JP2004053707A - Plastic optical fiber cable - Google Patents

Plastic optical fiber cable Download PDF

Info

Publication number
JP2004053707A
JP2004053707A JP2002207761A JP2002207761A JP2004053707A JP 2004053707 A JP2004053707 A JP 2004053707A JP 2002207761 A JP2002207761 A JP 2002207761A JP 2002207761 A JP2002207761 A JP 2002207761A JP 2004053707 A JP2004053707 A JP 2004053707A
Authority
JP
Japan
Prior art keywords
resin
cable
optical fiber
plastic optical
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002207761A
Other languages
Japanese (ja)
Other versions
JP4121795B2 (en
Inventor
Shinichi Toyoshima
豊島 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2002207761A priority Critical patent/JP4121795B2/en
Publication of JP2004053707A publication Critical patent/JP2004053707A/en
Application granted granted Critical
Publication of JP4121795B2 publication Critical patent/JP4121795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To constitute a covering layer whose strength is not lowered even under a high-temperature and high-humidity condition, and which is excellent in flame retardance, abrasion resistance and flexibility in a plastic optical fiber cable. <P>SOLUTION: The cable is constituted by coating a bare plastic optical fiber with a coating resin composition constituted by kneading a polyolefin resin compound obtained by dispersing and kneading magnesium hydroxide in a polyolefin resin, a polyamide resin and a maleinated polymer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車内や工場内などで使用するのに適した、柔軟性に富んだプラスチック光ファイバケーブルに関する。
【0002】
【従来の技術】
従来、自動車内で用いられている車載用プラスチック光ファイバケーブル(以下、「ケーブル」と記す)としては、芯をポリメチルメタクリレート(PMMA)樹脂で構成し、該芯を取り囲む鞘層をフッ素樹脂で構成したプラスチック光ファイバ裸線の外側に、ナイロン12を内層被覆し、次いで硬度の低いソフトナイロンと呼ばれる、ポリエーテルアミド、ポリエーテルエステルアミドなどの樹脂を外層被覆した構成が提案されていた。
【0003】
【発明が解決しようとする課題】
しかしながら、上記ケーブルについて本発明者が検討した結果、上述したソフトナイロンと呼ばれる樹脂は、車載用ケーブルの要求特性である、温度85℃、相対湿度85%という高温高湿条件下における長時間暴露において、加水分解による強度低下という問題を生じることが判明した。
【0004】
本発明者は、上記ソフトナイロンに代えてナイロン6−12共重合体を外層被覆に用いることで、上記問題が解決することを見出した。しかしながら、上記ナイロン6−12共重合体は、内層被覆として使用されているナイロン12と比較して硬度が低いものの、ケーブルをワイヤーハーネスに組み立てる際の取り扱いに関しては、柔軟性が不十分であった。
【0005】
外層被覆用の材料としては、ナイロン以外に塩化ビニル樹脂やポリオレフィン樹脂が挙げられる。しかしながら、塩化ビニル樹脂は環境問題の観点から歓迎されない。また、ポリオレフィン樹脂は燃焼性が強く、これに環境汚染の見地から塩素や臭素を含まない難燃剤を添加して難燃性を付与するには、水酸化マグネシウムなどの金属水酸化物を多量に用いる必要があり、このようにポリオレフィン樹脂に金属水酸化物を多量に添加すると、耐摩耗性や機械的強度が低下してしまうという問題があった。
【0006】
本発明の課題は、自動車内など厳しい環境下での使用に耐える特性を備えたケーブルを提供することにあり、具体的には、特に、高温高湿条件下に長時間暴露しても強度が低下せず、難燃性で耐摩耗性を備え、十分な柔軟性を有する被覆材料を構成し、プラスチック光ファイバケーブルを提供することにある。
【0007】
【課題を解決するための手段】
本発明は、少なくともポリアミド樹脂とマレイン化重合体とポリオレフィン樹脂と水酸化マグネシウムを構成成分とする被覆樹脂組成物で被覆されていることを特徴とするプラスチック光ファイバケーブルである。
【0008】
また、本発明のケーブルは、上記被覆樹脂組成物が、予めポリオレフィン樹脂に水酸化マグネシウムを分散混練したポリオレフィン樹脂コンパウンドと、ポリアミド樹脂と、マレイン化重合体とを混練してなることを好ましい態様として含む。
【0009】
【発明の実施の形態】
本発明のケーブルは、自動車内など厳しい環境下での使用に耐える、柔軟性、耐熱性、耐薬品性、耐湿熱性、難燃性、耐摩耗性に優れたプラスチック光ファイバケーブルであり、この様な総合特性を有するケーブルは全く新規である。
【0010】
本発明のケーブルは、外層被覆に少なくともポリアミド樹脂とマレイン化重合体とポリオレフィン樹脂と水酸化マグネシウムからなる特定の被覆樹脂組成物を用いたことにより、上記特性を得るに至った。以下に詳細に説明する。
【0011】
ポリオレフィン樹脂は耐薬品性に優れており、さらに、ポリアミド樹脂に比べて曲げ弾性率が低く、該ポリオレフィン樹脂をポリアミド樹脂に配合することで柔軟性が得られる。しかしながら、ポリオレフィン樹脂は上記したように燃焼性が高く、本発明においては、ポリオレフィン樹脂に難燃剤として水酸化マグネシウムを添加することでケーブルに難燃性を付与している。
【0012】
通常、水酸化マグネシウムはポリオレフィン樹脂に40〜70重量%と多量に添加しなければ難燃性効果が得られないが、この様に多量に水酸化マグネシウムを添加したポリオレフィン樹脂コンパウンドは耐摩耗性に劣るものとなってしまう。
【0013】
本発明においては、ポリオレフィン樹脂をポリアミド樹脂と混練することによって、耐摩耗性が著しく改善されている。その理由は、ポリオレフィン樹脂とポリアミド樹脂を構成成分とする本発明の被覆樹脂組成物においては、ポリオレフィン樹脂の周囲を耐摩耗性に優れたポリアミド樹脂が取り囲む構造をとっていることによるものと思われる。即ち、特に好ましい被覆樹脂組成物のミクロ構造形態は、ポリアミド樹脂の海とポリオレフィン樹脂の島を有する海島構造のアロイであると思われる。
【0014】
被覆樹脂組成物の難燃性を確保するために特に好ましくは、被覆樹脂組成物を構成する、上述のポリオレフィン樹脂成分とポリアミド樹脂成分がそれぞれ独立に難燃性を有していることにある。そのため、水酸化マグネシウムは主としてポリオレフィン樹脂に分散させる必要があるが、ポリアミド樹脂とポリオレフィン樹脂の共存下に水酸化マグネシウムをブレンドすると、水酸化マグネシウムはポリアミド樹脂により分散されやすい。従って、ポリオレフィン樹脂をポリアミド樹脂と混練する前に、予めポリオレフィン樹脂に水酸化マグネシウムを分散させてポリオレフィン樹脂コンパウンドを調整し、該ポリオレフィン樹脂コンパウンドをポリアミド樹脂と混練することが望ましい。
【0015】
水酸化マグネシウムを多量に含むポリオレフィン樹脂コンパウンドは、溶融時に流動性が低くなり、ポリアミド樹脂との混練においては、ポリアミド樹脂が海成分になり易く、ポリオレフィン樹脂コンパウンドが島成分となり易い。上記したように、ポリアミド樹脂は耐摩耗性に優れ、当該海島構造によって、ポリアミド樹脂の耐摩耗性が被覆樹脂組成物に反映されるため、当該傾向は本発明においてより効果的である。
【0016】
本発明において、水酸化マグネシウムは必須構成成分であり、ポリオレフィン樹脂コンパウンド中に40〜70重量%含まれていることが好ましく、望ましくは50〜70重量%である。尚、補助的な難燃剤として、別の水酸化金属化合物やリン化合物などを適宜添加することも可能であり、ポリオレフィン樹脂コンパウンドの酸素指数が好ましくは30以上、より好ましくは35以上となるように難燃剤を添加する。
【0017】
一方、ポリアミド樹脂も難燃剤を添加したポリアミド樹脂コンパウンドとして用いることが好ましく、ポリオレフィン樹脂コンパウンドと混練する前に、ポリアミド樹脂に難燃剤として予めメラミンシアヌレートを混練しておくことが好ましい。メラミンシアヌレートを添加する場合には、ポリアミド樹脂に対して1〜20重量%添加することが好ましく、より好ましくは5〜15重量%である。
【0018】
本発明に用いられるポリアミド樹脂としては、ナイロン12、ナイロン11、ナイロン6などの他、ナイロン6−12、ナイロン6−11などが好ましく用いられる。中でも、曲げ弾性率の低いナイロン6−12が特に好ましい。これらの樹脂は単独で用いても、複数を混合して用いても良い。尚、ポリアミド樹脂でも、前述したソフトナイロンと呼ばれるポリエーテルアミドやポリエーテルエステルアミドなどは、曲げ弾性率が低いものの、高温高湿条件下において加水分解による劣化があり、上記具体例ほど好ましくはない。
【0019】
本発明に用いられるポリオレフィン樹脂としては、ポリオレフィンエラストマー樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン−エチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、エチレン−αオレフィン共重合体、重合型TPOタイプのポリプロピレン樹脂、プロピレン−αオレフィン共重合体、エチレン−αオレフィン共重合体などがある。これらのポリオレフィン樹脂は単独で用いても、複数を混合して用いても良い。また、これらのポリオレフィン樹脂の1種類以上の他に、ポリオレフィン樹脂以外のエラストマーを含んでいてもかまわない。
【0020】
本発明に用いられるポリオレフィン樹脂成分は、柔軟性を付与するための成分であるため、その曲げ弾性率がポリアミド樹脂よりも低い50〜1000MPaであることが好ましく、特に、200〜600MPaであることが好ましい。
【0021】
ところで、ポリアミド樹脂とポリオレフィン樹脂の混練による樹脂相互の分散は不安定であるため、相溶化剤が必要である。本発明においては、マレイン化重合体を相溶化剤として用いる。本発明に用いるマレイン化重合体とは、例えばマレイン化ポリオレフィン樹脂やマレイン化水添ジエン系樹脂が好ましく用いられる。
【0022】
マレイン化ポリオレフィン樹脂としては、ポリプロピレンベースのものやポリエチレンベースのもの、或いは、エチレン/プロピレン共重合体ベースのものなどから選ぶことができる。これらマレイン化ポリオレフィン樹脂は、例えば三井化学社から商品名「アドマー」として販売されている。
【0023】
また、マレイン化水添ジエン系樹脂としては、マレイン化水添共役ジエン重合体、マレイン化水添芳香族ビニル/共役ジエンブロック或いはランダム共重合体などであり、具体的には、共役ジエンとしてはブタジエン、イソプレンが、芳香族ビニルとしてはスチレンやα−メチルスチレンが挙げられる。例えば、旭化成社より商品名「タフテックMシリーズ」で販売されている樹脂から選択することができる。
【0024】
本発明において、ポリアミド樹脂とポリオレフィン樹脂コンパウンドとマレイン化重合体の好ましい混合割合は、混合重量部をそれぞれA、P、Mとすると、P/Aは2/8〜8/2であり、M/(A+P)は2/95〜50/50である。尚、Pは、ポリオレフィン樹脂に水酸化マグネシウムを添加したポリオレフィン樹脂コンパウンドの混合重量部を示し、また、ポリアミド樹脂に難燃剤を分散させた場合には、上記Aは難燃剤を含むポリアミド樹脂コンパウンドの混合重量部を意味する。
【0025】
本発明のケーブルの好ましい実施形態としては、芯と鞘層からなるプラスチック光ファイバ裸線の上に、上述の本発明に係る被覆樹脂組成物からなる被覆層を一層設けた構成とすることができる。また、被覆材として従来使用されていた、ポリアミド樹脂、ポリオレフィイン樹脂、ポリオレフィンエラストマー樹脂、ポリ塩化ビニル樹脂、ビニリデンフロライド系樹脂、ポリウレタン樹脂、ポリエステルエラストマー樹脂などからなる内層被覆層と、本発明に係る被覆樹脂組成物からなる外層被覆層を有する多層被覆構造のケーブルとしても良い。図1に、該多層被覆構造のケーブルの一例の断面模式図を示す。図中、1は芯、2は鞘層、3はプラスチック光ファイバ裸線、4は内層被覆層、5は外層被覆層である。
【0026】
中でも、車載用ケーブルとして好ましい形態は、プラスチック光ファイバ裸線の上に、ナイロン12などの引っ張り弾性率や曲げ弾性率が1000〜1500MPaの強固なポリアミド樹脂を内層被覆し、その外側に曲げ弾性率がより低い本発明に係る被覆樹脂組成物を外層被覆し、ケーブルを柔軟に構成したものである。特に、本発明に係る被覆樹脂組成物からなる外層被覆層の内側に、ポリアミド樹脂からなる内層被覆層を配置することにより、プラスチック光ファイバ裸線と内層被覆層を一体としてコネクタに取り付けることが可能になるため、好ましいものである。
【0027】
本発明に用いられるプラスチック光ファイバ裸線は、芯とこれを取り囲む鞘層からなり、芯を構成する芯樹脂がポリメチルメタクリレート(PMMA)樹脂やポリカーボネート樹脂などの透明樹脂からなり、鞘層を構成する鞘樹脂は芯を構成する樹脂より屈折率の低いフッ素樹脂からなるものが好ましい。また、鞘層は1層でも2層以上の複層構成であっても良い。
【0028】
本発明のケーブル及び該ケーブルを構成する裸線の直径は、裸線の芯の直径が0.9〜1.0mm程度、裸線の外径が0.95〜1.1mm程度、ケーブルの外径が1.2〜4.0mm程度のものに好ましく適用される。尚、従来の車載用ケーブルは、裸線の外径が1.0mm、内層被覆層の外径が1.5mm、外層被覆層の外径が2.3mmである。
【0029】
【実施例】
ナトリウムD線における23℃の屈折率が1.492のPMMA樹脂を芯樹脂とし、屈折率が1.410のフッ化メタクリレート系樹脂を第1層目(内側)の鞘樹脂とし、ビニリデンフロライド40モル%とテトラフロロエチレン48モル%とヘキサフロロプロペン12モル%からなり屈折率が1.36で融点が155℃の共重合体を第2層目(外側)の鞘樹脂とした。複合紡糸により、芯の直径が0.96mm、第1鞘層の外径が0.98mm、第2鞘層の外径が1.0mmのプラスチック光ファイバ裸線を得た。
【0030】
得られた裸線の上に黒色ナイロン12を外径が1.5mmになるように被覆して内層被覆層とした。さらに、曲げ弾性率(ISO178にて規定される)800MPaのナイロン6−12共重合体で、内部にメラミンシアヌレートを10重量%含む樹脂を50重量部と、マレイン化水添芳香族ビニル/共役ジエンブロック共重合体(旭化成社製「タフテックM1943」)を10重量部と、ポリオレフィン樹脂コンパウンドとして、難燃ポリエチレンを40重量部とを二軸押出機で混練して被覆樹脂組成物を調整し、上記内層被覆層の外側に、外径2.3mmとなるように外層被覆し、ケーブルを得た。上記難燃ポリエチレンは、ポリエチレン−1ブテン共重合体40重量部と水酸化マグネシウム60重量部からなるコンパウンドで、酸素指数34であり、上記被覆樹脂組成物の曲げ弾性率は560MPaであった。
【0031】
得られたケーブルの曲げ易さを評価するために、ケーブルの曲げ強度を測定した。測定方法は、23℃で10cmの長さのケーブルを15mmのチャック間距離をおいて横たえ、チャック間の中央部のケーブルをへらで50mm/minの押し付け速度で押しつけ、初期のケーブルのたわみ(mm)に対する応力(N)で曲げ強度を求めた。その結果、本例のケーブルの曲げ強度は9N/mmであった。これは、従来使用されていた車載用プラスチック光ファイバケーブルの15N/mmよりはるかに柔軟であった。
【0032】
次に、本例のケーブルの難燃性を燃焼試験により評価した。燃焼試験は、ケーブルを45℃の傾斜に張った銅線に巻き付け、バーナーの炎を10秒間照射して行った。その結果、炎は15〜20秒の間に消えた。これは、車載用ケーブルとしての仕様である、自己消火性30秒以下という難燃性の条件を満たしている。
【0033】
次いで、本例のプラスチック光ファイバケーブルの摩耗試験を行った。試験方法は、DIN72551に準じた以下の方法で行った。繰り返し摩耗を行うへらの先端部に水平に溝を切って、直径0.256mmのステンレスワイヤの上半分が飛び出るように固定し、該へらに7Nの荷重をかけ、55rpmの周期で、プラスチック光ファイバケーブルの上を15mm往復運動を500回行った。その結果、外層被覆層は、図2に示す模式断面図のように摩耗し、その摩耗厚さ(t)は290μmであったが、内層被覆層まで及ぶことはなく、車載用プラスチック光ファイバケーブルとして使用に耐えることが判明した。尚、図2において、2aは第1鞘層、2bは第2鞘層であり、図1と同じ部材には同じ符号を付した。
【0034】
さらに、本例のケーブルの耐湿熱安定性を評価した。評価方法は、プラスチック光ファイバケーブルを温度85℃、相対湿度85%の環境下に3000時間放置した後の伝送損失を650nmの単色光で入射NA0.6で測定した。その結果、伝送損失は200dB/kmと安定していた。また、ケーブルの破断伸び率も90%と十分な性能を保持していた。
【0035】
【発明の効果】
以上説明したように、本発明によれば、高温高湿環境下でも長期間安定した強度を示し、難燃性や耐摩耗性に優れると同時に、ワイヤーハーネスに組み立てる際にも取り扱いが容易な優れた柔軟性を示すプラスチック光ファイバケーブルが提供される。
【図面の簡単な説明】
【図1】本発明のプラスチック光ファイバケーブルの一実施形態の断面模式図である。
【図2】本発明の実施例における耐摩耗性試験後のプラスチック光ファイバケーブルの断面模式図である。
【符号の説明】
1 芯
2 鞘層
2a 第1鞘層
2b 第2鞘層
3 プラスチック光ファイバ裸線
4 内層被覆層
5 外層被覆層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flexible plastic optical fiber cable suitable for use in an automobile or a factory.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an in-vehicle plastic optical fiber cable (hereinafter, referred to as “cable”) used in an automobile, a core is made of polymethyl methacrylate (PMMA) resin, and a sheath layer surrounding the core is made of fluororesin. There has been proposed a configuration in which nylon 12 is coated on the outside of the bare plastic optical fiber thus formed, and then a resin called soft nylon having low hardness, such as polyetheramide or polyetheresteramide, is coated on the outer layer.
[0003]
[Problems to be solved by the invention]
However, as a result of an examination by the present inventor of the above-mentioned cable, the above-mentioned resin called soft nylon shows that the resin required for a long-term exposure under the high temperature and high humidity conditions of 85 ° C. and 85% relative humidity, which are the required characteristics of an in-vehicle cable. It has been found that a problem of strength reduction due to hydrolysis occurs.
[0004]
The present inventor has found that the above problem can be solved by using a nylon 6-12 copolymer for the outer layer coating instead of the soft nylon. However, although the above nylon 6-12 copolymer has a lower hardness than nylon 12 used as an inner layer coating, it has insufficient flexibility in handling when assembling a cable into a wire harness. .
[0005]
Examples of the material for the outer layer coating include vinyl chloride resin and polyolefin resin in addition to nylon. However, vinyl chloride resins are not welcome from an environmental standpoint. In addition, polyolefin resin has strong flammability, and from the viewpoint of environmental pollution, in order to add flame retardant that does not contain chlorine or bromine to impart flame resistance, a large amount of metal hydroxide such as magnesium hydroxide must be used. It has to be used, and when a large amount of metal hydroxide is added to the polyolefin resin, there is a problem that the wear resistance and the mechanical strength are reduced.
[0006]
An object of the present invention is to provide a cable having characteristics that can withstand use in a severe environment such as in an automobile. Specifically, the cable has a strength even when exposed to high temperature and high humidity for a long time. An object of the present invention is to provide a plastic optical fiber cable, which comprises a coating material which does not decrease, has flame resistance and abrasion resistance and has sufficient flexibility.
[0007]
[Means for Solving the Problems]
The present invention is a plastic optical fiber cable characterized in that it is coated with a coating resin composition containing at least a polyamide resin, a maleated polymer, a polyolefin resin and magnesium hydroxide.
[0008]
In a preferred embodiment, the cable of the present invention is such that the coating resin composition is obtained by kneading a polyolefin resin compound in which magnesium hydroxide is dispersed and kneaded in advance with a polyolefin resin, a polyamide resin, and a maleated polymer. Including.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The cable of the present invention is a plastic optical fiber cable that withstands use under severe environments such as in automobiles, and has excellent flexibility, heat resistance, chemical resistance, moisture and heat resistance, flame retardancy, and abrasion resistance. Cables with excellent overall characteristics are completely new.
[0010]
The cable of the present invention achieves the above characteristics by using a specific coating resin composition comprising at least a polyamide resin, a maleated polymer, a polyolefin resin, and magnesium hydroxide for the outer layer coating. This will be described in detail below.
[0011]
The polyolefin resin is excellent in chemical resistance, and has a lower flexural modulus than the polyamide resin. By blending the polyolefin resin with the polyamide resin, flexibility can be obtained. However, the polyolefin resin has high flammability as described above, and in the present invention, the cable is provided with flame retardancy by adding magnesium hydroxide as a flame retardant to the polyolefin resin.
[0012]
In general, the flame retardant effect cannot be obtained unless magnesium hydroxide is added to the polyolefin resin in a large amount of 40 to 70% by weight. However, the polyolefin resin compound to which the magnesium hydroxide is added in such a large amount has a low abrasion resistance. It will be inferior.
[0013]
In the present invention, by kneading the polyolefin resin with the polyamide resin, the wear resistance is remarkably improved. It is considered that the reason is that the coating resin composition of the present invention containing a polyolefin resin and a polyamide resin as components has a structure in which a polyamide resin having excellent wear resistance surrounds the polyolefin resin. . That is, it is considered that a particularly preferred microstructure of the coating resin composition is a sea-island alloy having a sea of polyamide resin and islands of polyolefin resin.
[0014]
In order to secure the flame retardancy of the coating resin composition, it is particularly preferable that the above-mentioned polyolefin resin component and polyamide resin component constituting the coating resin composition have flame retardancy independently. Therefore, magnesium hydroxide needs to be mainly dispersed in the polyolefin resin. However, when magnesium hydroxide is blended in the presence of the polyamide resin and the polyolefin resin, the magnesium hydroxide is easily dispersed in the polyamide resin. Therefore, before kneading the polyolefin resin with the polyamide resin, it is desirable to disperse magnesium hydroxide in the polyolefin resin in advance to adjust the polyolefin resin compound, and to knead the polyolefin resin compound with the polyamide resin.
[0015]
A polyolefin resin compound containing a large amount of magnesium hydroxide has a low fluidity at the time of melting, and when kneaded with a polyamide resin, the polyamide resin tends to become a sea component and the polyolefin resin compound tends to become an island component. As described above, the polyamide resin is excellent in abrasion resistance, and the sea-island structure reflects the abrasion resistance of the polyamide resin in the coating resin composition. Therefore, the tendency is more effective in the present invention.
[0016]
In the present invention, magnesium hydroxide is an essential component, and is preferably contained in the polyolefin resin compound in an amount of 40 to 70% by weight, more preferably 50 to 70% by weight. As an auxiliary flame retardant, it is also possible to add another metal hydroxide compound or a phosphorus compound as appropriate, so that the oxygen index of the polyolefin resin compound is preferably 30 or more, more preferably 35 or more. Add flame retardant.
[0017]
On the other hand, the polyamide resin is also preferably used as a polyamide resin compound to which a flame retardant has been added. Before kneading with the polyolefin resin compound, it is preferable to knead the polyamide resin with melamine cyanurate as a flame retardant in advance. When melamine cyanurate is added, it is preferably added in an amount of 1 to 20% by weight, more preferably 5 to 15% by weight, based on the polyamide resin.
[0018]
As the polyamide resin used in the present invention, nylon 6-12, nylon 6-11, etc. are preferably used in addition to nylon 12, nylon 11, nylon 6, and the like. Among them, nylon 6-12 having a low flexural modulus is particularly preferable. These resins may be used alone or in combination of two or more. Incidentally, even in the case of the polyamide resin, polyetheramide or polyetheresteramide called soft nylon described above has a low flexural modulus, but is deteriorated by hydrolysis under high-temperature and high-humidity conditions, and is not preferable as in the above specific examples. .
[0019]
Examples of the polyolefin resin used in the present invention include a polyolefin elastomer resin, a polypropylene resin, a polyethylene resin, an ethylene-ethyl acrylate copolymer, an ethylene-vinyl acetate copolymer, an ethylene-α-olefin copolymer, and a polymerization type TPO type polypropylene. Resins, propylene-α olefin copolymers, ethylene-α olefin copolymers and the like. These polyolefin resins may be used alone or as a mixture of two or more. Further, in addition to one or more of these polyolefin resins, an elastomer other than the polyolefin resin may be contained.
[0020]
Since the polyolefin resin component used in the present invention is a component for imparting flexibility, its flexural modulus is preferably 50 to 1000 MPa lower than that of the polyamide resin, and particularly preferably 200 to 600 MPa. preferable.
[0021]
By the way, since the dispersion between the resins by kneading the polyamide resin and the polyolefin resin is unstable, a compatibilizer is required. In the present invention, a maleated polymer is used as a compatibilizer. As the maleated polymer used in the present invention, for example, a maleated polyolefin resin or a maleated hydrogenated diene resin is preferably used.
[0022]
The maleated polyolefin resin can be selected from a polypropylene-based resin, a polyethylene-based resin, and an ethylene / propylene copolymer-based resin. These maleated polyolefin resins are sold, for example, by Mitsui Chemicals, Inc. under the trade name “Admer”.
[0023]
Examples of the maleated hydrogenated diene-based resin include a maleated hydrogenated conjugated diene polymer, a maleated hydrogenated aromatic vinyl / conjugated diene block, and a random copolymer. Butadiene and isoprene include styrene and α-methylstyrene as aromatic vinyl. For example, the resin can be selected from resins sold by Asahi Kasei Corporation under the trade name “ToughTech M Series”.
[0024]
In the present invention, a preferable mixing ratio of the polyamide resin, the polyolefin resin compound, and the maleated polymer is as follows: P / A is 2/8 to 8/2, where A, P, and M are mixed parts by weight, respectively. (A + P) is 2/95 to 50/50. In addition, P indicates a mixed part by weight of a polyolefin resin compound in which magnesium hydroxide is added to a polyolefin resin, and when a flame retardant is dispersed in a polyamide resin, the above A is a polyamide resin compound containing a flame retardant. Means mixed parts by weight.
[0025]
As a preferred embodiment of the cable of the present invention, it is possible to adopt a configuration in which a coating layer made of the above-mentioned coating resin composition according to the present invention is provided on a bare plastic optical fiber consisting of a core and a sheath layer. . Further, the present invention relates to an inner coating layer comprising a polyamide resin, a polyolefin resin, a polyolefin elastomer resin, a polyvinyl chloride resin, a vinylidene fluoride resin, a polyurethane resin, a polyester elastomer resin, etc., which have been conventionally used as a coating material. And a cable having a multilayer coating structure having an outer coating layer made of the coating resin composition according to the above. FIG. 1 shows a schematic cross-sectional view of an example of the cable having the multilayer coating structure. In the figure, 1 is a core, 2 is a sheath layer, 3 is a bare plastic optical fiber, 4 is an inner coating layer, and 5 is an outer coating layer.
[0026]
Above all, a preferred form as a cable for a vehicle is a plastic optical fiber bare wire coated with a strong polyamide resin having a tensile modulus and a flexural modulus of 1000 to 1500 MPa such as nylon 12 and an outer layer having a flexural modulus of elasticity. The outer layer is coated with the coating resin composition according to the present invention, which has a lower value, and the cable is flexibly configured. In particular, by disposing an inner coating layer made of a polyamide resin inside the outer coating layer made of the coating resin composition according to the present invention, the bare plastic optical fiber and the inner coating layer can be integrally attached to the connector. Is preferable.
[0027]
The bare plastic optical fiber used in the present invention comprises a core and a sheath layer surrounding the core, and the core resin constituting the core comprises a transparent resin such as polymethyl methacrylate (PMMA) resin or polycarbonate resin, and constitutes the sheath layer. Preferably, the sheath resin is made of a fluororesin having a lower refractive index than the resin constituting the core. Further, the sheath layer may have a single layer structure or a multilayer structure of two or more layers.
[0028]
The cable of the present invention and the diameter of the bare wire constituting the cable are as follows: the diameter of the core of the bare wire is about 0.9 to 1.0 mm; the outer diameter of the bare wire is about 0.95 to 1.1 mm; It is preferably applied to those having a diameter of about 1.2 to 4.0 mm. In a conventional vehicle cable, the outer diameter of the bare wire is 1.0 mm, the outer diameter of the inner coating layer is 1.5 mm, and the outer diameter of the outer coating layer is 2.3 mm.
[0029]
【Example】
A PMMA resin having a refractive index of 1.492 at 23 ° C. at a sodium D line was used as a core resin, a fluorinated methacrylate resin having a refractive index of 1.410 was used as a sheath resin of the first layer (inside), and vinylidene fluoride 40 was used. A copolymer composed of mol%, 48 mol% of tetrafluoroethylene and 12 mol% of hexafluoropropene and having a refractive index of 1.36 and a melting point of 155 ° C. was used as a sheath resin for the second layer (outside). By composite spinning, a plastic optical fiber bare wire having a core diameter of 0.96 mm, an outer diameter of the first sheath layer of 0.98 mm, and an outer diameter of the second sheath layer of 1.0 mm was obtained.
[0030]
The obtained bare wire was coated with black nylon 12 so as to have an outer diameter of 1.5 mm to form an inner coating layer. Further, 50 parts by weight of a resin containing 10% by weight of melamine cyanurate in a nylon 6-12 copolymer having a flexural modulus of 800 MPa (defined by ISO 178), and maleated hydrogenated aromatic vinyl / conjugated A coating resin composition was prepared by kneading 10 parts by weight of a diene block copolymer ("ToughTech M1943" manufactured by Asahi Kasei Corporation) and 40 parts by weight of flame-retardant polyethylene as a polyolefin resin compound using a twin-screw extruder. An outer layer was coated on the outer side of the inner layer so as to have an outer diameter of 2.3 mm to obtain a cable. The flame-retardant polyethylene was a compound comprising 40 parts by weight of a polyethylene-1 butene copolymer and 60 parts by weight of magnesium hydroxide, had an oxygen index of 34, and had a flexural modulus of the coated resin composition of 560 MPa.
[0031]
In order to evaluate the ease of bending of the obtained cable, the bending strength of the cable was measured. The measuring method is as follows. A cable having a length of 10 cm is laid at a temperature of 23 ° C. with a distance of 15 mm between the chucks, the cable at the center between the chucks is pressed with a spatula at a pressing speed of 50 mm / min, and the initial cable deflection (mm ) Was used to determine the bending strength. As a result, the bending strength of the cable of this example was 9 N / mm. This was much more flexible than the 15 N / mm of the conventionally used in-vehicle plastic optical fiber cable.
[0032]
Next, the flame resistance of the cable of this example was evaluated by a combustion test. The combustion test was performed by wrapping a cable around a copper wire inclined at 45 ° C. and irradiating a burner flame for 10 seconds. As a result, the flame went out between 15 and 20 seconds. This satisfies the flame-retardant condition of 30 seconds or less for self-extinguishing property, which is a specification for a vehicle-mounted cable.
[0033]
Next, a wear test of the plastic optical fiber cable of this example was performed. The test was carried out according to the following method according to DIN72551. A horizontal groove is cut at the tip of the spatula that repeatedly wears, and the upper half of a stainless steel wire having a diameter of 0.256 mm is fixed so that it protrudes. A 7N load is applied to the spatula, and the plastic optical fiber is cycled at 55 rpm. A 15 mm reciprocating motion was performed 500 times on the cable. As a result, the outer coating layer was worn as shown in the schematic cross-sectional view of FIG. 2, and the wear thickness (t) was 290 μm. However, the outer coating layer did not reach the inner coating layer. It turned out to withstand use. In FIG. 2, 2a is a first sheath layer, 2b is a second sheath layer, and the same members as those in FIG.
[0034]
Furthermore, the moisture and heat resistance of the cable of this example was evaluated. The evaluation method was as follows. After leaving the plastic optical fiber cable in an environment of a temperature of 85 ° C. and a relative humidity of 85% for 3000 hours, the transmission loss was measured with monochromatic light of 650 nm at an incident NA of 0.6. As a result, the transmission loss was stable at 200 dB / km. In addition, the elongation at break of the cable was 90%, which was sufficient performance.
[0035]
【The invention's effect】
As described above, according to the present invention, it exhibits a long-term stable strength even in a high-temperature and high-humidity environment, has excellent flame retardancy and abrasion resistance, and is easy to handle even when assembled into a wire harness. A plastic optical fiber cable is provided that exhibits improved flexibility.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of one embodiment of a plastic optical fiber cable of the present invention.
FIG. 2 is a schematic cross-sectional view of a plastic optical fiber cable after a wear resistance test in an example of the present invention.
[Explanation of symbols]
Reference Signs List 1 core 2 sheath layer 2a first sheath layer 2b second sheath layer 3 plastic optical fiber bare wire 4 inner coating layer 5 outer coating layer

Claims (2)

少なくともポリアミド樹脂とマレイン化重合体とポリオレフィン樹脂と水酸化マグネシウムを構成成分とする被覆樹脂組成物で被覆されていることを特徴とするプラスチック光ファイバケーブル。A plastic optical fiber cable which is coated with a coating resin composition containing at least a polyamide resin, a maleated polymer, a polyolefin resin and magnesium hydroxide. 上記被覆樹脂組成物が、予めポリオレフィン樹脂に水酸化マグネシウムを分散混練したポリオレフィン樹脂コンパウンドと、ポリアミド樹脂と、マレイン化重合体とを混練してなる請求項1に記載のプラスチック光ファイバケーブル。The plastic optical fiber cable according to claim 1, wherein the coating resin composition is obtained by kneading a polyolefin resin compound in which magnesium hydroxide is dispersed and kneaded in a polyolefin resin in advance, a polyamide resin, and a maleated polymer.
JP2002207761A 2002-07-17 2002-07-17 Plastic optical fiber cable and manufacturing method thereof Expired - Fee Related JP4121795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207761A JP4121795B2 (en) 2002-07-17 2002-07-17 Plastic optical fiber cable and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207761A JP4121795B2 (en) 2002-07-17 2002-07-17 Plastic optical fiber cable and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004053707A true JP2004053707A (en) 2004-02-19
JP4121795B2 JP4121795B2 (en) 2008-07-23

Family

ID=31932087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207761A Expired - Fee Related JP4121795B2 (en) 2002-07-17 2002-07-17 Plastic optical fiber cable and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4121795B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249111A (en) * 2006-03-20 2007-09-27 Asahi Kasei Electronics Co Ltd Flexible plastic optical fiber cable
JP2009075143A (en) * 2007-09-18 2009-04-09 Asahi Kasei Electronics Co Ltd Optical transmission module
JP2010044334A (en) * 2008-08-18 2010-02-25 Asahi Kasei E-Materials Corp Electronic device and method of optical connection
JP2014215579A (en) * 2013-04-30 2014-11-17 旭化成イーマテリアルズ株式会社 Plastic optical fiber cable
KR101878406B1 (en) * 2013-12-20 2018-07-13 콘티넨탈 테베스 아게 운트 코. 오하게 Hybrid cable, method for producing same and use of such a hybrid cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249111A (en) * 2006-03-20 2007-09-27 Asahi Kasei Electronics Co Ltd Flexible plastic optical fiber cable
JP2009075143A (en) * 2007-09-18 2009-04-09 Asahi Kasei Electronics Co Ltd Optical transmission module
JP2010044334A (en) * 2008-08-18 2010-02-25 Asahi Kasei E-Materials Corp Electronic device and method of optical connection
JP2014215579A (en) * 2013-04-30 2014-11-17 旭化成イーマテリアルズ株式会社 Plastic optical fiber cable
KR101878406B1 (en) * 2013-12-20 2018-07-13 콘티넨탈 테베스 아게 운트 코. 오하게 Hybrid cable, method for producing same and use of such a hybrid cable
US10115498B2 (en) 2013-12-20 2018-10-30 Leoni Kabel Holding Gmbh Hybrid cable, method for its manufacture and use of such a hybrid cable

Also Published As

Publication number Publication date
JP4121795B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US7760977B2 (en) Fiber-optic cable
US7346257B2 (en) Buffer tubes with improved flexibility
JP4195307B2 (en) Flame retardant optical fiber coating material and flame retardant optical fiber cable
JP2008197644A (en) Slotted core with improved fire properties
MXPA05004598A (en) Resin composition for coating electric wire and electric wire using the same.
JP2004053707A (en) Plastic optical fiber cable
ES2292671T3 (en) ELECTRICALLY CONDUCTING MULTI-PIPE HOSE.
CA2323254A1 (en) Electrical cable
US7031582B2 (en) Optical fiber cable and optical fiber cable with plug
US6421486B1 (en) Extruded buffer tubes comprising polyolefin resin based color concentrates for use in fiber optic cables
US20150380127A1 (en) Insulating composition and coated electric wire using the same
JP2009161703A (en) Polyolefinic resin composition and covered electric wire
JPH06102442A (en) Heat resistant and flame retarding plastic optical fiber cord
JP5095328B2 (en) Optical transmission module
JP4044799B2 (en) Plastic optical fiber primary coated wire and plastic optical fiber cable using the same
JP2003315638A (en) Optical fiber cable and optical fiber cable with plug
JP2002214491A (en) Flame resistant optical fiber cable slot
JP3892125B2 (en) Flame retardant plastic optical fiber cable
JP3179042B2 (en) Rubber cabtire cable
JP4043957B2 (en) Optical fiber cable and optical fiber cable with plug
JPH11237513A (en) Heat resistant multi-core plastic optical fiber for optical signal transmission and cable
JPH0511151A (en) Plastic optical fiber cord
JPH05249352A (en) Plastic optical fiber cord
JP2000030537A (en) Wire and cable
JP2003322776A (en) Optical fiber cable and optical fiber cable with plug

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4121795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees