルに基づいて等価屈折率を求め;
     予め求められた、所定の前記コアの厚さと、前記等価屈折率と、前記コアの寸法と、の関係から、前記光導波路の光伝搬方向にわたる前記コアの幅分布を算出して設計される;
     ことを特徴とする請求項11に記載の光導波路型波長分散補償デバイス。
    The equivalent refractive index distribution of the core over the light propagation direction of the optical waveguide is
    Using a wave equation that introduces a variable that is the amplitude of the power wave propagating forward and backward of the optical waveguide, it is reduced to the Zakharov-Shabat equation having a potential derived from the logarithmic derivative of the equivalent refractive index of the optical waveguide. Solve as an inverse scattering problem that numerically derives the potential function from the spectral data of the reflection coefficient;
    From the value obtained by this inverse scattering problem, the potential for realizing the desired reflection spectrum is inferred;
    Determine the equivalent refractive index based on this potential;
    Designed by calculating the width distribution of the core over the light propagation direction of the optical waveguide from the relationship between the predetermined thickness of the core, the equivalent refractive index, and the dimension of the core, which is obtained in advance;
    The optical waveguide type chromatic dispersion compensation device according to claim 11.
  13.  前記光導波路の前記光伝搬方向にわたる前記コアの等価屈折率分布は、
     分散補償する帯域の中心波長のスケールではほぼ周期構造であり;
     中心波長より大きいスケールでは、前記逆散乱問題で決まる非周期構造の二階層構造を有する;
     ことを特徴とする請求項11に記載の光導波路型波長分散補償デバイス。
    The equivalent refractive index distribution of the core over the light propagation direction of the optical waveguide is:
    It is almost a periodic structure at the center wavelength scale of the dispersion compensating band;
    On a scale larger than the center wavelength, it has a two-layer structure of an aperiodic structure determined by the inverse scattering problem;
    The optical waveguide type chromatic dispersion compensation device according to claim 11.
  14.  光導波路の下クラッド層を設け;
     次いで、前記下クラッド層上に、下クラッド層よりも屈折率の大きいコア層を設け;
     次いで、前記コア層に、コアの等価屈折率が光伝搬方向にわたって不均一に変化するように設計された所定のコア形状を残し、それ以外の部分を除去する加工を施してコアを形成し;
     次いで、前記コアを覆うクラッドを設けることによって光導波路を製造し;
     請求項1に記載の光導波路型波長分散補償デバイスを製造することを特徴とする光導波路型波長分散補償デバイスの製造方法。
    Providing a lower cladding layer of the optical waveguide;
    Next, a core layer having a refractive index larger than that of the lower cladding layer is provided on the lower cladding layer;
    Next, a predetermined core shape designed so that the equivalent refractive index of the core varies non-uniformly in the light propagation direction is left on the core layer, and a core is formed by removing the other portions;
    Then producing an optical waveguide by providing a cladding covering the core;
    A method for manufacturing an optical waveguide type chromatic dispersion compensation device according to claim 1, wherein the optical waveguide type chromatic dispersion compensation device is manufactured.
PCT/JP2008/073318 2007-12-21 2008-12-22 Optical waveguide type wavelength dispersion compensation device and method for manufacturing the device WO2009081905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-331176 2007-12-21
JP2007331176A JP2009151247A (en) 2007-12-21 2007-12-21 Optical waveguide type wavelength dispersion compensation device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2009081905A1 true WO2009081905A1 (en) 2009-07-02

Family

ID=40801206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073318 WO2009081905A1 (en) 2007-12-21 2008-12-22 Optical waveguide type wavelength dispersion compensation device and method for manufacturing the device

Country Status (2)

Country Link
JP (1) JP2009151247A (en)
WO (1) WO2009081905A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377161B2 (en) * 2009-08-25 2013-12-25 株式会社フジクラ Method of designing a substrate type optical waveguide device having a grating structure
JP5337830B2 (en) * 2011-01-07 2013-11-06 株式会社フジクラ Optical dispersion compensation element and design method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161201A (en) * 1979-06-01 1980-12-15 Nippon Telegr & Teleph Corp <Ntt> Light delay equalizer
JPH05323140A (en) * 1992-05-18 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical equalizer
JP2000221338A (en) * 1999-02-03 2000-08-11 Mitsubishi Electric Corp Secondary function type optical waveguide grating. phase mask and dispersion slope compensation circuit
JP2001053680A (en) * 1999-08-16 2001-02-23 Fujikura Ltd Dispersion compensator
JP2004077665A (en) * 2002-08-13 2004-03-11 Fujikura Ltd Planar optical waveguide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281474A (en) * 2000-03-29 2001-10-10 Furukawa Electric Co Ltd:The Dispersion compensator and dispersion compensation module using the same
JP3962227B2 (en) * 2001-07-04 2007-08-22 日本電信電話株式会社 Waveguide type optical signal processing circuit
JP4440704B2 (en) * 2004-05-18 2010-03-24 日本電信電話株式会社 Waveguide type optical sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161201A (en) * 1979-06-01 1980-12-15 Nippon Telegr & Teleph Corp <Ntt> Light delay equalizer
JPH05323140A (en) * 1992-05-18 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical equalizer
JP2000221338A (en) * 1999-02-03 2000-08-11 Mitsubishi Electric Corp Secondary function type optical waveguide grating. phase mask and dispersion slope compensation circuit
JP2001053680A (en) * 1999-08-16 2001-02-23 Fujikura Ltd Dispersion compensator
JP2004077665A (en) * 2002-08-13 2004-03-11 Fujikura Ltd Planar optical waveguide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GHIE-HUGH SONG ET AL.: "Design of corrugated waveguide filters by the Gel'fand-Levitan- Marchenko inverse-scattering method", J. OPT. SOC. AM. A, vol. 2, no. 11, November 1985 (1985-11-01), pages 1905 - 1915, XP008136907, DOI: doi:10.1364/JOSAA.2.001905 *
GIA-WEI CHERN ET AL.: "Analysis and design of almost-periodic vertical-grating-assisted codirectional coupler filters with nonuniform duty ratios", APPLIED OPTICS, vol. 39, no. 25, 1 September 2000 (2000-09-01), pages 4629 - 4637 *

Also Published As

Publication number Publication date
JP2009151247A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
Okamoto Wavelength-division-multiplexing devices in thin SOI: Advances and prospects
JP4500886B2 (en) Optical waveguide device, chromatic dispersion compensation device and design method thereof, optical filter and design method thereof, and optical resonator and design method thereof
JP4448199B2 (en) Substrate-type optical waveguide device, chromatic dispersion compensation device, optical filter and optical resonator, and design methods thereof
JP4514832B2 (en) Substrate type optical waveguide device, chromatic dispersion compensation device, optical filter, optical resonator, and design method thereof
JP4603090B2 (en) Substrate-type optical waveguide device, chromatic dispersion compensation device and design method thereof, optical filter and design method thereof, and optical resonator and design method thereof
JP4691608B2 (en) Design method and manufacturing method of optical waveguide type chromatic dispersion compensation device
WO2009081905A1 (en) Optical waveguide type wavelength dispersion compensation device and method for manufacturing the device
WO2009081904A1 (en) Optical waveguide type wavelength dispersion compensation device and method for manufacturing the same
US6501874B1 (en) Dispersion compensator using Bragg gratings in transmission
WO2009081901A1 (en) Optical waveguide, method for manufacturing the optical waveguide, and optical device provided with the optical waveguide
JP5072721B2 (en) Optical device design method
JP3442289B2 (en) Variable dispersion optical equalizer
JP3341979B2 (en) Dispersion slope compensator
JP5135067B2 (en) Optical device design method
JP5135068B2 (en) Optical device design method
JP5307616B2 (en) Chromatic dispersion compensation device and design method thereof
CN117388984A (en) Design method of optical directional coupler for 4-channel CWDM multiplexer/demultiplexer
WO2003089969A2 (en) Waveguide optical filters with multiple spectral bands
Heo et al. Proposal of WDM receiving structure using tilted FBGs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863891

Country of ref document: EP

Kind code of ref document: A1