JP2004053496A - Magnetic material bent part rupture inspection method and inspection device - Google Patents

Magnetic material bent part rupture inspection method and inspection device Download PDF

Info

Publication number
JP2004053496A
JP2004053496A JP2002213357A JP2002213357A JP2004053496A JP 2004053496 A JP2004053496 A JP 2004053496A JP 2002213357 A JP2002213357 A JP 2002213357A JP 2002213357 A JP2002213357 A JP 2002213357A JP 2004053496 A JP2004053496 A JP 2004053496A
Authority
JP
Japan
Prior art keywords
magnetic material
detection
excitation
detection head
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002213357A
Other languages
Japanese (ja)
Other versions
JP4031958B2 (en
Inventor
Masashi Mori
森 雅司
Kazuhiro Kuzume
葛目 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KENSETSU GIJUTSU KENKY
KOKUSAI KENSETSU GIJUTSU KENKYUSHO KK
Non Destructive Inspection Co Ltd
Original Assignee
KOKUSAI KENSETSU GIJUTSU KENKY
KOKUSAI KENSETSU GIJUTSU KENKYUSHO KK
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KENSETSU GIJUTSU KENKY, KOKUSAI KENSETSU GIJUTSU KENKYUSHO KK, Non Destructive Inspection Co Ltd filed Critical KOKUSAI KENSETSU GIJUTSU KENKY
Priority to JP2002213357A priority Critical patent/JP4031958B2/en
Publication of JP2004053496A publication Critical patent/JP2004053496A/en
Application granted granted Critical
Publication of JP4031958B2 publication Critical patent/JP4031958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic material bent part rupture inspection method and a magnetic material bent part rupture inspection device capable of detecting rupture at a bent part of a magnetic material at low cost by a nondestructive procedure. <P>SOLUTION: The rupture at the bent part Sc of a long cylindrical magnetic material S2 covered with a covering body C is inspected. A detection head 10 for detecting a magnetic flux change caused by excitation of an excitation core is provided near a pair of ends 11a, 11b of the excitation core. The pair of ends 11a, 11b of the excitation core are oriented along the longitudinal direction of the magnetic material, and the excitation core is excited and simultaneously moved in the far-and-near direction relative to the bent part Sc together with the detection head 10. The rupture is inspected from a detection result of the magnetic flux change by using the detection head 10 near the bent part Sc caused by the movement. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁性材料屈曲部破断検査方法及び磁性材料屈曲部破断検査装置に関するものである。さらに詳しくは、コンクリート等の被覆体に覆われた鉄筋等の棒状磁性材料の屈曲部における破断を検査するための磁性材料屈曲部破断検査方法及び検査装置に関する。
【0002】
【従来の技術】
鉄筋コンクリートの角部や鉄筋の屈曲部は、応力が集中しやすく、破断が起こりやすい。しかし、かかる屈曲部における破損を検出するための非破壊的検査手法は確立されていなかった。
【0003】
【発明が解決しようとする課題】
本発明は、従来の実状に鑑みて、非破壊的手法により安価で磁性材料の屈曲部における破断を検出することの可能な磁性材料屈曲部破断検査方法及び磁性材料屈曲部破断検査装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る磁性材料屈曲部破断検査方法の特徴は、被覆体に覆われた棒状磁性材料の屈曲部における破断を検査するための方法であって、励磁コアにおける一対の端部近傍にこの励磁コアの励磁による磁束の変化を検出する検出ヘッドを設け、前記磁性材料の長手方向に沿って前記励磁コアの一対の端部を配向し、前記励磁コアを励磁しながら前記検出ヘッドと共に前記屈曲部に対し遠近移動させることによる前記屈曲部近傍での前記検出ヘッドを用いた磁束変化の検出結果により前記破断を検査することにある。
【0005】
上記検査方法は、前記棒状磁性材料が鉄筋であり、前記被覆体がコンクリートである場合に有効である。
【0006】
また、上記検査方法において、鉄筋コンクリート構造体の平面部から角部に向かって前記検出ヘッドを移動させ検査を行ってもよい。
【0007】
さらに、前記励磁コアを有する前記検出ヘッドの一対を連結し、一方の検出ヘッドを帯筋上に配置し、両ヘッドから得られる信号の差分を求めるようにしてもよい。
【0008】
本発明に係る磁性材料屈曲部検査装置の特徴は、上記いずれかの検査方法を実施することができる装置であって、励磁コアにおける一対の端部近傍にこの励磁コアの励磁による磁束の変化を検出する検出ヘッドを設け、前記一対の端部と前記棒状磁性材料との相対関係がこれら一対の端部間で異なることによる磁束変化を前記検出ヘッドにより検出することにある。
【0009】
また、前記検出ヘッドと前記一対の端部との相対的関係を調整する検出ヘッド位置調整具を有するようにしてもよい。
【0010】
なお、上記各例において、検出ヘッドは単一の検出コイルを有していることが望ましい。
【0011】
【発明の効果】
このように、上記本発明に係る特徴によれば、被覆体に覆われている場合であっても、磁性材料の屈曲部における破断を非破壊的手法により安価に検出することの可能な磁性材料屈曲部破断検査方法及び磁性材料屈曲部破断検査装置を提供することが可能となった。
【0012】
本発明のその他の目的、構成及び効果については、以下に示す実施形態の項で明らかになるであろう。
【0013】
【発明の実施の形態】
次に、添付図面を参照しながら、本発明をさらに詳しく説明する。
図1〜8を参照しながら、本発明の第一実施形態について説明する。以下に示す実施形態では、検査対象として、道路橋の橋脚等を構成する鉄筋コンクリート構造体Hを例にとって説明する。
【0014】
図1に示すように、試験体である鉄筋コンクリート構造体H表面に沿って検査を行う検出ヘッド10は、鉄筋S2を励磁させるための磁束を発生する励磁コア11及び励磁コイル12と、磁束の変化を検出するための検出コア13及び検出コイル14とを備えている。本実施形態では、励磁コア11として略コ字型のものを使用し、この励磁コア11の両端部11a、11bの間に励磁コア11及び励磁コイル12を位置させてある。
【0015】
励磁コア11と検出コア13及び検出コイル14は、図2に示すようにスペーサー15を介して連結してある。そして、励磁コア11の両端部11a、11bには位置調整用プレート16を設けてあり、この調整用プレート16及びスペーサー15から構成される位置調整具17により、励磁コア11と検出コア13及び検出コイル14との相対位置を調整可能にしてある。検査にあたっては、検出コイルが平衡状態となるように位置調整具17により両者の位置関係を調整する。具体的には、検出ヘッド10を開放し、励磁コイルに正弦波を加えた場合に、検出コイルで検出する検出波の振幅が零となるように位置調整用プレート16の数を二カ所で調整すればよい。
【0016】
図3に本発明に係る検査装置1のブロック図を示す。この検査装置1は、発振器2により生成され、パワーアンプ3にて増幅された交流電流が励磁コイル12に印加され、磁束を発生する。一方、検出コイル14により捉えた磁束変化は、検出コイル14に接続されているアンプ5により増幅された後、フィルター6によりノイズが除去される。そして、ロックインアンプ7にて同期検波を行うと共に、検出波形を互いに直交するX、Y成分に分解することでリサージュが得られ、そのリサージュを表示器8にて表示する。
【0017】
図4に検査対象の一例である鉄筋コンクリート構造体Hと検出ヘッド10の関係を示す。本実施形態における検査対象である鉄筋コンクリート構造体Hは、主筋S1及び帯筋S2よりなる鉄筋構造体にコンクリートCを充填・被覆してなる。棒状磁性材料の一例であるこの帯筋S2は、鉄筋コンクリート構造体Hの角部近傍において屈曲してあり、その屈曲部Scには応力が集中しやすく、他の箇所に比べ破断しやすい。本実施形態では、この帯金S2の屈曲部Scの検査を主として行う。
【0018】
検査手順としては、図4の符合10aに示すように、鉄筋コンクリート構造体Hの上面に検出ヘッド10を配置し、鉄筋コンクリート構造体の平面部側から角部側に向かって検出ヘッド10を走行させる場合と、符合10bに示すように、鉄筋コンクリート構造体Hの側面に検出ヘッド10を配置し、下側から上側に向かって検出ヘッド10を走行させる場合とがある。実際の検査にあっては、これら符合10a、10bで示す態様の一方のみを実施するだけでもよいが、これら双方を併用してもよい。また、検出ヘッド10の走行方向として、鉄筋コンクリート構造体Hの角部に近づける場合のみならず、角部から遠ざかる向きであってもよい。
【0019】
発明者らは、本発明に係る検査装置及び検査方法の有用性を検証するため、図5に示す健全鉄筋S2の上部に被覆体としてアクリル板C’を配置した場合と、図6に示す破断鉄筋S2の上部に被覆体としてアクリル板C’を配置した場合の各々について実験を行った。一般に、コイルが平衡状態にある場合にはリサージュを描かずX−Y座標原点付近において点として表示されるのに対し、コイルが不平衡状態にあるときは曲線(リサージュ)を描くことから、本実施形態ではリサージュを表示させることにより、検査波形から屈曲部Scの影響をうけたデータを評価することとする。
【0020】
図7、8は上記実験の結果得られたリサージュのうち、帯筋S2の屈曲部Scの影響を受けた磁束を検出した際に表示器8に表示されるリサージュを描いたものである。ここで、図7はアクリル板のかぶり厚Tが20mmの場合に、図8はアクリル板のかぶり厚Tが30mmの場合のリサージュである。両図において、符合faで示すリサージュは健全鉄筋を採用した場合に、符合fbで示すリサージュは破断鉄筋を採用した場合に得られるリサージュである。これら両図より、健全鉄筋の場合と破断鉄筋の場合とでは、リサージュの形状に相違のあることが確かめられた。
【0021】
これらの差を考察するに、図5の健全鉄筋では、コアの一端11bがより解放側へ移動しても、符号Mに示す磁束の磁力線は帯筋S2を通過するので、不平衡出力が維持される。これに対し、図6に示す破断鉄筋では、破断部Dから漏れ磁束を生じるので、不平衡出力も一端11bが大幅に解放されないうちに消失することとなる。リサージュの差はこれら不平衡出力の性質の差によるものと考えられる。
【0022】
次に、図9、10を参照しながら、本発明の第二実施形態について説明する。なお、以下の実施形態において、上記実施形態と同様の部材等には同様の符号を付してある。
【0023】
図9に示すように、本実施形態は、検出コア21及び検出コイル22を略コ字状の誘磁コア11の端部外周面に巻き付けてある点で上記実施形態と異なる。本実施形態では、検出コイル22の直径を誘磁コア11の隙間の間隔よりも長くできる。よって、空間的な検出領域が拡大し、検出感度も向上して、よりかぶり厚さの大きな試験体に対処することができる。
【0024】
図9、10に示すように、誘導コア11の両端部11a、11bと検出コア21とは、スペーサー23を介して連結してある。さらに、このスペーサー23の外周面側に検出コア22が連結され、その検出コア22の外周面に沿って検出コア22が巻き付けられる。また、上記実施形態と同様にして、検出コア21とスペーサー23とで検出コイルの位置調整具24を構成してあり、検査にあたり、上記第一実施形態と同様、この位置調整具24により検出コイル23の出力が平衡状態となるように相対位置を調整する。
【0025】
次に、図11〜13を参照しながら、本発明の第三実施形態について説明する。本実施形態では、検出ヘッド30に対して2つの検出コイル31、32を備えている点が異なる。本実施形態は、図11に示すように、誘磁コア11の両端部11a、11bのそれぞれにおいて、第一検出コイル31、第二検出コイル32を備え、これら第一、第二コイル31、32の不平衡を検出することにより、帯鉄筋32の破断部Dを検出するものである。
【0026】
図12は、これら第一、第二検出コイル31、32により構成されるブリッジ回路37を示す。このブリッジ回路37は、第一、第二検出コイル31、32と可変抵抗器33、34と、検出器35及び交流電源36を備える。検査にあたり、この可変抵抗器33、34を適宜調整することにより、励磁コア11の解放状態で、出力が発生しないように調整する。その一方で、試験体の角部Scからの磁束を捉えた場合には、このブリッジ37のバランス(平衡)が崩れ、インピーダンス変化に応じた電圧が検出器35からアンプ5に出力され、出力信号の性状により破断部Dが検出される。
【0027】
図13は、本実施形態の有用性を確かめるために発明者らが行った実験によって得られた検出波形を描いたものであり、同図(a)は健全鉄筋を、同図(b)は破断鉄筋をテストピースとした場合の検出波形である。実験にあたっては、図11に示すように、帯筋S2の上部に厚さ50mmのアクリル板C’を配置し、その上面に検出ヘッド30を帯節S2の屈曲部Scに向かって走査させた。
【0028】
同図(a)、(b)の検出波形を比較すると、健全鉄筋の場合の検査波形の最大振幅P1(端部信号)のほうが破断鉄筋の最大振幅P2に比べて大きいことがわかる。よって、検出波形の最大振幅値P1、P2から鉄筋の破断を検出可能であることが確かめられた。また、主筋S1の存在にも関わらず、帯筋S2における破断部Dの検出が可能であることも確かめられた。
【0029】
次に、図14〜16を参照しながら、本発明の第四実施形態について説明する。本実施形態では、図9に示す第二実施形態の検出ヘッド20を図14に示すように一対20a,20b利用し、これらを25で連結している。図9の検出ヘッド20の右側面図が図14の符号20a,20bで示されており、図9の端部11a,11bが一対の検出ヘッド20a,20b間で平行となるようにこれらが配置され、樹脂等により形成された連結板25に固定される。
【0030】
一対の20a,20bはHの表面を図14手前側に移動し、Scを検査する。一方の第一検出ヘッド20aは帯筋S2に沿って移動することで、主筋S1と帯筋S2との双方の信号を検出する。一方、他の第二検出ヘッド20bは、主筋S1の信号のみを検出する。図15の1には、一対の検出コイル22a,22bに対し、アンプ5,フィルター6,ロックインアンプ7がそれぞれ一対ずつ並列に設けられ、検出コイル22a,22bの差分が表示器8に表示される。これにより、主筋S1の影響を除去した帯筋S2のみの差分信号により、破断部Dの有無をより精度良く検出することが可能となる。
【0031】
図16に図7,8と同趣旨の検査結果を示す。図16(a)は健全部の第一検出ヘッド20aによる検出波形、(b)は主筋のみの第二検出ヘッド20bによる検出波形、(c)は(a)(b)の差分である。一方、図16(d)は破断部の第一検出ヘッド20aによる検出波形、(e)は主筋のみの第二検出ヘッド20bによる検出波形、(f)は(d)(e)の差分である。図16(c)(f)の比較により、健全部と破断部との特徴波形を容易に識別可能であることが明らかとなった。
【0032】
最後に、本発明のさらなる実施形態の可能性について言及する。もちろん、上記各実施形態及び以下の各実施形態を相互に組み合わせて実施することは可能である。
【0033】
上記各実施形態では、検査対象として鉄筋コンクリート構造体を用いた。しかし、被覆体としては必ずしも合成樹脂やコンクリートに限らず、磁束が透過可能なものであればよい。また、棒状磁性材料も鉄筋に限られるものではない。
【0034】
上記各実施形態では、帯鉄筋の屈曲部における破断を検出する場合について説明したが、同時に鉄筋の平面部における破断を検出することもできる。
【0035】
上記各実施形態では、検出ヘッド10、20、30に検出コア13、21と検出コイル14、22、31、32とを用いた。しかし、この検出ヘッドとしては、例えばホール素子等の磁気検出素子を用いることができる。但し、磁気検出面の面積を拡大しやすくて深いかぶり厚に対応可能な点では、コイルを用いた構成の方が優れている。
【0036】
励磁コア11の形状は少なくとも同側に面した一対の端部を有すればよい。その他の形状に関しては種々の改変が可能である。
【0037】
なお、特許請求の範囲の項に記入した符号は、あくまでも図面との対照を便利にするためのものにすぎず、該記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】本発明の第一実施形態における検出ヘッドの破断断面図である。
【図2】図1のA−A断面図である。
【図3】検査装置のブロック図である。
【図4】鉄筋の破断部と検出ヘッドの関係を示す断面図である。
【図5】健全鉄筋の検査時における磁束経路を示す図である。
【図6】破断鉄筋の検査時における磁束経路を示す図である。
【図7】アクリル板のかぶり厚T=20mmでの鉄筋検査時におけるリサージュである。
【図8】アクリル板のかぶり厚T=30mmでの鉄筋検査時におけるリサージュである。
【図9】本発明の第二実施形態における検出ヘッドの破断断面図である。
【図10】本発明の第二実施形態における検出ヘッドの平面図である。
【図11】本発明の第三実施形態における検出ヘッドと鉄筋の損傷部との関係を示す図である。
【図12】ブリッジ回路を示す図である。
【図13】検出波形を示す図であり、(a)は健全鉄筋の場合、(b)は破断鉄筋の場合にそれぞれ相当する図である。
【図14】本発明の第四実施形態における検出ヘッドと鉄筋の損傷部との関係を示す図である。
【図15】図14の検査装置のブロック図である。
【図16】検出波形を示す図であり、(a)は健全部の第一検出ヘッドによる検出波形、(b)は主筋のみの第二検出ヘッドによる検出波形、(c)は(a)(b)の差分、(d)は破断部の第一検出ヘッドによる検出波形、(e)は主筋のみの第二検出ヘッドによる検出波形、(f)は(d)(e)の差分である。
【符号の説明】
1:鉄筋破断検査装置、2:発振器、3:パワーアンプ、5:アンプ、6:フィルター、7:ロックインアンプ、8:表示器、10:検出ヘッド、11:励磁コア、11a、11b:端部、12:励磁コイル、13:検出コア、14:検出コイル、15:スペーサー、16:位置調整用プレート、17:位置調整具、20:検出ヘッド、20a:第一検出ヘッド、20b:第二検出ヘッド、21:検出コア、22,22a,22b:検出コイル、23:スペーサー、24:位置調整具、25:連結板、30:検出ヘッド、31、32:検出コイル、33、34:可変抵抗器、35:検出器、36:交流電源、37:ブリッジ回路、C:コンクリート(被覆体)、C’:アクリル板、D:破断部、H:鉄筋コンクリート構造体、S1:主筋、S2:帯筋、Sc:屈曲部、T:かぶり厚、M:磁力線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic material bending portion fracture inspection method and a magnetic material bending portion fracture inspection device. More specifically, the present invention relates to a magnetic material bent portion fracture inspection method and an inspection device for inspecting a fracture in a bent portion of a rod-shaped magnetic material such as a reinforcing bar covered with a covering body such as concrete.
[0002]
[Prior art]
At the corners of the reinforced concrete and at the bent portions of the reinforcing bars, stress tends to concentrate and fractures are likely to occur. However, a nondestructive inspection method for detecting breakage in such a bent portion has not been established.
[0003]
[Problems to be solved by the invention]
The present invention provides a magnetic material bending portion fracture inspection method and a magnetic material bending portion fracture inspection device capable of detecting a fracture at a bending portion of a magnetic material at low cost by a nondestructive technique in view of the conventional situation. It is in.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the feature of the magnetic material bending portion fracture inspection method according to the present invention is a method for inspecting a fracture in a bending portion of a rod-shaped magnetic material covered with a coating, and includes a pair of excitation cores. A detection head for detecting a change in magnetic flux due to excitation of the excitation core is provided near an end of the excitation core, a pair of ends of the excitation core are oriented along a longitudinal direction of the magnetic material, and the excitation core is excited. It is an object of the present invention to inspect the breakage based on a detection result of a magnetic flux change using the detection head in the vicinity of the bent portion caused by moving the magnetic head together with the detection head with respect to the bent portion.
[0005]
The above inspection method is effective when the rod-shaped magnetic material is a reinforcing bar and the coating is concrete.
[0006]
In the above-described inspection method, the inspection may be performed by moving the detection head from a plane portion to a corner portion of the reinforced concrete structure.
[0007]
Further, a pair of the detection heads having the excitation cores may be connected to each other, one of the detection heads may be arranged on a stirrup, and a difference between signals obtained from both heads may be obtained.
[0008]
A feature of the magnetic material bending portion inspection apparatus according to the present invention is an apparatus capable of performing any one of the inspection methods described above, wherein a change in magnetic flux due to excitation of the excitation core is provided near a pair of ends of the excitation core. It is another object of the present invention to provide a detection head for detecting a magnetic flux change caused by a relative relationship between the pair of ends and the rod-shaped magnetic material being different between the pair of ends.
[0009]
Further, a detection head position adjuster for adjusting a relative relationship between the detection head and the pair of end portions may be provided.
[0010]
In each of the above examples, it is preferable that the detection head has a single detection coil.
[0011]
【The invention's effect】
As described above, according to the feature of the present invention, even when the magnetic material is covered with the covering, the magnetic material can detect the breakage at the bent portion of the magnetic material at low cost by a nondestructive method. It has become possible to provide a bending portion fracture inspection method and a magnetic material bending portion fracture inspection device.
[0012]
Other objects, configurations and effects of the present invention will become apparent in the following embodiments.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail with reference to the accompanying drawings.
A first embodiment of the present invention will be described with reference to FIGS. In the embodiment described below, a reinforced concrete structure H constituting a pier or the like of a road bridge will be described as an inspection target.
[0014]
As shown in FIG. 1, a detection head 10 that performs inspection along a surface of a reinforced concrete structure H that is a test body includes an excitation core 11 and an excitation coil 12 that generate a magnetic flux for exciting a reinforcing bar S2, and a change in magnetic flux. A detection core 13 and a detection coil 14 for detecting the In the present embodiment, a substantially U-shaped excitation core 11 is used, and the excitation core 11 and the excitation coil 12 are located between both ends 11 a and 11 b of the excitation core 11.
[0015]
The excitation core 11, the detection core 13 and the detection coil 14 are connected via a spacer 15 as shown in FIG. A position adjusting plate 16 is provided at both ends 11a and 11b of the exciting core 11, and the exciting core 11 and the detecting core 13 and the detecting core 13 are detected by a position adjusting tool 17 composed of the adjusting plate 16 and the spacer 15. The relative position with respect to the coil 14 can be adjusted. In the inspection, the positional relationship between the two is adjusted by the position adjuster 17 so that the detection coil is in an equilibrium state. Specifically, when the detection head 10 is opened and a sine wave is applied to the excitation coil, the number of the position adjustment plates 16 is adjusted at two places so that the amplitude of the detection wave detected by the detection coil becomes zero. do it.
[0016]
FIG. 3 shows a block diagram of the inspection apparatus 1 according to the present invention. In the inspection apparatus 1, an alternating current generated by the oscillator 2 and amplified by the power amplifier 3 is applied to the excitation coil 12 to generate a magnetic flux. On the other hand, the change in magnetic flux captured by the detection coil 14 is amplified by the amplifier 5 connected to the detection coil 14, and then the noise is removed by the filter 6. Then, while performing synchronous detection by the lock-in amplifier 7 and decomposing the detected waveform into X and Y components orthogonal to each other, a Lissajous is obtained, and the Lissajous is displayed on the display 8.
[0017]
FIG. 4 shows the relationship between the reinforced concrete structure H, which is an example of the inspection target, and the detection head 10. The reinforced concrete structure H to be inspected in the present embodiment is formed by filling and covering concrete C in a reinforced structure composed of the main reinforcement S1 and the band reinforcement S2. The band S2, which is an example of the bar-shaped magnetic material, is bent near the corner of the reinforced concrete structure H, and stress is easily concentrated on the bent portion Sc, and it is easily broken as compared with other portions. In the present embodiment, the inspection of the bent portion Sc of the band S2 is mainly performed.
[0018]
As an inspection procedure, as shown by reference numeral 10a in FIG. 4, the detection head 10 is disposed on the upper surface of the reinforced concrete structure H, and the detection head 10 runs from the flat surface side to the corner portion side of the reinforced concrete structure H. In some cases, the detection head 10 is disposed on the side surface of the reinforced concrete structure H, and the detection head 10 runs from the lower side to the upper side, as indicated by reference numeral 10b. In an actual inspection, only one of the aspects indicated by reference numerals 10a and 10b may be performed, or both may be used in combination. Further, the traveling direction of the detection head 10 may be not only the case of approaching the corner of the reinforced concrete structure H but also the direction of moving away from the corner.
[0019]
In order to verify the usefulness of the inspection apparatus and the inspection method according to the present invention, the inventors dispose an acrylic plate C ′ as a cover on a sound reinforcing bar S2 shown in FIG. An experiment was performed for each of the cases where an acrylic plate C ′ was disposed as a covering on the upper part of the reinforcing bar S2. In general, when the coil is in an equilibrium state, a Lissajous is not drawn but is displayed as a point near the origin of the XY coordinate, whereas when the coil is in an unbalanced state, a curve (Lissajous) is drawn. In the embodiment, by displaying a Lissajous, data affected by the bent portion Sc from the inspection waveform is evaluated.
[0020]
FIGS. 7 and 8 illustrate the Lissajous displayed on the display 8 when the magnetic flux affected by the bent portion Sc of the stirrup S2 is detected from the Lissajous obtained as a result of the above experiment. Here, FIG. 7 shows the Lissajous when the cover thickness T of the acrylic plate is 20 mm, and FIG. 8 shows the Lissajous when the cover thickness T of the acrylic plate is 30 mm. In both figures, the Lissajous indicated by reference numeral fa is a Lissajous obtained when a healthy reinforcing bar is used, and the Lissajous indicated by reference numeral fb is a Lissajous obtained when a broken reinforcing bar is used. From these figures, it was confirmed that there was a difference in the shape of the Lissajous between the case of a healthy reinforcing bar and the case of a broken reinforcing bar.
[0021]
Considering these differences, in the healthy reinforcing bar shown in FIG. 5, even if the one end 11b of the core moves further to the release side, the magnetic flux lines indicated by the reference symbol M pass through the strip bar S2, so that the unbalanced output is maintained. Is done. On the other hand, in the fractured reinforcing steel shown in FIG. 6, since the leakage magnetic flux is generated from the fractured portion D, the unbalanced output also disappears before the one end 11b is largely released. The difference in Lissajous is considered to be due to the difference in the nature of these unbalanced outputs.
[0022]
Next, a second embodiment of the present invention will be described with reference to FIGS. In the following embodiments, the same members and the like as those in the above embodiment are denoted by the same reference numerals.
[0023]
As shown in FIG. 9, the present embodiment is different from the above embodiment in that the detection core 21 and the detection coil 22 are wound around the outer peripheral surface of the end portion of the substantially U-shaped magnetizing core 11. In the present embodiment, the diameter of the detection coil 22 can be longer than the gap between the magnetic attraction cores 11. Therefore, the spatial detection area is expanded, the detection sensitivity is improved, and it is possible to cope with a test body having a larger cover thickness.
[0024]
As shown in FIGS. 9 and 10, both ends 11 a and 11 b of the induction core 11 and the detection core 21 are connected via a spacer 23. Further, the detection core 22 is connected to the outer peripheral surface side of the spacer 23, and the detection core 22 is wound along the outer peripheral surface of the detection core 22. Further, in the same manner as in the above embodiment, the detection coil 21 and the spacer 23 constitute the detection coil position adjuster 24. In the inspection, as in the first embodiment, the detection coil is adjusted by the position adjuster 24. The relative position is adjusted so that the outputs of the terminals 23 are in an equilibrium state.
[0025]
Next, a third embodiment of the present invention will be described with reference to FIGS. The present embodiment is different from the first embodiment in that the detection head 30 includes two detection coils 31 and 32. In the present embodiment, as shown in FIG. 11, a first detection coil 31 and a second detection coil 32 are provided at both ends 11a and 11b of the magnetic induction core 11, and these first and second coils 31 and 32 are provided. By detecting the unbalance of the belt rebars, the broken portion D of the belt reinforcing bar 32 is detected.
[0026]
FIG. 12 shows a bridge circuit 37 constituted by the first and second detection coils 31 and 32. The bridge circuit 37 includes first and second detection coils 31 and 32, variable resistors 33 and 34, a detector 35, and an AC power supply 36. In the inspection, the variable resistors 33 and 34 are appropriately adjusted so that no output is generated when the excitation core 11 is released. On the other hand, when the magnetic flux from the corner Sc of the test object is captured, the balance of the bridge 37 is lost, and a voltage corresponding to the change in impedance is output from the detector 35 to the amplifier 5, and the output signal is output. The broken portion D is detected according to the properties of.
[0027]
FIGS. 13A and 13B show detection waveforms obtained by experiments performed by the inventors to confirm the usefulness of the present embodiment. FIG. 13A shows a sound reinforcing bar, and FIG. It is a detection waveform at the time of using a fractured reinforcing bar as a test piece. In the experiment, as shown in FIG. 11, an acrylic plate C ′ having a thickness of 50 mm was disposed on the upper part of the band S2, and the detection head 30 was scanned on the upper surface thereof toward the bent portion Sc of the band S2.
[0028]
Comparing the detected waveforms in FIGS. 7A and 7B, it can be seen that the maximum amplitude P1 (end signal) of the test waveform in the case of a healthy reinforcing bar is larger than the maximum amplitude P2 of the broken reinforcing bar. Therefore, it was confirmed that the breakage of the rebar can be detected from the maximum amplitude values P1 and P2 of the detected waveform. In addition, it was confirmed that the broken portion D in the stirrup S2 can be detected irrespective of the presence of the main streak S1.
[0029]
Next, a fourth embodiment of the present invention will be described with reference to FIGS. In this embodiment, a pair of detection heads 20 of the second embodiment shown in FIG. 9 are used as shown in FIG. The right side view of the detection head 20 in FIG. 9 is indicated by reference numerals 20a and 20b in FIG. 14, and these are arranged such that the ends 11a and 11b in FIG. 9 are parallel between the pair of detection heads 20a and 20b. Then, it is fixed to the connecting plate 25 formed of resin or the like.
[0030]
The pair 20a and 20b move the surface of H toward the near side in FIG. 14 and inspect Sc. One of the first detection heads 20a moves along the stirrup S2 to detect both signals of the main streak S1 and the stirrup S2. On the other hand, the other second detection head 20b detects only the signal of the main muscle S1. In FIG. 15, an amplifier 5, a filter 6, and a lock-in amplifier 7 are respectively provided in parallel with a pair of detection coils 22 a and 22 b, and a difference between the detection coils 22 a and 22 b is displayed on the display 8. You. This makes it possible to more accurately detect the presence or absence of the broken portion D based on the difference signal of only the stirrup S2 from which the influence of the main streak S1 is removed.
[0031]
FIG. 16 shows an inspection result having the same meaning as in FIGS. 16A shows a waveform detected by the first detection head 20a of the healthy part, FIG. 16B shows a waveform detected by the second detection head 20b of only the main muscle, and FIG. 16C shows a difference between (a) and (b). On the other hand, FIG. 16D shows a waveform detected by the first detection head 20a at the broken portion, FIG. 16E shows a waveform detected by the second detection head 20b having only the main muscle, and FIG. 16F shows a difference between (d) and (e). . The comparison between FIGS. 16C and 16F revealed that the characteristic waveforms of the sound portion and the broken portion can be easily identified.
[0032]
Finally, reference is made to the possibilities of further embodiments of the invention. Of course, the above embodiments and the following embodiments can be implemented in combination with each other.
[0033]
In each of the above embodiments, a reinforced concrete structure was used as an inspection target. However, the coating is not necessarily limited to a synthetic resin or concrete, but may be any as long as it can transmit magnetic flux. Further, the rod-shaped magnetic material is not limited to the rebar.
[0034]
In each of the above embodiments, the case where the break in the bent portion of the belt reinforcing bar is detected has been described, but it is also possible to detect the break in the flat portion of the reinforcing bar at the same time.
[0035]
In each of the above embodiments, the detection cores 13, 21 and the detection coils 14, 22, 31, 32 are used for the detection heads 10, 20, 30. However, as the detection head, for example, a magnetic detection element such as a Hall element can be used. However, the configuration using the coil is superior in that the area of the magnetic detection surface can be easily expanded and a deep cover thickness can be accommodated.
[0036]
The shape of the excitation core 11 may have at least a pair of ends facing the same side. Various modifications are possible for other shapes.
[0037]
It should be noted that reference numerals written in the claims are merely for convenience of comparison with the drawings, and the present invention is not limited to the configuration of the attached drawings by the writing.
[Brief description of the drawings]
FIG. 1 is a cutaway sectional view of a detection head according to a first embodiment of the present invention.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a block diagram of an inspection device.
FIG. 4 is a sectional view showing a relationship between a broken portion of a reinforcing bar and a detection head.
FIG. 5 is a diagram illustrating a magnetic flux path during inspection of a healthy reinforcing bar.
FIG. 6 is a diagram showing a magnetic flux path at the time of inspecting a broken reinforcing bar.
FIG. 7 is a Lissajous at the time of rebar inspection when the cover thickness T of an acrylic plate is 20 mm.
FIG. 8 is a Lissajous at the time of rebar inspection when the cover thickness T of the acrylic plate is 30 mm.
FIG. 9 is a cutaway sectional view of a detection head according to a second embodiment of the present invention.
FIG. 10 is a plan view of a detection head according to a second embodiment of the present invention.
FIG. 11 is a diagram illustrating a relationship between a detection head and a damaged portion of a reinforcing bar according to the third embodiment of the present invention.
FIG. 12 illustrates a bridge circuit.
13A and 13B are diagrams showing detected waveforms, where FIG. 13A is a diagram corresponding to a case of a healthy reinforcing bar, and FIG. 13B is a diagram corresponding to a case of a broken bar.
FIG. 14 is a diagram illustrating a relationship between a detection head and a damaged portion of a reinforcing bar according to a fourth embodiment of the present invention.
FIG. 15 is a block diagram of the inspection apparatus of FIG.
FIGS. 16A and 16B are diagrams showing detected waveforms, wherein FIG. 16A shows a detected waveform of a healthy portion by a first detecting head, FIG. 16B shows a detected waveform of a second detecting head having only a main muscle, and FIG. (b), the waveform (d) detected by the first detection head at the broken portion, (e) the waveform detected by the second detection head having only the main muscle, and (f) the difference between (d) and (e).
[Explanation of symbols]
1: rebar fracture inspection device, 2: oscillator, 3: power amplifier, 5: amplifier, 6: filter, 7: lock-in amplifier, 8: display, 10: detection head, 11: excitation core, 11a, 11b: end Part, 12: excitation coil, 13: detection core, 14: detection coil, 15: spacer, 16: position adjustment plate, 17: position adjustment tool, 20: detection head, 20a: first detection head, 20b: second Detection head, 21: detection core, 22, 22a, 22b: detection coil, 23: spacer, 24: position adjuster, 25: connecting plate, 30: detection head, 31, 32: detection coil, 33, 34: variable resistance , 35: detector, 36: AC power supply, 37: bridge circuit, C: concrete (coating), C ': acrylic plate, D: broken part, H: reinforced concrete structure, S1: main reinforcement, S2 : Band, Sc: bent portion, T: cover thickness, M: line of magnetic force

Claims (8)

被覆体(C)に覆われた棒状磁性材料(S2)の屈曲部(Sc)における破断を検査するための磁性材料屈曲部破断検査方法であって、励磁コア(11)における一対の端部(11a,11b)近傍にこの励磁コア(11)の励磁による磁束の変化を検出する検出ヘッド(10,20,30)を設け、前記磁性材料の長手方向に沿って前記励磁コア(11)の一対の端部(11a,11b)を配向し、前記励磁コア(11)を励磁しながら前記検出ヘッド(10,20,30)と共に前記屈曲部(Sc)に対し遠近移動させることによる前記屈曲部(Sc)近傍での前記検出ヘッド(10,20,30)を用いた磁束変化の検出結果により前記破断を検査する磁性材料屈曲部破断検査方法。A method for inspecting a fracture in a bent portion (Sc) of a rod-shaped magnetic material (S2) covered with a coating (C), the method comprising the steps of: 11a, 11b), a detection head (10, 20, 30) for detecting a change in magnetic flux due to excitation of the excitation core (11) is provided, and a pair of the excitation cores (11) is arranged along the longitudinal direction of the magnetic material. The end portions (11a, 11b) are oriented, and while the excitation core (11) is excited, the end portions (11a, 11b) are moved together with the detection heads (10, 20, 30) toward and away from the bent portion (Sc). Sc) A magnetic material bending portion fracture inspection method for inspecting the fracture based on a detection result of a magnetic flux change using the detection head (10, 20, 30) in the vicinity. 前記棒状磁性材料(S2)が鉄筋であり、前記被覆体(C)がコンクリートである請求項1記載の磁性材料屈曲部破断検査方法。The method of claim 1, wherein the rod-shaped magnetic material (S2) is a reinforcing bar, and the coating (C) is concrete. 鉄筋コンクリート構造体(H)の平面部から角部に向かって前記検出ヘッド(10,20,30)を移動させることを特徴とする請求項2記載の磁性材料屈曲部破断検査方法。3. The method according to claim 2, wherein the detecting head (10, 20, 30) is moved from a plane portion to a corner portion of the reinforced concrete structure (H). 前記検出ヘッド(10,20,30)が単一の検出コイル(14,22)を有していることを特徴とする請求項1〜3のいずれかに記載の磁性材料屈曲部破断検査方法。The method according to any one of claims 1 to 3, wherein the detection head (10, 20, 30) has a single detection coil (14, 22). 前記励磁コア(11)を有する前記検出ヘッド(20,20a,20b)の一対を連結し、一方の検出ヘッド(20a)を帯筋(S2)上に配置し、両ヘッド(20a,20b)から得られる信号の差分を求めることを特徴とする請求項1〜4のいずれかに記載の磁性材料屈曲部破断検査方法。A pair of the detection heads (20, 20a, 20b) having the excitation core (11) are connected, and one of the detection heads (20a) is arranged on the stirrup (S2). 5. The method according to claim 1, wherein a difference between the obtained signals is obtained. 請求項1〜3のいずれかに記載の磁性材料屈曲部破断検査方法に用いる磁性材料屈曲部破断検査装置であって、励磁コア(11)における一対の端部(11a,11b)近傍にこの励磁コア(11)の励磁による磁束の変化を検出する検出ヘッド(10,20,30)を設け、前記一対の端部(11a,11b)と前記棒状磁性材料(S2)との相対関係がこれら一対の端部(11a,11b)間で異なることによる磁束変化を前記検出ヘッド(10,20,30)により検出する磁性材料屈曲部破断検査装置。A magnetic material bending portion fracture inspection apparatus used in the magnetic material bending portion fracture inspection method according to any one of claims 1 to 3, wherein the excitation core (11) is provided near the pair of ends (11a, 11b) of the excitation core (11). A detection head (10, 20, 30) for detecting a change in magnetic flux due to excitation of the core (11) is provided, and the relative relationship between the pair of ends (11a, 11b) and the rod-shaped magnetic material (S2) is determined by the pair. A magnetic material bending portion breakage inspection apparatus for detecting a change in magnetic flux due to a difference between ends (11a, 11b) of the magnetic material by the detection heads (10, 20, 30). 前記検出ヘッド(10,20,30)と前記一対の端部(11a,11b)との相対的関係を調整する検出ヘッド位置調整具(17,24)を有している請求項5記載の磁性材料屈曲部破断検査装置。The magnetic device according to claim 5, further comprising a detection head position adjuster (17, 24) for adjusting a relative relationship between the detection head (10, 20, 30) and the pair of end portions (11a, 11b). Material bending part breakage inspection device. 前記検出ヘッド(10,20,30)が単一の検出コイル(14,22)を有していることを特徴とする請求項6又は7に記載の磁性材料屈曲部破断検査装置。The magnetic material bending portion fracture inspection apparatus according to claim 6 or 7, wherein the detection head (10, 20, 30) has a single detection coil (14, 22).
JP2002213357A 2002-07-23 2002-07-23 Magnetic material bending portion fracture inspection method and inspection apparatus Expired - Fee Related JP4031958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213357A JP4031958B2 (en) 2002-07-23 2002-07-23 Magnetic material bending portion fracture inspection method and inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213357A JP4031958B2 (en) 2002-07-23 2002-07-23 Magnetic material bending portion fracture inspection method and inspection apparatus

Publications (2)

Publication Number Publication Date
JP2004053496A true JP2004053496A (en) 2004-02-19
JP4031958B2 JP4031958B2 (en) 2008-01-09

Family

ID=31935966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213357A Expired - Fee Related JP4031958B2 (en) 2002-07-23 2002-07-23 Magnetic material bending portion fracture inspection method and inspection apparatus

Country Status (1)

Country Link
JP (1) JP4031958B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121056A (en) * 2005-10-27 2007-05-17 Non-Destructive Inspection Co Ltd Method and device for inspecting magnetic material bend-part fracture
JP2007139634A (en) * 2005-11-21 2007-06-07 Shikoku Res Inst Inc Non-destructive inspection method and non-destructive inspection device
JP2007278930A (en) * 2006-04-10 2007-10-25 Tokyo Electric Power Co Inc:The Method for identifying reinforcing steel embedded in concrete material
JP2008249682A (en) * 2007-03-08 2008-10-16 Non-Destructive Inspection Co Ltd Inspection method of steel plate deck and inspection device used for this

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121056A (en) * 2005-10-27 2007-05-17 Non-Destructive Inspection Co Ltd Method and device for inspecting magnetic material bend-part fracture
JP2007139634A (en) * 2005-11-21 2007-06-07 Shikoku Res Inst Inc Non-destructive inspection method and non-destructive inspection device
JP2007278930A (en) * 2006-04-10 2007-10-25 Tokyo Electric Power Co Inc:The Method for identifying reinforcing steel embedded in concrete material
JP2008249682A (en) * 2007-03-08 2008-10-16 Non-Destructive Inspection Co Ltd Inspection method of steel plate deck and inspection device used for this

Also Published As

Publication number Publication date
JP4031958B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
US6400146B1 (en) Sensor head for ACFM based crack detection
US9851265B2 (en) Apparatus and method for measuring properties of a ferromagnetic material
JP2013505443A (en) Eddy current inspection for surface hardening depth
JP5269564B2 (en) Tubular Defect Evaluation Method and Tubular Defect Evaluation Apparatus
KR102113325B1 (en) Rope damage diagnosis test device
JP2005292111A (en) Non-destructive inspection system for steel frame material of reinforced concrete
JP2010513912A (en) Device and method for detecting and / or identifying magnetic material in the working area, use of the device in inspection of structures
JP2008128733A (en) Magnetic flaw detection method and magnetic flaw detecting device
JP4031958B2 (en) Magnetic material bending portion fracture inspection method and inspection apparatus
CN103439405B (en) Iron core and ferrite core synthesize multifunction electric magnetic measurement sensor and detection method thereof
JP2003075475A (en) Ac current sensor
JP2003066009A (en) Eddy current flaw detector
JP4762672B2 (en) Magnetic material bending portion fracture inspection method and inspection apparatus
JP2004279372A (en) Breaking detection method
JP2002214202A (en) Eddy current flaw detection probe
AU2018214693B2 (en) Electromagnetic method and device for detecting defects
JP6822222B2 (en) Magnetic property measuring instrument, magnetic property measuring system, and magnetic property measuring method
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
JP2007155429A (en) Method and device for inspecting concrete structure
JP2575425Y2 (en) Eddy current flaw detector
JPH11160285A (en) Magnetic flaw detector
JP3092837B2 (en) Magnetic head for detecting Barkhausen noise and detection system using the same
JP3644628B2 (en) Stress measuring method and apparatus using magnetic anisotropy sensor
JP4475477B1 (en) Inspection method using guide waves
JP3648713B2 (en) Eddy current flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees