JP2004053196A - Wind direction controller and air conditioner using the same - Google Patents

Wind direction controller and air conditioner using the same Download PDF

Info

Publication number
JP2004053196A
JP2004053196A JP2002213729A JP2002213729A JP2004053196A JP 2004053196 A JP2004053196 A JP 2004053196A JP 2002213729 A JP2002213729 A JP 2002213729A JP 2002213729 A JP2002213729 A JP 2002213729A JP 2004053196 A JP2004053196 A JP 2004053196A
Authority
JP
Japan
Prior art keywords
wind direction
air
wind
plate
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002213729A
Other languages
Japanese (ja)
Other versions
JP4013683B2 (en
Inventor
Mitsuhiro Shirota
代田 光宏
Toshiaki Yoshikawa
吉川 利彰
Masatoshi Kawano
川野 将俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002213729A priority Critical patent/JP4013683B2/en
Publication of JP2004053196A publication Critical patent/JP2004053196A/en
Application granted granted Critical
Publication of JP4013683B2 publication Critical patent/JP4013683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air-Flow Control Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wind direction controller in which a decrease in an air capacity for changing a wind direction of a vertical direction of air diffused from an air duct or a vibration/noise is suppressed while a stream line resistance is suppressed. <P>SOLUTION: In the wind direction controller provided in the air duct and having a wind direction board for changing direction of the vertical direction of an air flow diffused from the duct, the wind direction board includes a plurality of substantially one row state of wind direction plates, in such a manner that a direction of the air flow is changed gradually in a target direction by controlling an inclining angle of the vertical direction of the respective wind direction plates of this one row state. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、上下方向の空気の流れ変化に対応して風向板の流線抵抗を調整する風向制御装置及びそれを用いた空気調和機に関するものである。
【0002】
【従来の技術】
従来の風向制御装置は、風路の吹出口に設けられた風向板3で、吹出口から吹出されるある角度θの空気の流れを水平方向に変える時、図11に示すように、風向板3の上流側の形状を吹出風路の角度θに合わせ、その下流側の形状をほぼ水平となるようにし、この上流側と下流側との風向板をある曲率、即ち、風向板に対する風の流線抵抗が予め設定された流線抵抗以下となるような曲率面で結んで風向板を形成し、風が風向板3に激しく衝突して風速が急激に低下したり、或いは風の向きが急激に変化したりすることによって生じる振動・騒音の原因となる渦流発生、剥離現象をできるだけ少なくする形状にしていた。
【0003】
しかし、このように形成された風向板3を用いて、吹出風路2から吹出された風の向きを水平方向から斜め下方向、又は垂直方向へ回変える時、風向板3を回転させて行うので、風路の吹出角度に合わせていた風向制御板3の上流側の角度が、図12又は図13に示すように、この回転分だけ風路の吹出角度と合わなくなり、その分だけ風が風向制御板3の表面に激しく衝突して、流速が急激に変化したり、或いはその分だけ風の向きが急激に変わるため、流線抵抗が増大して風量が低下したり、或いはその面又は裏面の負圧現象に起因して発生する渦流又は剥離現象によって振動・騒音が生じたりしていた。
【0004】
以上説明したように、従来の風向制御装置においては、風向きを水平方向から垂直方向に変える時、風向板3を垂直方向で90度回転させて変えいるため、この回転により、水平方向に合わせていた風向板3の下流側は水平から垂直となり、空気は下方に吹出されるものの、この時、吹出風路2の角度θに合わせていた風向制御板3の上流側も90度回転するため、その結果、図12に示すように、吹出風路の角度θに合わせていた風向制御板3の上流側が90度分だけ、吹出風路角度θと合なくなり、その合わなくなった分だけ、風が風向制御板3の表面に激しく衝突して流線抵抗が増大したり、或いはその面又は裏面に負圧現象が生じ、この負圧現象によって渦流又は剥離現象が発生し、風量が低下したり、或いは振動・騒音が生じたりしていた。
【0005】
また、風の向きを水平方向から斜め方向に変える時も、同様に、水平方向から斜め方向に回転させた分だけ、風向制御板3の上流側が風路の角度θと合わなくなり、流線抵抗が増大し、渦流又は剥離現象が発生して振動・騒音が生じたり、風量が低下したりしていた。
【0006】
【発明が解決しようとする課題】
以上説明したように、従来の風向制御装置においては、風向板によって上下方向の風の向きを変えた時、流速が急激に変化し、流線抵抗が増大して風量が低下したり、或いはその面又は裏面の負圧現象に起因して発生する渦流又は剥離現象によって振動・騒音が大きくなるという問題があった。
【0007】
この発明は係る問題点を解決するためになされたもので、風路から吹出される空気の上下方向の向きを変えても、流線抵抗を抑制しながら風量低下や振動・騒音の増大を抑えた風向制御装置及びそれを用いた空気調和機を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る風向制御装置及びそれを用いた空気調和機においては、
風路内に設けられ、当該風路から吹出される空気流の上下方向の向きを変える風向板を有する風向制御装置において、前記風向板がほぼ一列状の複数の風向板からなり、この一列状の各風向板の上下方向の傾斜角度を制御して前記空気流の向きを徐々に目標方向へ変えるようにしたものである。
【0009】
また、前記一列状の各風向板が、前記空気流の向きを目標方向へ変える時に、当該目標方向が前記風路の傾斜角度よりも大きい時には、その各風向板の傾斜角度を前記空気流の上流側のものほど小さくなるように制御したものである。
【0010】
また、前記一列状の各風向板が、前記空気流の向きを目標方向へ変える時に、当該目標方向が前記風路の傾斜角度よりも小さい時には、その各風向板の傾斜角度を前記空気流の上流側のものほど大きくなるように制御したものである。
【0011】
また、前記一列状の風向板が、3つ以上の風向板で構成されたものである。
【0012】
また、隙間が、前記一列状の各風向板間に設けられ、その上流側風向板の前記空気流をその下流側風向板の反対側へバイパスさせるものである。
【0013】
また、上方抑制風向板が、前記一列状の各風向板と前記風路の上方側壁面と間に設けられ、当該風路の上方側空気の流れを前記一列状の各風向板が形成する前記空気流の流れにほぼ沿うように制御するものである。
【0014】
また、空気調和機の室内機が、前記請求項1から6までのいずれかに記載された風向制御装置を装着したものである。
【0015】
【発明の実施の形態】
実施の形態1.
この実施の形態1について図1から5を用いながら説明する。
これらの図において、1は空調機等の室内ユニット、2はこの室内ユニット内に設けられ、冷気又は暖気等の空気を吹出す吹出風路、3はこの吹出風路2内に設けられ、当該風路内から吹出される冷気又は暖気等の上下方向の風向きを制御する風向板、4は吹出風路2内に設けられ、左右の吹出方向を制御する左右風向板、5はこれらの風向板3,4の動作を駆動する駆動装置(図示せず)、6は室内ユニッ1内に設けられ、空気を冷やしたり、暖めたりする熱交換器、7は風路2内に設けられ、空気を送風する送風機、8は室内ユニッ1のキャビネット1aに設けられ、空気を吸込む吸込口である。
【0016】
なお、風向板3は上流側風向板3bと下流側風向板3aとかなり、これらの上流風向板3b又は下流側風向板3aはそれぞの軸9b、9aを介して駆動装置5により回転駆動される構成となっている。
【0017】
次に、このように構成された風向制御装置の動作について説明する。
まず、吹出風路2から吹出される空気を風向板3により水平方向に吹出すようにする時は、駆動装置5で吹出角度θを決定する下流側風向板3aをほぼ水平となるようにし、かつ、上流側風向板3bの角度θを吹出風路の吹出角度θよりも小さくして、吹出風路2から吹出される空気を主に上流側風向板3bによって向きを徐々に水平方向へ変えながら、下流側風向板3aになだらかに空気が当たるようにして、スムースな水平方向の流れを形成するようにする。
【0018】
言い換えれば、吹出風路の吹出角度θ以下に傾斜させた上流側風向板3bによって徐々に風の向きを水平方向へ変えて、スムースな流れを形成し、吹出風路2から吹出される空気が激しく上流及び下流側風向板3aに当たり、風量が低下したり、或いはその面又は裏面の負圧現象に起因して発生する渦流又は剥離現象によって振動・騒音が大きくなったりしないように抑制しながら流す。
【0019】
なお、この時、下流側風向板3aを水平よりも若干傾斜させるようにすると、下流側風向板3aに対する衝突力が更に緩和されるため、更にスムースな風の流れを形成するようになるので、更に、風量低下を防止して騒音を抑制するようになる。
【0020】
次に、この吹出風路2から吹出される空気を垂直下方向へ吹出すようにする時は、図4に示すように、まず、駆動装置5で下流側風向板3aをほぼ垂直(90度)にし、上流側風向板3bの角度θを吹出風路の吹出角度θより大きくして、吹出風路2から吹出される空気を上流側風向板3bによって徐々に垂直方向へ変え、スムースな流れを形成するようにする。
【0021】
言い換えれば、吹出風路の吹出角度θ以上に傾斜させた上流側風向板3bによって風の向きを徐々に垂直方向へ変えてスムースな流れを形成するようにし、吹出空気が激しく上流及び下流側風向板3aに当たって、風量が低下したり、或いはその面又は裏面のコアンダ現象や負圧現象等に起因して発生する渦流又は剥離現象によって振動・騒音が大きくなったりしないように抑制しながら流すようになる。
【0022】
なお、この時、下流側風向板3aをほぼ垂直よりも若干水平方向へ傾斜させるようすると、下流側風向板3aに対する衝突力が更に緩和されるため、更にスムースな垂直方向への風の流れを形成するようになるので、更に、風量低下を防止して騒音を抑制するようになる。
【0023】
次に、吹出空気の流れを斜め方向にする時は、駆動装置5により下流側風向板3aをその斜め方向にしたい傾斜角度θにして、上流側風向板3bの角度θを吹出風路の吹出角度θと傾斜角度θとのほぼ半分の角度となるようにする。
なお、このようにすると、吹出風路2から吹出された空気は上流側風向板3bと下流側風向板3aに沿いながら流れ、徐々に目標の傾斜角度に変更されながらスムースに吹出されるようになるので、風量低下を防止して騒音を抑制した流れとなる。
【0024】
また、この時、下流側風向板3aを吹出風路の吹出角度θよりも若干目標傾斜角度に傾斜させるようすると、更に、スムースな風の流れを形成するようになるので、更に、風量低下を防止して騒音を抑制するようになる。
【0025】
以上説明したように、風向板3を空気の流れに沿って上流側風向板3bと下流側風向板3aに分割し、この分割した上流側風向板3bと下流側風向板3aの傾斜角度を吹出風路の吹出角度θに対する空気の吹出方向(角度)に応じて制御し、空気の流れを変えるようにしたので、風向板による流線抵抗の増大を抑制しながら、吹出風路からの空気をスムースに目標吹出角度となるように変更して吹出すようになるため、風量低下が少なく、音の静かな上下方向の風向を制御する風向制御装置が得られる。
【0026】
実施の形態2.
この発明の実施の形態2について図6、7を用いながら説明する。
この実施の形態2においては、実施の形態1の風向板3を空気の流れに沿って3分割以上に分割し、この分割した各風向板の各傾斜角度を吹出風路の吹出角度θに対する空気の吹出方向(角度)に応じて調整し、空気の流れを変えるようにしたものである。
なお、その他の構成はほぼ実施の形態1と同じなので、詳細な説明は割愛する。
【0027】
次に、このように構成された風向制御板の動作について説明する。
まず、吹出風路2から吹出される空気を風向板3により水平方向へ吹出すようにする時は、駆動装置5により最下流側の風向板3aをほぼ水平となるようにし、その上流側で分割された各風向板3b、3cの角度θ3,θが、θ≧θ≧θ≧θとなるようにして、図6に示すように、スムースな水平方向の流れを形成し、渦流又は剥離現象による風量低下や振動・騒音を抑制することになる。
【0028】
なお、この時、最下流側の風向板3aを水平方向よりも斜めにし、この斜めにした最下流側の風向板3aを含めた各風向板の和が、吹出風路の吹出角度θ以上となるようにすると、更にスムースに流れるようになるので、更に渦流又は剥離現象による風量低下や振動・騒音を抑制するようになる。
しかも、この時、各風向板3a、3b、3cで風路の傾斜角度θを均等に分担、即ち、θ=3/4θ,θ=2/4θ,θ=1/4θとなるようにすると、更になだらかに変更できるため、更に風量低下や振動・騒音を抑制できるようになる。
【0029】
また、その他の斜め方向又は垂直方向へ空気を吹出すようにする時も、図7に示すように、前述したと同じ考え方で、各分割した各風向板の角度構成にして渦流又は剥離現象による風量低下や振動・騒音を抑制する。
即ち、最下流側の風向板3aの角度θを目標とする吹出角度にし、その他の分割した各風向板の角度がθ≦θ≦θ≦θとなるようにして、図7に示すように、段階的に傾斜をつけてスムースに流れるようにする。
【0030】
以上説明したように、風向板3を空気の流れに沿って3分割以上に分割し、この分割した各風向板の各傾斜角度を吹出風路の吹出角度θに対する空気の吹出方向(角度)に応じて調整し、空気の流れを変えるようにしたので、更に風向板による流線抵抗の増大を抑制しながら、吹出風路からの空気をスムースに目標吹出角度となるように変更して吹出すようになるため、更に風量低下が少なく、音の静かな上下方向の空気の流れを制御する風向制御装置が得られる。
【0031】
実施の形態3.
この発明の実施の形態3について図8、9を用いながら説明する。
この実施の形態3においては、これらの図に示すように、実施の形態1又は2における風向板3の上方側に上方抑制風向板10を設け、風路上方側空気の流れが、風向板3が形成する空気の流れとほぼ同じ流れとなるように抑制したものである。
なお、その他の構成はほぼ実施の形態1又は2と同じなので、詳細な説明は割愛する。
【0032】
次に、このように構成された動作について説明する。
まず、この上方抑制風向板10が無い時は、風路から吹出される空気は実施の形態1又は2で説明した風向板3によってスムースに吹出されるものの、図8に示すように、吹出風路2の上方側の空気は風路2の上方側壁面2aに沿って流れることになるために、上方側壁面の形状が風向板3の形状と一致してない時は、乱れた流れとなるので、上方側壁面に渦流が発性し、騒音や風量低下の原因になったりする。
【0033】
しかも、この上方抑制風向板10が無い時は、図7からも解るように、垂直下方吹出し時には、風向板3の上方側空気の大部分は下方に吹き出されること無く、風路の上方側壁面2aの傾斜に沿って斜めに吹出されることになり、また、水平吹出し時には、風向板3の下方側空気の大部分は水平方向に吹き出されること無く、下方に吹き出されるため、流線抵抗の抑制は達成できるものの、目標方向に対するロスが生じることとなる。
【0034】
従って、図8,9に示すように、風向板3の上方側に、即ち、風向板3と吹出風路2の上方側壁面2aとの間の壁面近傍に、風向板3の風向き(水平又は垂直方向)と連動して動く上方抑制風向板10を設け、風路上方側の空気の流れが、風向板3が形成する空気の流れとほぼ同じような流れとなるように抑制する。
【0035】
なお、このようにすると、吹出風路2から吹出される空気の大部分が、風向板3が形成する空気の流れとほぼ同じ流れとなり、風向板に対する風の流線抵抗が抑制されて目標方向に吹出されるようになるため、更に優れた風量低下が少なく、音の静かな上下方向の風向を制御する風向制御装置が得られる。
【0036】
実施の形態4.
この実施の形態4においては、前記複数配置された各風向板間に隙間を設け、この隙間により、その上流側風向板の前記空気流をその下流側風向板の反対側へバイパスさせるように構成したものである。
なお、その他の構成はほぼ他の実施の形態とほぼ同じなので、詳細な説明は割愛する。
【0037】
次に、この動作について図10を用いながら説明する。
まず、吹出風路2から吹出された空気は風向板3に沿って流れる。この時、図3又は図4に示すように、風向板3の下面側を流れる空気は、吹出風路2の傾斜角度で吹出されるため、下面側は負圧となり、渦流が発生して騒音等が生じることになる。
【0038】
しかし、この時、図10に示すように、風向板間に設けた隙間3dから、その上流側風向板の空気流がその下流側風向板の反対側へ流れ、負圧を解消するように作用するので、騒音等が解消されることになる。
【0039】
しかも、このように構成された風向制御装置の風向板3を、冷気を吹出す空気調和機の室内機の吹出風路等に用いると、冷気によって冷却された吹出風路内の風向板3の裏面(下面)に発生した負圧の渦流へ高温・多湿の室内空気の侵入を防止する共に、高温・多湿の室内空気と接触しやすい、特に、最下流側風向板の裏面(下面)を冷気で覆うようになるため、風向板3の結露現象による室内への結露水の落下を防ぐことができる。
【0040】
【発明の効果】
以上説明したように、この発明によれば、風路内に設けられ、当該風路から吹出される空気流の上下方向の向きを変える風向板を有する風向制御装置において、前記風向板がほぼ一列状の複数の風向板からなり、この一列状の各風向板の上下方向の傾斜角度を制御して前記空気流の向きを徐々に目標方向へ変えるようにしたので、流線抵抗を抑制しながら風路から吹出される空気の上下方向の風向きを変えるようになるため、風量低下や振動・騒音を抑えた風向制御装置が得られる。
【0041】
また、前記一列状の各風向板が、前記空気流の向きを目標方向へ変える時に、当該目標方向が前記風路の傾斜角度よりも大きい時には、その各風向板の傾斜角度を前記空気流の上流側のものほど小さくなるように制御したので、風路から吹出された空気流の向きを上流側から下流側へ向かって徐々に大きくなるようにして目標方向へ変えるようになるため、風路の傾斜角度よりも大きい向きに変更しても、流線抵抗を抑制して、風量低下や振動・騒音を抑えた風向制御装置が得られる。
【0042】
また、前記一列状の各風向板が、前記空気流の向きを目標方向へ変える時に、当該目標方向が前記風路の傾斜角度よりも小さい時には、その各風向板の傾斜角度を前記空気流の上流側のものほど大きくなるように制御したので、風路から吹出された空気流の向きを上流側から下流側へ向かって徐々に小さくなるようにして目標方向へ変えるようになるため、風路の傾斜角度よりも小さい向きに変更しても、流線抵抗を抑制して、風量低下や振動・騒音を抑えた風向制御装置が得られる。
【0043】
また、前記一列状の風向板が、3つ以上の風向板で構成されたので、風路から吹出される空気の風向きを徐々に変えて、更流線抵抗を抑制するようになるため、更に風量低下や振動・騒音を抑えた風向制御装置が得られる。
【0044】
また、隙間が、前記一列状の各風向板間に設けられ、その上流側風向板の前記空気流をその下流側風向板の反対側へバイパスさせるので、上流側風向板の空気流がその下流側風向板の反対側へ流れ、負圧を解消するように作用するため、更に騒音等を解消する風向制御装置が得られる。
【0045】
また、上方抑制風向板が、前記一列状の各風向板と前記風路の上方側壁面と間に設けられ、当該風路の上方側空気の流れを前記一列状の各風向板が形成する前記空気流の流れにほぼ沿うように制御するので、風路上方の空気も、風向板が形成する空気の流れとほぼ同じ流れとなり、大部分の空気流の流線抵抗が抑制されて目標方向に吹出されるようになるため、更に優れた風量低下が少なく、音の静かな風向制御装置が得られる。
【0046】
また、空気調和機の室内機が、前記請求項1から6までのいずれかに記載された風向制御装置を装着したので、風量低下が少なく、音が静かで、特に、風向板3の裏面(下面)に発生した負圧部や最下流側風向板の裏面への高温・多湿の室内空気の侵入を防止して、室内への結露水の落下を防いだ信頼性の高い空気調和機が得られる。
【図面の簡単な説明】
【図1】本発明に係る空気調和機の室内機の概略設置構成図である。
【図2】本発明に係る空気調和機の室内機の概略縦断面図である。
【図3】本発明の実施の形態1における風向制御装置が空気の流れを水平方向に制御した図である。
【図4】本発明の実施の形態1における風向制御装置が空気の流れを垂直方向に制御した図である。
【図5】本発明の実施の形態1における風向制御装置が空気の流れを斜め方向に制御した図である。
【図6】本発明の実施の形態2における風向制御装置が空気の流れを水平方向に制御した図である。
【図7】本発明の実施の形態2における風向制御装置が空気の流れを垂直方向に制御した図である。
【図8】本発明の実施の形態3における風向制御装置が空気の流れを水平方向に制御した図である。
【図9】本発明の実施の形態3における風向制御装置が空気の流れを垂直方向に制御した図である
【図10】本発明の実施の形態4における風向制御装置が空気の流れを水平方向に制御した図である。
【図11】従来の風向制御装置における空気流を水平方向に制御する図である。
【図12】従来の風向制御装置における空気流を垂直方向にする制御図である。
【図13】従来の風向制御装置における空気流を斜め方向に制御する図である。
【符号の説明】
1 空気調和機の室内ユニット、 1a キャビネット、 2 吹出風路、 2a 上方側壁面、 2b 下方側壁面、 2c 吹出口、 3 上下風向板、 3a 下流側風向板、 3b、3c 上流側風向板、 4 左右風向板、 5 駆動装置、 6 熱交換器、7 送風機、8 吸込口、 10上方抑制風向板、
14 流線 15 渦流。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wind direction control device that adjusts streamline resistance of a wind direction plate in response to a change in air flow in a vertical direction, and an air conditioner using the same.
[0002]
[Prior art]
Conventional air-direction control device, in the wind direction plate 3 provided on the air outlet of the air passage, when changing the flow of an angle theta 1 of the air blown out from the air outlet in the horizontal direction, as shown in FIG. 11, the wind direction The shape of the upstream side of the plate 3 is adjusted to the angle θ 1 of the blowing air path, and the shape of the downstream side is made substantially horizontal, and the upstream and downstream wind direction plates are set to a certain curvature, that is, with respect to the wind direction plate. A wind direction plate is formed by connecting at a curvature surface such that the stream line resistance of the wind is equal to or less than a preset stream line resistance, and the wind violently collides with the wind direction plate 3 so that the wind speed drops rapidly, or The shape was designed to minimize eddy current generation and separation phenomena, which cause vibration and noise caused by sudden changes in direction.
[0003]
However, when the direction of the wind blown out of the blow-out air passage 2 is changed from the horizontal direction to the obliquely downward direction or the vertical direction by using the wind direction plate 3 thus formed, the wind direction plate 3 is rotated. Therefore, the angle on the upstream side of the wind direction control plate 3 that has been adjusted to the blow angle of the wind path does not match the blow angle of the wind path by this rotation as shown in FIG. Since it collides violently with the surface of the wind direction control plate 3 and the flow velocity changes abruptly, or the direction of the wind changes abruptly, the streamline resistance increases and the air volume decreases, or the surface or Vibration and noise have been caused by the eddy current or separation phenomenon generated due to the negative pressure phenomenon on the back surface.
[0004]
As described above, in the conventional wind direction control device, when the wind direction is changed from the horizontal direction to the vertical direction, the wind direction plate 3 is rotated by 90 degrees in the vertical direction to change the wind direction. The downstream side of the wind direction plate 3 is changed from horizontal to vertical, and the air is blown downward. However, at this time, the upstream side of the wind direction control plate 3 adjusted to the angle θ 1 of the blow air path 2 also rotates 90 degrees. As a result, as shown in FIG. 12, the upstream side of the wind direction control plate 3 which has been adjusted to the angle θ 1 of the blow-out air path is no longer aligned with the blow-out air path angle θ 1 by 90 degrees, and only as much as the amount of no longer fit. When the wind violently collides with the surface of the wind direction control plate 3, the streamline resistance increases, or a negative pressure phenomenon occurs on the surface or the back surface, and the negative pressure phenomenon causes a vortex or a separation phenomenon, and the air volume decreases. Noise or vibration / noise I was walking.
[0005]
Moreover, even when changing diagonally the direction of the wind from the horizontal direction, similarly, by the amount of rotated from the horizontal direction in an oblique direction, the upstream side of the air direction control plate 3 is no longer match the angle theta 1 of the air passage, streamlines The resistance has increased, and a vortex or a separation phenomenon has occurred, causing vibration and noise, or reducing the air volume.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional wind direction control device, when the direction of the wind in the vertical direction is changed by the wind direction plate, the flow velocity changes rapidly, the streamline resistance increases, and the air volume decreases, or There is a problem that vibration and noise increase due to eddy current or separation phenomenon generated due to the negative pressure phenomenon on the surface or the back surface.
[0007]
The present invention has been made in order to solve such a problem, and suppresses a decrease in airflow and an increase in vibration and noise while suppressing streamline resistance even when the direction of air blown out from an air path is changed in the vertical direction. It is an object to obtain a wind direction control device and an air conditioner using the same.
[0008]
[Means for Solving the Problems]
In the wind direction control device and the air conditioner using the same according to the present invention,
In a wind direction control device provided in an air passage and having a wind direction plate for changing a vertical direction of an air flow blown out from the air passage, the wind direction plate comprises a plurality of wind direction plates substantially in a row, The direction of the air flow is gradually changed to the target direction by controlling the vertical inclination angle of each wind direction plate.
[0009]
In addition, when the direction of the airflow is changed to the target direction, when the target direction is larger than the inclination angle of the air path, the inclination angle of each airflow direction plate is set to the inclination angle of the airflow. It is controlled so that the upstream side becomes smaller.
[0010]
In addition, when the direction of the airflow is changed to a target direction, when the target direction is smaller than the inclination angle of the air path, the inclination angle of each airflow direction plate is set to the inclination angle of the airflow. It is controlled so that the upstream side becomes larger.
[0011]
Further, the one row of wind direction plates is constituted by three or more wind direction plates.
[0012]
A gap is provided between each row of the wind direction plates, and the air flow of the upstream wind direction plate is bypassed to the opposite side of the downstream wind direction plate.
[0013]
In addition, an upward suppression wind direction plate is provided between each of the row-shaped wind direction plates and an upper side wall surface of the air passage, and the flow of air above the wind path is formed by each of the row-shaped wind direction plates. The control is performed so as to substantially follow the flow of the air flow.
[0014]
The indoor unit of the air conditioner is equipped with the wind direction control device according to any one of the first to sixth aspects.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
The first embodiment will be described with reference to FIGS.
In these figures, 1 is an indoor unit such as an air conditioner, 2 is provided in the indoor unit, and an air outlet for blowing air such as cold air or warm air is provided in the air outlet 2. A wind direction plate 4 for controlling the vertical direction of the wind such as cold air or warm air blown out of the air path, 4 is provided in the air flow path 2 and a left and right wind direction plate for controlling the left and right blow directions, and 5 is a wind direction plate for these. Driving devices (not shown) for driving the operations of 3 and 4 are provided in the indoor unit 1, a heat exchanger for cooling or warming the air, and 7 is provided in the air passage 2 to remove the air. The blower 8 for blowing air is provided in the cabinet 1a of the indoor unit 1 and is a suction port for sucking air.
[0016]
The wind direction plate 3 is substantially the same as the upstream wind direction plate 3b and the downstream wind direction plate 3a, and the upstream wind direction plate 3b or the downstream wind direction plate 3a is rotationally driven by the drive device 5 via the respective shafts 9b and 9a. Configuration.
[0017]
Next, the operation of the wind direction control device thus configured will be described.
First, when the air discharged from the outlet air passage 2 so blown by the wind direction plate 3 in the horizontal direction, in roughly a horizontal downstream louvers 3a that determines the outlet angle theta 2 in the drive device 5 In addition, the angle θ 3 of the upstream wind direction plate 3b is made smaller than the blow angle θ 1 of the blow air passage, and the air blown out from the blow air passage 2 is gradually horizontally oriented mainly by the upstream wind direction plate 3b. While changing the direction, the air is gently blown to the downstream wind direction plate 3a so as to form a smooth horizontal flow.
[0018]
In other words, the air gradually changing the orientation of the wind in the horizontal direction by blowing angle theta 1 upstream louvers 3b which is tilted to the following blowout air passage, to form a smooth flow, is blown from the blow-out air duct 2 Violently hits the upstream and downstream wind direction plates 3a, while suppressing the air volume from decreasing, or increasing the vibration and noise due to the vortex or separation phenomenon generated due to the negative pressure phenomenon on the surface or the back surface. Shed.
[0019]
At this time, if the downstream wind direction plate 3a is slightly inclined from horizontal, the collision force against the downstream wind direction plate 3a is further reduced, so that a smoother flow of the wind is formed. Further, noise is suppressed by preventing a decrease in air volume.
[0020]
Next, when the air blown from the blow-out air passage 2 is to be blown vertically downward, as shown in FIG. ), The angle θ 3 of the upstream wind direction plate 3b is set to be larger than the blow angle θ 1 of the blow air path, and the air blown from the blow air path 2 is gradually changed to the vertical direction by the upstream wind direction plate 3b to smoothly. So as to form a smooth flow.
[0021]
In other words, so as to form a smooth flow varied by the upstream louvers 3b which is tilted to the blow-out angle theta 1 or more outlet air passage gradually to vertical orientation of the wind, blowing air violently upstream and downstream When the air flow is directed to the wind direction plate 3a, the air flow is reduced and the vibration / noise is prevented from increasing due to a vortex or a separation phenomenon generated due to a Coanda phenomenon or a negative pressure phenomenon on the surface or the back surface. become.
[0022]
At this time, if the downstream wind direction plate 3a is inclined slightly more horizontally than substantially vertically, the collision force against the downstream wind direction plate 3a is further reduced, so that the flow of the wind in the vertical direction is smoother. As a result, the airflow is prevented from lowering and noise is suppressed.
[0023]
Then, when the flow of air blown in an oblique direction, and the inclination angle theta 2 to be the downstream louvers 3a in its oblique direction by the drive unit 5, the outlet air path angle theta 3 of the upstream louvers 3b made to be approximately half of the angle between the outlet angle theta 1 and the inclination angle theta 2 of the.
In this case, the air blown out from the blowing air path 2 flows along the upstream wind direction plate 3b and the downstream wind direction plate 3a, and is smoothly blown while being gradually changed to the target inclination angle. Therefore, the flow is such that the noise is suppressed by preventing a decrease in the air volume.
[0024]
Further, at this time, when as angled slightly target tilt angle than the blowout angle theta 1 of the outlet air duct downstream louvers 3a, further, since to form a flow of smooth wind, further, the air volume reduction And noise is suppressed.
[0025]
As described above, the wind direction plate 3 is divided into the upstream wind direction plate 3b and the downstream wind direction plate 3a along the flow of air, and the angle of inclination of the divided upstream wind direction plate 3b and downstream wind direction plate 3a is blown out. The air flow is controlled in accordance with the air blowing direction (angle) with respect to the blowing angle θ 1 of the air path, so that the air flow is changed. Is changed so as to smoothly reach the target blowing angle, so that a wind direction control device that controls the vertical wind direction with small air volume reduction and quiet sound can be obtained.
[0026]
Embodiment 2 FIG.
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS.
In the second embodiment, the wind direction plate 3 of the first embodiment is divided into three or more divided along the flow of air, for blowing the angle theta 1 of the outlet air passage to the inclined angle of each louver that this division The air flow is adjusted in accordance with the direction (angle) of air blowing to change the air flow.
The other configuration is almost the same as that of the first embodiment, and a detailed description is omitted.
[0027]
Next, the operation of the thus configured wind direction control plate will be described.
First, when the air blown from the blow-out air passage 2 is blown out in the horizontal direction by the wind direction plate 3, the driving device 5 makes the wind direction plate 3a on the most downstream side substantially horizontal, and the upstream side thereof As shown in FIG. 6, a smooth horizontal flow is formed as shown in FIG. 6 so that the angles θ 3, θ 4 of the divided wind direction plates 3b, 3c satisfy θ 1 ≧ θ 4 ≧ θ 3 ≧ θ 2 . In addition, a reduction in air volume, vibration and noise due to eddy current or separation phenomenon is suppressed.
[0028]
At this time, the wind direction plate 3a of the most downstream side at an angle from the horizontal direction, the sum of each louver including a wind direction plate 3a on the most downstream side was the obliquely blowout angle theta 1 or more outlet air passage In such a case, the air flows more smoothly, so that the reduction of the air volume and the vibration / noise due to the eddy current or the separation phenomenon are further suppressed.
Moreover, at this time, the wind direction plates 3a, 3b, equally share the inclination angle theta 1 of the air passage at 3c, i.e., θ 4 = 3 / 4θ 1 , θ 3 = 2 / 1, θ 2 = 1 / 4θ When it is set to 1 , since it can be changed more gently, it becomes possible to further suppress a decrease in air volume and vibration / noise.
[0029]
Also, when air is blown out in other oblique directions or vertical directions, as shown in FIG. 7, in the same way as described above, the angle configuration of each divided wind direction plate is used to cause eddy current or separation phenomenon. Suppress air volume reduction and vibration / noise.
That is, the angle θ 2 of the wind direction plate 3a on the most downstream side is set as the target blowing angle, and the angles of the other divided wind direction plates are set so that θ 1 ≦ θ 4 ≦ θ 3 ≦ θ 2 . As shown in (2), the flow is made to flow smoothly by gradually inclining.
[0030]
As described above, the wind direction plate 3 is divided into three or more along the flow of the air, and the angle of inclination of each of the divided wind direction plates is defined as the air blowing direction (angle) with respect to the blowing angle θ 1 of the blowing air path. The air flow is changed according to the air flow, so that the air flow from the blow-out air passage is changed smoothly to the target blow angle while suppressing the increase in streamline resistance due to the wind direction plate. As a result, a wind direction control device that controls the flow of air in the vertical direction with less air flow and quieter sound can be obtained.
[0031]
Embodiment 3 FIG.
Third Embodiment A third embodiment of the present invention will be described with reference to FIGS.
In the third embodiment, as shown in these figures, an upward suppression wind direction plate 10 is provided above the wind direction plate 3 in the first or second embodiment, and the flow of air above the wind path is controlled by the wind direction plate 3. Is suppressed so as to be almost the same as the flow of the air formed by the air flow.
Note that other configurations are almost the same as those of the first or second embodiment, and a detailed description thereof will be omitted.
[0032]
Next, the operation thus configured will be described.
First, when the upward suppression wind direction plate 10 is not provided, the air blown out of the air path is smoothly blown out by the wind direction plate 3 described in the first or second embodiment, but as shown in FIG. Since the air on the upper side of the passage 2 flows along the upper side wall surface 2a of the air passage 2, when the shape of the upper side wall surface does not match the shape of the wind direction plate 3, the flow becomes turbulent. Therefore, a vortex is generated on the upper side wall surface, which causes noise and a decrease in air volume.
[0033]
In addition, when the upward suppression wind direction plate 10 is not provided, most of the air above the wind direction plate 3 is not blown downward at the time of vertical downward blowing as shown in FIG. Since the air is blown obliquely along the slope of the wall surface 2a, and at the time of horizontal blowing, most of the air below the wind direction plate 3 is blown downward without blowing in the horizontal direction. Although the suppression of the line resistance can be achieved, a loss occurs in the target direction.
[0034]
Therefore, as shown in FIGS. 8 and 9, the wind direction of the wind direction plate 3 (horizontal or horizontal) is located above the wind direction plate 3, that is, near the wall surface between the wind direction plate 3 and the upper side wall surface 2 a of the blow-out air passage 2. The airflow control plate 10 is provided with an upward suppression wind direction plate 10 that moves in conjunction with the vertical direction), and suppresses the flow of air on the upper side of the air path to be substantially the same as the flow of air formed by the wind direction plate 3.
[0035]
In this case, most of the air blown out from the blow-out air passage 2 becomes substantially the same as the flow of the air formed by the wind direction plate 3, and the streamline resistance of the wind to the wind direction plate 3 is suppressed, so that the target direction is reduced. As a result, a wind direction control device that controls the vertical wind direction with less noise and less noise can be obtained.
[0036]
Embodiment 4 FIG.
In the fourth embodiment, a gap is provided between the plurality of wind direction plates, and the air flow of the upstream wind direction plate is bypassed to the opposite side of the downstream wind direction plate by the gap. It was done.
Note that other configurations are almost the same as those of the other embodiments, and a detailed description thereof will be omitted.
[0037]
Next, this operation will be described with reference to FIG.
First, the air blown out from the blowing air passage 2 flows along the wind direction plate 3. At this time, as shown in FIG. 3 or FIG. 4, the air flowing on the lower surface side of the wind direction plate 3 is blown out at the inclination angle of the blow-out air passage 2, so that the lower surface side becomes negative pressure, vortex is generated and noise Etc. will occur.
[0038]
However, at this time, as shown in FIG. 10, the airflow of the upstream wind direction plate flows from the gap 3d provided between the wind direction plates to the opposite side of the downstream wind direction plate, and acts to eliminate the negative pressure. Therefore, noise and the like are eliminated.
[0039]
In addition, when the wind direction plate 3 of the wind direction control device configured as described above is used for the blow air path of an indoor unit of an air conditioner that blows cool air, the wind direction plate 3 in the blow air path cooled by the cool air is used. Prevents intrusion of high-temperature and high-humidity indoor air into the negative pressure vortex generated on the back surface (lower surface) and facilitates contact with high-temperature and high-humidity indoor air. As a result, it is possible to prevent the dew condensation water from falling into the room due to the dew condensation phenomenon of the wind direction plate 3.
[0040]
【The invention's effect】
As described above, according to the present invention, in the wind direction control device having the wind direction plate provided in the wind path and changing the vertical direction of the airflow blown out from the wind path, the wind direction plates are substantially aligned with each other. It is composed of a plurality of wind direction plates, and the direction of the air flow is gradually changed to the target direction by controlling the vertical inclination angle of each row of the wind direction plates, so that the stream line resistance is suppressed. Since the vertical direction of the air blown from the air path is changed, a wind direction control device that suppresses a decrease in air volume and vibration and noise can be obtained.
[0041]
In addition, when the direction of the airflow is changed to the target direction, when the target direction is larger than the inclination angle of the air path, the inclination angle of each airflow direction plate is set to the inclination angle of the airflow. Since the upstream side is controlled to be smaller, the direction of the airflow blown out of the air path is gradually increased from the upstream side to the downstream side, so that the direction of the air flow is changed to the target direction. Even if the direction is changed to a direction larger than the inclination angle, a stream direction resistance can be suppressed, and a wind direction control device can be obtained which suppresses a decrease in air volume and vibration and noise.
[0042]
In addition, when the direction of the airflow is changed to a target direction, when the target direction is smaller than the inclination angle of the air path, the inclination angle of each airflow direction plate is set to the inclination angle of the airflow. Since the upstream side is controlled to be larger, the direction of the airflow blown out of the air path is gradually reduced from the upstream side to the downstream side, so that the direction of the air flow is changed to the target direction. Even if the direction is changed to a direction smaller than the inclination angle, the wind direction control device can be obtained in which the streamline resistance is suppressed and the decrease in the air volume and the vibration / noise are suppressed.
[0043]
In addition, since the one row of wind direction plates is composed of three or more wind direction plates, the direction of the air blown out from the air path is gradually changed, so that the streamline resistance is suppressed. It is possible to obtain a wind direction control device that suppresses a decrease in air volume and vibration and noise.
[0044]
In addition, a gap is provided between each row of the wind direction plates, and the air flow of the upstream wind direction plate is bypassed to the opposite side of the downstream wind direction plate. Since the air flows to the opposite side of the side wind direction plate and acts to eliminate the negative pressure, a wind direction control device that further eliminates noise and the like is obtained.
[0045]
In addition, an upward suppression wind direction plate is provided between each of the row-shaped wind direction plates and an upper side wall surface of the air passage, and the flow of air above the wind path is formed by each of the row-shaped wind direction plates. Since the airflow is controlled to follow the flow of the airflow, the air above the air path is almost the same as the airflow formed by the airflow direction plate, and the streamline resistance of most of the airflow is suppressed and the airflow in the target direction is suppressed. Since the air is blown out, a more excellent air volume reduction is obtained, and a wind direction control device with quiet sound can be obtained.
[0046]
In addition, since the indoor unit of the air conditioner is equipped with the wind direction control device according to any one of claims 1 to 6, the air volume is small and the sound is quiet. A highly reliable air conditioner that prevents high-temperature and high-humidity indoor air from entering the negative pressure part generated on the lower surface) and the back surface of the most downstream wind direction plate, preventing the condensation water from falling into the room Can be
[Brief description of the drawings]
FIG. 1 is a schematic installation configuration diagram of an indoor unit of an air conditioner according to the present invention.
FIG. 2 is a schematic vertical sectional view of an indoor unit of the air conditioner according to the present invention.
FIG. 3 is a diagram in which a wind direction control device according to Embodiment 1 of the present invention controls a flow of air in a horizontal direction.
FIG. 4 is a diagram in which a wind direction control device according to Embodiment 1 of the present invention controls the flow of air in a vertical direction.
FIG. 5 is a diagram in which a wind direction control device according to Embodiment 1 of the present invention controls the flow of air in an oblique direction.
FIG. 6 is a diagram in which a wind direction control device according to Embodiment 2 of the present invention controls the flow of air in a horizontal direction.
FIG. 7 is a diagram in which a wind direction control device according to Embodiment 2 of the present invention controls a flow of air in a vertical direction.
FIG. 8 is a diagram in which a wind direction control device according to Embodiment 3 of the present invention controls the flow of air in a horizontal direction.
FIG. 9 is a diagram in which a wind direction control device according to Embodiment 3 of the present invention controls air flow in a vertical direction. FIG. 10 is a diagram in which a wind direction control device according to Embodiment 4 of the present invention controls air flow in a horizontal direction. FIG.
FIG. 11 is a view for controlling an airflow in a conventional wind direction control device in a horizontal direction.
FIG. 12 is a control diagram for making an air flow in a vertical direction in a conventional wind direction control device.
FIG. 13 is a diagram for controlling an air flow in an oblique direction in a conventional wind direction control device.
[Explanation of symbols]
Reference Signs List 1 indoor unit of air conditioner, 1a cabinet, 2 outlet air path, 2a upper side wall surface, 2b lower side wall surface, 2c outlet, 3 vertical wind direction plate, 3a downstream wind direction plate, 3b, 3c upstream wind direction plate, 4 Left and right wind direction board, 5 drive device, 6 heat exchanger, 7 blower, 8 suction port, 10 upper restraint wind direction board,
14 Streamline 15 Eddy current.

Claims (7)

風路内に設けられ、当該風路から吹出される空気流の上下方向の向きを変える風向板を有する風向制御装置において、前記風向板がほぼ一列状の複数の風向板からなり、この一列状の各風向板の上下方向の傾斜角度を制御して前記空気流の向きを徐々に目標方向へ変えるようにしたことを特徴とする風向制御装置。In a wind direction control device provided in an air passage and having a wind direction plate for changing a vertical direction of an air flow blown out from the air passage, the wind direction plate includes a plurality of wind direction plates substantially in a row, Wherein the direction of the airflow is gradually changed to a target direction by controlling the vertical inclination angle of each wind direction plate. 前記一列状の各風向板が、前記空気流の向きを目標方向へ変える時に、当該目標方向が前記風路の傾斜角度よりも大きい時には、その各風向板の傾斜角度を前記空気流の上流側のものほど小さくなるように制御したことを特徴とする請求項1に記載の風向制御装置。When the direction of the airflow is changed to a target direction, when the target direction is larger than the inclination angle of the air passage, the inclination angle of each airflow direction plate is set to the upstream side of the airflow. The wind direction control device according to claim 1, wherein the wind direction control device is controlled to be smaller as the wind direction becomes smaller. 前記一列状の各風向板が、前記空気流の向きを目標方向へ変える時に、当該目標方向が前記風路の傾斜角度よりも小さい時には、その各風向板の傾斜角度を前記空気流の上流側のものほど大きくなるように制御したことを特徴とする請求項1又は2に記載の風向制御装置。When the direction of the airflow is changed to the target direction, when the target direction is smaller than the inclination angle of the air path, the inclination angle of each airflow direction plate is set to the upstream side of the airflow. The wind direction control device according to claim 1, wherein the wind direction control device is controlled so as to be larger as the wind direction is larger. 前記一列状の風向板が、3つ以上の風向板で構成されたことを特徴とする請求項1から3までのいずれかに記載の風向制御装置。The wind direction control device according to any one of claims 1 to 3, wherein the one row of wind direction plates includes three or more wind direction plates. 隙間が、前記一列状の各風向板間に設けられ、その上流側風向板の前記空気流をその下流側風向板の反対側へバイパスさせることを特徴とする請求項1から4までのいずれかに記載の風向制御装置。A gap is provided between each row of the wind direction plates, and the airflow of the upstream wind direction plate is bypassed to the opposite side of the downstream wind direction plate. The wind direction control device according to item 1. 上方抑制風向板が、前記一列状の各風向板と前記風路の上方側壁面と間に設けられ、当該風路の上方側空気の流れを前記一列状の各風向板が形成する前記空気流の流れにほぼ沿うように制御することを特徴とする請求項1から5までのいずれかに記載の風向制御装置。The air flow in which an upward restraining wind direction plate is provided between each of the row-shaped wind direction plates and an upper side wall surface of the air passage, and the flow of air above the wind path is formed by each of the row-shaped wind direction plates. The wind direction control device according to any one of claims 1 to 5, wherein control is performed so as to substantially follow the flow of the wind. 空気調和機の室内機が、前記請求項1から6までのいずれかに記載された風向制御装置を装着したことを特徴とする空気調和機。An air conditioner, wherein an indoor unit of the air conditioner is equipped with the wind direction control device according to any one of claims 1 to 6.
JP2002213729A 2002-07-23 2002-07-23 Wind direction control device and air conditioner using the same Expired - Fee Related JP4013683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213729A JP4013683B2 (en) 2002-07-23 2002-07-23 Wind direction control device and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213729A JP4013683B2 (en) 2002-07-23 2002-07-23 Wind direction control device and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2004053196A true JP2004053196A (en) 2004-02-19
JP4013683B2 JP4013683B2 (en) 2007-11-28

Family

ID=31936253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213729A Expired - Fee Related JP4013683B2 (en) 2002-07-23 2002-07-23 Wind direction control device and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP4013683B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281550A (en) * 2009-06-08 2010-12-16 Mitsubishi Electric Corp Indoor unit of air conditioner
WO2011033843A1 (en) * 2009-09-15 2011-03-24 シャープ株式会社 Air flow direction changing device for air adjusting device
JP2011112246A (en) * 2009-11-25 2011-06-09 Mitsubishi Electric Corp Indoor unit of air conditioner
WO2014097685A1 (en) 2012-12-19 2014-06-26 三菱電機株式会社 Air conditioner
WO2015145740A1 (en) * 2014-03-28 2015-10-01 三菱電機株式会社 Air conditioner
JP2017053568A (en) * 2015-09-10 2017-03-16 ダイキン工業株式会社 Air Conditioning Indoor Unit
JP2017125678A (en) * 2017-04-27 2017-07-20 ダイキン工業株式会社 Air-conditioning indoor machine
WO2019233268A1 (en) * 2018-06-05 2019-12-12 青岛海尔空调器有限总公司 Control method and system for indoor unit of air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281550A (en) * 2009-06-08 2010-12-16 Mitsubishi Electric Corp Indoor unit of air conditioner
WO2011033843A1 (en) * 2009-09-15 2011-03-24 シャープ株式会社 Air flow direction changing device for air adjusting device
JP2011064343A (en) * 2009-09-15 2011-03-31 Sharp Corp Wind direction changing device for air conditioner
JP2011112246A (en) * 2009-11-25 2011-06-09 Mitsubishi Electric Corp Indoor unit of air conditioner
CN104854411A (en) * 2012-12-19 2015-08-19 三菱电机株式会社 Air conditioner
US20150192322A1 (en) * 2012-12-19 2015-07-09 Mitsubishi Electric Corporation Air conditioner
WO2014097685A1 (en) 2012-12-19 2014-06-26 三菱電機株式会社 Air conditioner
EP2937640A4 (en) * 2012-12-19 2016-08-17 Mitsubishi Electric Corp Air conditioner
WO2015145740A1 (en) * 2014-03-28 2015-10-01 三菱電機株式会社 Air conditioner
JPWO2015145740A1 (en) * 2014-03-28 2017-04-13 三菱電機株式会社 Air conditioner
JP2017053568A (en) * 2015-09-10 2017-03-16 ダイキン工業株式会社 Air Conditioning Indoor Unit
WO2017043479A1 (en) * 2015-09-10 2017-03-16 ダイキン工業株式会社 Air-conditioning indoor unit
JP2017125678A (en) * 2017-04-27 2017-07-20 ダイキン工業株式会社 Air-conditioning indoor machine
WO2019233268A1 (en) * 2018-06-05 2019-12-12 青岛海尔空调器有限总公司 Control method and system for indoor unit of air conditioner

Also Published As

Publication number Publication date
JP4013683B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
JP3311932B2 (en) Air conditioner indoor unit
JP6340597B2 (en) Air conditioner
JP6004165B2 (en) Air conditioner
JP6004164B2 (en) Air conditioner
JP2004053196A (en) Wind direction controller and air conditioner using the same
JP3624814B2 (en) Air conditioner decorative panel, air outlet unit, and air conditioner
JP3302895B2 (en) Embedded air conditioner
JP2004125313A (en) Air conditioner
JP2008215721A (en) Air conditioner
WO2001035030A1 (en) Ceiling-embedded type air conditioner
JP4370461B2 (en) Indoor unit of air conditioner
JP4752142B2 (en) Indoor unit for air conditioner
JP6098962B2 (en) Air conditioner
JP2010084994A (en) Ceiling-embedded air conditioner
JPH07167487A (en) Outlet of air conditioner embedded in ceiling
JP2019020079A (en) Flap, and wall type room air conditioner indoor unit provided with the same
JP2010112600A (en) Indoor unit for air conditioning system and air conditioning system provided with the same
JP7104310B2 (en) Blower
JP2010249451A (en) Air conditioner
JP2014009920A (en) Air conditioner
JP2014031895A (en) Air conditioner
JP2014031894A (en) Air conditioner
JPH11101483A (en) Air conditioner
JPH0835719A (en) Air conditioner
JPH10110967A (en) Air conditioning system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees