JP2004053176A - Water cooling machine - Google Patents

Water cooling machine Download PDF

Info

Publication number
JP2004053176A
JP2004053176A JP2002213228A JP2002213228A JP2004053176A JP 2004053176 A JP2004053176 A JP 2004053176A JP 2002213228 A JP2002213228 A JP 2002213228A JP 2002213228 A JP2002213228 A JP 2002213228A JP 2004053176 A JP2004053176 A JP 2004053176A
Authority
JP
Japan
Prior art keywords
water
cooling
ice
coil
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002213228A
Other languages
Japanese (ja)
Inventor
Hatsuo Yajima
矢島 初男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Electric Appliances Co Ltd
Original Assignee
Toshiba Electric Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electric Appliances Co Ltd filed Critical Toshiba Electric Appliances Co Ltd
Priority to JP2002213228A priority Critical patent/JP2004053176A/en
Publication of JP2004053176A publication Critical patent/JP2004053176A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water cooling machine in which a water level sensor is removed to reduce a cost by detecting the water level of cooling water in a cooling tank by an ice sensor for detecting a quantity of ice produced on the surface of a cooling coil. <P>SOLUTION: The cooling tank 5 for storing the cooling water is provided. The cooling coil 14 is disposed in the cooling water of the cooling tank 5 to form an ice layer on its surface. A water supply pipeline 27 has one end connected to a water supply source, the other end from which cold water spouts, and an intermediate part with a cooling coil 4 passing through the cooling tank. The ice sensors 25 are provided for detecting the quantity of ice 14 formed by the cooling coil 4. The ice sensors 25 are disposed at positions where the water level of the cooling tank and the quantity of ice can be detected. The ice sensors 25 detect both the water level of the cooling water in the cooling tank 5 and the quantity of ice 14. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
本発明は、冷却用タンク内の冷却水の水位を検知するセンサを氷の量を検知する氷センサで兼用して検知できる冷水機に関する。
【0002】
【従来技術】
従来、例えば、飲料液をカップに注出して提供する給茶機やカツプ式飲料自動販売機などの液体注出装置では、飲料原料と冷水または湯水とを混合攪拌して希釈された飲料をカップに注出するようになっている。
【0003】
そして、このような液体注出装置では、冷水を供給するために、例えば、特開平11−311464号公報に記載されているように、水冷蓄熱式の冷却機能を備えた構成が知られている。すなわち、冷却水槽内(冷却用タンク)の冷却水中に冷媒コイル(冷却コイル)を配設し、冷凍サイクルの作動により冷媒コイルを介して冷却水を冷却し、この冷却水と給水管路の途中に設けられた冷却コイル(冷水コイル)を通過する水道水とを熱交換を行って、冷水として注出するようになっている。
【0004】
また、冷凍サイクルの停止中に氷の蓄熱量を利用して冷却水槽内を低温に維持させるために、冷媒コイルの表面に所定厚の氷を蓄氷させ、この蓄氷された氷の厚みを検知して所定厚の氷を維持管理する蓄氷センサ(氷センサ)が配置されている。
【0005】
すなわち、冷凍サイクルの作動により冷媒コイルを介して冷媒コイルの表面に氷を生成させ、氷が蓄氷センサで検知されると蓄氷センサ間の電気抵抗は水の電気抵抗より大きいため、これにより冷凍サイクルは停止される。そして、飲料の注出時は、水道水が冷却コイル(冷水コイル)を通過する間に冷却水槽内の冷却水との間で熱交換されて冷却され瞬時に冷水となってカップに注出される。そして、この注出により氷が溶けて蓄氷センサの電気抵抗値が小さくなると冷凍サイクルが作動されて再び氷を生成するようになっている。
【0006】
ところで、このような液体注出装置の冷却水槽内への冷却水の給水は、冷却水の最初の給水時または排水後の給水時、あるいは自然蒸発などにより水位が低下したような場合に手動または自動のいずれかの方法により行われる。そして、自動給水の場合、その水位は冷却水槽内の冷却水中に設けられた水位センサで所定の位置に水位が達したことが検知されたことにより給水が停止されるようになっている。
【0007】
【発明が解決しようとする課題】
しかし、このように、冷却水槽(冷却用タンク)内の冷却水中に設けられた水位センサにより水位を検知するようにすると、専用の水位センサが必要であるとともに、その水位センサの取付作業が伴ないコストアップになる。
【0008】
本発明は、このような点に鑑みなされたもので、冷却水槽(冷却用タンク)内の水位検知を冷媒コイル(冷却コイル)の表面に生成される氷の量を検知する氷センサで兼用することにより水位センサを廃止してコストダウンが図れる冷水機を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の冷水機は、冷却水を貯留する冷却用タンクと、この冷却用タンク内の冷却水中に配置され表面に氷層を生成させる冷却コイルと、一端が給水源に接続されるとともに他端から冷水が注出され、中間部に前記冷却タンク内を通過する冷水コイルを有する給水管路と、前記冷却コイルにより生成された氷の量を検知する氷センサとを備えた冷水機において、この氷センサの取付位置を冷却用タンク内の冷却水の水位と氷の量を検知できる位置に配置したものである。
【0010】
そして、構成により、氷センサの取付位置を冷却用タンクの水位と氷の量を検知できる位置に配置したので、氷センサが、氷の生成量が所定量に達し氷センサ間の電気抵抗値が水の場合の電気抵抗値より大きくなったことを検知した時、冷凍サイクルの動作を停止させる制御を行う。また、氷センサが冷却用タンクの水位が所定水位よりも低下して空気中にあることを氷センサ間の電気抵抗値が無限大近くであることで検知した時は、冷却水の給水を行う。したがって、氷センサは氷の量と冷却用タンク内の水位の両方を検知でき、水位検知専用の水位センサを設ける必要がなくなる。
【0011】
【発明の実施の形態】
以下、本発明の一実施の形態を図面を参照して説明する。
【0012】
【実施例】
図1において、飲料注出装置としての冷水構造は、図示しない機体内に冷却水を貯留する冷却用タンク5と、この冷却用タンク内の冷却水中には表面に氷層を生成させる冷却コイル13と、冷却用タンク5内を通過する冷水コイル4とを有し冷水が流通する冷水管路27、および上面開口を通じて攪拌翼としてのアジテータ21が配置されている。
【0013】
冷却コイル13は、冷媒が通過されるパイプがコイル状に巻回されており、両端が機体内に配設される冷凍サイクル28に接続されている。冷凍サイクル28は、圧縮機15、凝縮器16、ドライヤ17、キャピラリチューブ18から構成され凝縮器16には冷却モータ20で駆動される冷却ファン19が配設されている。そして、冷凍サイクル28の作動により、冷却コイル13を介して冷却用タンク5の冷却水が冷却されるとともに、冷却コイル13の表面に所定量の氷が蓄氷され、冷凍サイクル停止中も氷の蓄熱により冷却水が低温に維持される。
【0014】
冷水管路27は、パイプがコイル状に巻回されて形成されて冷却用タンク5内を通過する冷水コイル4と、この冷水コイル4の上流側の一端には給水源である水道管に直結される給水管2と、この給水管2の流路を開閉する給水電磁弁1と、冷水の注出量を検知する流量センサ3と、冷水コイル4の下流側の他端には冷水分岐継手6と、この冷水分岐継手6には給水管2を通って冷水コイル4で冷水化された冷水を、夫々冷水電磁弁7を介して水、お茶等の飲料用に供される冷水パイプ8とから構成されている。そして、冷水を注出する場合は冷水パイプ8から直接カツプ9に供給される。また、お茶等の飲料は冷水パイプ8からの冷水と、キャニスタ11に収納された飲料原料を原料モータ12の作動により必要量供給し、ロート10内で混合してカップ9に供給される。また、給水管2から分岐して冷却水電磁弁29を有する冷却水給水管30が接続され冷却用タンク5内に冷却用水を供給するようになっている。
【0015】
アジテータ21は攪拌モータ22により回転され冷却水中に下向きの水流が発生するように回転されて冷却用タンク5内の冷水全体を均一に冷却する。
【0016】
25は一対の氷センサで、この氷センサ25は、冷却コイル13の近傍で且つ冷却用タンク5内の冷却水の水位と、冷却コイル13の表面に生成された氷の量を検知できる位置に配置され、水、氷、空気における氷センサ25の電極間の電気抵抗差に基づき夫々検知信号を出力し、冷却用タンク5内の冷却水の水位制御と冷凍サイクルの運転制御の両方を行うようになっている。
【0017】
23は水温センサで、この水温センサ23は、冷却用タンク5内に設けられ冷却用タンク5内の冷却水の温度を測定し、冷水の温度を管理するものである。
【0018】
26は制御装置で、この制御装置26は、氷センサ25、水温センサ23、流量センサ3等から出力される信号を受けて、給水電磁弁1、冷水電磁弁7、冷却水電磁弁29、原料モータ12、圧縮機15、冷却モータ20等を制御するものである。
【0019】
次に、本実施の形態の作用を説明する。
【0020】
先ず、冷却用タンク5内への冷却水の給水は、冷却水の最初の給水時または排水後の給水時に図示しない給水スイッチが操作された時、あるいは、氷センサ25で水位の低下を検知した時に、手動または、制御装置の制御によって自動給水される。
【0021】
すなわち、自動給水の場合は、制御装置26により冷水電磁弁7が閉じられ、給水電磁弁1および冷却水電磁弁29を開かれ、水道水が、その給水圧によって給水管2および冷却水給水管30を通じて冷却用タンク5内に給水される。そして、氷センサ25が空気中にあり氷センサ25間の電気抵抗値が水、氷の電気抵抗値よりも大きい無限大近くを検知している時は給水が継続される。そして、氷センサ25が冷却水中に漬されると氷センサ25間の電気抵抗値は小さくなり、この検知信号が制御装置26に入力され給水電磁弁1および冷水電磁弁7が閉じられ給水が停止される。したがって、専用の水位センサを設けることなく氷センサ25により水位を制御することができコストダウンが図れる。また、手動による給水の場合は、ヤカンなどにより給水が行われオーハバーフローパイプ31より、余分な水が流れだすまで給水する。。
【0022】
次に、氷センサ25により冷却用タンク5内の水位が確認されていれば、冷凍サイクル28が作動され冷却コイル13を介して冷却水が冷却され、冷却コイル13の表面に所定量の氷14を蓄氷させる。同時に攪拌モータ22を駆動してアジテータ21を回転して冷却用タンク5内の冷却水を循環させ冷水コイル4の冷却効果が高められる。
【0023】
すなわち、冷凍サイクル28の動作は、冷媒ガスを圧縮機15により圧縮し、常温の空気で冷やしても容易に液化できる高温高圧の冷媒ガスとし、これを凝縮器16に送り凝縮器16で冷却され凝縮熱を放出して液化される。凝縮器16で放熱される熱量は冷媒が蒸発器として機能する冷却コイル13で奪ってきた蒸発熱と圧縮するために加えられた仕事の合計であり、これを冷却モータ20で駆動される冷却ファン19で空気を送ることで強制的に奪い取られる。凝縮器16で液化された高圧の冷媒は、ドライヤ17を通すことで冷媒中の水分を除去し、キャピラリチューブ18を通る間に膨張して低圧となり蒸発しやすい状態になる。次に、この低温低圧の冷媒液は圧力の低い冷却コイル13に放出されることで冷却コイル13の熱を奪って蒸発しガス化するため、冷却コイル13が冷やされる。以後このサイクルが繰り返され、蒸発器となる冷却コイル13の周りに氷14が生成され、この氷14が蓄氷されて氷センサ25の位置まで達すると氷センサ25間の電気抵抗値が水より大きく空気よりも小さい値を検知すれば氷14が所定量であるとして冷凍サイクルの運転が停止される。そして、冷凍サイクルの停止中にも氷14の蓄熱量を利用して冷却水を低温に維持される。
【0024】
次に、飲料の注出時には、図示しない注出釦の操作により、キャニスタ11から原料モータ12を所定時間駆動して所定量の飲料用原料をロート10に注出し、飲料用原料と冷水とを混合させて飲料を調合し、カップ9へ供給される。また、冷水のみを注出する場合には給水パイプ8から直接カップ9へ冷水を供給する。
【0025】
冷水管路27からの冷水の注出は、冷却水電磁弁29を閉じたまま給水電磁弁1および冷水電磁弁7を開くことにより、水道水が、その給水圧により、矢印で示すように、給水管2、冷水コイル4および冷水パイプ8を通じてカップ9に注出されるとともに、冷水コイル4を通過する間に冷却用タンク5の冷却水との間で熱交換されて冷却される。
【0026】
【発明の効果】
請求項1記載の冷水機によれば、氷センサの取付位置を冷却用タンク内の冷却水の水位と氷の量を検知できる位置に配置したので、専用の水位センサが不要になるとともに、その水位センサの取付作業も不要でありコストダウンになる。
【0027】
【図面の簡単な説明】
【図1】本発明の一実施形態を示す冷水機の構成図ある。
【符号の説明】
1  給水電磁弁
2  給水管
3  流量センサ
4  冷水コイル
5  冷却用タンク
6  冷水分岐継手
7  冷水電磁弁
8  冷却水電磁弁
9  カップ
10  ロート
11  キャニスタ
12  原料モータ
13  冷却コイル
14  氷
15  圧縮機
16  凝縮器
17  ドライヤ
18  キャピラルチューブ
19  冷却ファン
20  冷却モータ
21  アジテータ
22  攪拌モータ
23  水温センサ
25  氷センサ
26  制御装置
27  給水管路
28  冷凍サイクル
29  冷却水電磁弁
30  冷却水給水管
[0001]
The present invention relates to a chiller that can detect a level of cooling water in a cooling tank by using an ice sensor that detects the amount of ice.
[0002]
[Prior art]
Conventionally, for example, in a liquid dispensing apparatus such as a tea dispenser or a cup-type beverage vending machine that pours and provides a beverage into a cup, a beverage that has been diluted by mixing and stirring a beverage ingredient and cold or hot water is used. To be poured out.
[0003]
In order to supply chilled water, a configuration having a cooling function of a water-cooled heat storage type for supplying cold water is known, for example, as described in Japanese Patent Application Laid-Open No. H11-31164. . That is, a refrigerant coil (cooling coil) is arranged in the cooling water in the cooling water tank (cooling tank), and the cooling water is cooled through the refrigerant coil by the operation of the refrigeration cycle. Is exchanged with tap water passing through a cooling coil (cold water coil) provided in the chiller, and is discharged as cold water.
[0004]
Further, in order to maintain the inside of the cooling water tank at a low temperature by utilizing the heat storage amount of the ice while the refrigeration cycle is stopped, ice of a predetermined thickness is stored on the surface of the refrigerant coil, and the thickness of the stored ice is reduced. An ice storage sensor (ice sensor) for detecting and maintaining ice of a predetermined thickness is provided.
[0005]
That is, the operation of the refrigeration cycle generates ice on the surface of the refrigerant coil via the refrigerant coil, and when the ice is detected by the ice storage sensor, the electric resistance between the ice storage sensors is larger than the electric resistance of water. The refrigeration cycle is stopped. Then, when the beverage is poured, heat is exchanged with the cooling water in the cooling water tank while the tap water passes through the cooling coil (cold water coil), cooled, instantaneously turned into cold water, and poured into the cup. . When the ice melts due to this pouring and the electric resistance value of the ice storage sensor decreases, the refrigeration cycle is operated to generate ice again.
[0006]
By the way, the supply of the cooling water into the cooling water tank of such a liquid discharging device is performed manually or at the time of the first water supply of the cooling water or the water supply after the drainage, or when the water level is lowered due to spontaneous evaporation or the like. This is done by any of the automatic methods. In the case of automatic water supply, the water level is stopped when the water level sensor provided in the cooling water in the cooling water tank detects that the water level has reached a predetermined position.
[0007]
[Problems to be solved by the invention]
However, when the water level is detected by the water level sensor provided in the cooling water in the cooling water tank (cooling tank), a dedicated water level sensor is required, and the mounting work of the water level sensor is required. No cost increase.
[0008]
The present invention has been made in view of such a point, and the detection of the water level in the cooling water tank (cooling tank) is also performed by an ice sensor that detects the amount of ice generated on the surface of the refrigerant coil (cooling coil). Accordingly, it is an object of the present invention to provide a water cooler which can reduce the cost by eliminating the water level sensor.
[0009]
[Means for Solving the Problems]
The chiller according to claim 1 has a cooling tank for storing cooling water, a cooling coil arranged in the cooling water in the cooling tank to generate an ice layer on a surface, and one end connected to a water supply source. Cold water is poured out from the other end, a water supply line having a water supply pipe having a cold water coil passing through the cooling tank at an intermediate portion, and an ice sensor for detecting an amount of ice generated by the cooling coil. The ice sensor is mounted at a position where the level of the cooling water in the cooling tank and the amount of ice can be detected.
[0010]
According to the configuration, the ice sensor is mounted at a position where the water level of the cooling tank and the amount of ice can be detected, so that the ice sensor reaches a predetermined amount of ice and the electric resistance value between the ice sensors decreases. When it is detected that the electric resistance value has become larger than the electric resistance value in the case of water, control is performed to stop the operation of the refrigeration cycle. Further, when the ice sensor detects that the water level of the cooling tank is lower than the predetermined water level and is in the air by the electric resistance value between the ice sensors being close to infinity, the cooling water is supplied. . Therefore, the ice sensor can detect both the amount of ice and the water level in the cooling tank, and there is no need to provide a water level sensor dedicated to detecting the water level.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0012]
【Example】
In FIG. 1, a cold water structure as a beverage dispensing device includes a cooling tank 5 for storing cooling water in a body (not shown) and a cooling coil 13 for generating an ice layer on the surface of the cooling water in the cooling tank. And a chilled water coil 4 passing through the cooling tank 5, a chilled water pipe 27 through which chilled water flows, and an agitator 21 as a stirring blade through an opening on the upper surface.
[0013]
The cooling coil 13 is formed by winding a pipe through which a refrigerant passes, in a coil shape, and both ends thereof are connected to a refrigeration cycle 28 disposed in the machine body. The refrigeration cycle 28 includes a compressor 15, a condenser 16, a dryer 17, and a capillary tube 18. The condenser 16 is provided with a cooling fan 19 driven by a cooling motor 20. The operation of the refrigeration cycle 28 cools the cooling water in the cooling tank 5 via the cooling coil 13 and stores a predetermined amount of ice on the surface of the cooling coil 13. Cooling water is maintained at a low temperature by heat storage.
[0014]
The chilled water pipe 27 is formed by winding a pipe in a coil shape and passes through the cooling tank 5. The chilled water coil 4 is directly connected to an upstream end of the chilled water coil 4 to a water supply source serving as a water supply source. Water supply pipe 2, a water supply solenoid valve 1 for opening and closing the flow path of the water supply pipe 2, a flow rate sensor 3 for detecting the discharge amount of the cold water, and a cold water branch joint at the other end on the downstream side of the cold water coil 4. 6 and a cold water pipe 8 for drinking water such as tea or tea through a cold water solenoid valve 7 through a cold water coil 4 through a cold water coil 4 through the cold water branch joint 6. It is composed of When the cold water is to be poured, the cold water is supplied directly from the cold water pipe 8 to the cup 9. In addition, drinks such as tea are supplied in a required amount by operation of a raw material motor 12 with cold water from a cold water pipe 8 and beverage raw materials stored in a canister 11, mixed in a funnel 10, and supplied to a cup 9. A cooling water supply pipe 30 having a cooling water solenoid valve 29 branched from the water supply pipe 2 is connected to supply cooling water into the cooling tank 5.
[0015]
The agitator 21 is rotated by the stirring motor 22 and rotated so as to generate a downward water flow in the cooling water, thereby uniformly cooling the entire cooling water in the cooling tank 5.
[0016]
Reference numeral 25 denotes a pair of ice sensors. The ice sensor 25 is located near the cooling coil 13 and at a position where the level of the cooling water in the cooling tank 5 and the amount of ice generated on the surface of the cooling coil 13 can be detected. It is arranged to output a detection signal based on the electric resistance difference between the electrodes of the ice sensor 25 in water, ice, and air, respectively, to perform both the water level control of the cooling water in the cooling tank 5 and the operation control of the refrigeration cycle. It has become.
[0017]
Reference numeral 23 denotes a water temperature sensor, which is provided in the cooling tank 5 and measures the temperature of the cooling water in the cooling tank 5 and manages the temperature of the cold water.
[0018]
Reference numeral 26 denotes a control unit. The control unit 26 receives signals output from the ice sensor 25, the water temperature sensor 23, the flow rate sensor 3, and the like, and receives a water supply solenoid valve 1, a cold water solenoid valve 7, a cooling water solenoid valve 29, a raw material It controls the motor 12, the compressor 15, the cooling motor 20, and the like.
[0019]
Next, the operation of the present embodiment will be described.
[0020]
First, the supply of the cooling water into the cooling tank 5 is detected when a water supply switch (not shown) is operated at the time of the first supply of the cooling water or the supply of water after the drainage, or a decrease in the water level is detected by the ice sensor 25. At times, water is automatically supplied manually or under the control of a control device.
[0021]
That is, in the case of automatic water supply, the cold water solenoid valve 7 is closed by the control device 26, the water supply solenoid valve 1 and the cooling water solenoid valve 29 are opened, and tap water is supplied by the water supply pressure to the water supply pipe 2 and the cooling water supply pipe. Water is supplied into the cooling tank 5 through 30. Then, when the ice sensor 25 is in the air and the electric resistance value between the ice sensors 25 detects near infinity which is larger than the electric resistance values of water and ice, water supply is continued. Then, when the ice sensor 25 is immersed in the cooling water, the electric resistance value between the ice sensors 25 decreases, and this detection signal is input to the control device 26, the water supply electromagnetic valve 1 and the cold water electromagnetic valve 7 are closed, and the water supply is stopped. Is done. Therefore, the water level can be controlled by the ice sensor 25 without providing a dedicated water level sensor, and the cost can be reduced. In the case of manual water supply, water is supplied by a kettle or the like, and water is supplied from the ohabber flow pipe 31 until excess water starts flowing. .
[0022]
Next, if the water level in the cooling tank 5 is confirmed by the ice sensor 25, the refrigeration cycle 28 is operated to cool the cooling water through the cooling coil 13, and a predetermined amount of ice 14 Let ice accumulate. At the same time, the stirring motor 22 is driven to rotate the agitator 21 to circulate the cooling water in the cooling tank 5, thereby enhancing the cooling effect of the chilled water coil 4.
[0023]
That is, the operation of the refrigeration cycle 28 is as follows. The refrigerant gas is compressed by the compressor 15 and turned into a high-temperature and high-pressure refrigerant gas which can be easily liquefied even when cooled with normal-temperature air, sent to the condenser 16 and cooled by the condenser 16. It is liquefied by releasing heat of condensation. The amount of heat dissipated in the condenser 16 is the sum of the evaporation heat of the refrigerant taken by the cooling coil 13 functioning as an evaporator and the work added to compress the refrigerant, and this is the cooling fan driven by the cooling motor 20. It is forcibly taken away by sending air at 19. The high-pressure refrigerant liquefied in the condenser 16 removes moisture in the refrigerant by passing through a dryer 17 and expands while passing through a capillary tube 18 to become a low pressure and easily evaporate. Next, the low-temperature low-pressure refrigerant liquid is released to the low-pressure cooling coil 13 to remove heat from the cooling coil 13 to evaporate and gasify, so that the cooling coil 13 is cooled. Thereafter, this cycle is repeated, and ice 14 is generated around the cooling coil 13 serving as an evaporator. When the ice 14 is stored and reaches the position of the ice sensor 25, the electric resistance between the ice sensors 25 becomes higher than that of water. When a value larger than the air is detected, the operation of the refrigeration cycle is stopped, assuming that the ice 14 has a predetermined amount. The cooling water is kept at a low temperature by utilizing the heat storage amount of the ice 14 even during the stop of the refrigeration cycle.
[0024]
Next, at the time of dispensing the beverage, by operating a not-shown dispensing button, the raw material motor 12 is driven from the canister 11 for a predetermined time to pour a predetermined amount of the beverage raw material into the funnel 10, and the beverage raw material and the cold water are discharged. The beverage is prepared by mixing and supplied to the cup 9. When only cold water is to be poured, the cold water is supplied directly from the water supply pipe 8 to the cup 9.
[0025]
The cold water is discharged from the cold water pipe 27 by opening the water supply solenoid valve 1 and the cold water solenoid valve 7 while the cooling water solenoid valve 29 is closed, so that the tap water is supplied by its water supply pressure as indicated by an arrow. The water is poured into the cup 9 through the water supply pipe 2, the cold water coil 4 and the cold water pipe 8, and is cooled by exchanging heat with the cooling water in the cooling tank 5 while passing through the cold water coil 4.
[0026]
【The invention's effect】
According to the water cooler of the first aspect, the ice sensor is mounted at a position where the water level of the cooling water in the cooling tank and the amount of ice can be detected. The installation work of the water level sensor is unnecessary, and the cost is reduced.
[0027]
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a water cooler showing one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water supply solenoid valve 2 Water supply pipe 3 Flow rate sensor 4 Cold water coil 5 Cooling tank 6 Cold water branch joint 7 Cold water solenoid valve 8 Cooling water solenoid valve 9 Cup 10 Roto 11 canister 12 Raw material motor 13 Cooling coil 14 Ice 15 Compressor 16 Condenser 17 Dryer 18 Capillary tube 19 Cooling fan 20 Cooling motor 21 Agitator 22 Stirring motor 23 Water temperature sensor 25 Ice sensor 26 Controller 27 Water supply line 28 Refrigeration cycle 29 Cooling water solenoid valve 30 Cooling water supply pipe

Claims (1)

冷却水を貯留する冷却用タンクと、この冷却用タンク内の冷却水中に配置され表面に氷層を生成させる冷却コイルと、一端が給水源に接続されるとともに他端から冷水が注出され、中間部に前記冷却タンク内を通過する冷水コイルを有する給水管路と、前記冷却コイルにより生成された氷の量を検知する氷センサとを備えた冷水機において、この氷センサの取付位置を冷却用タンク内の冷却水の水位と氷の量を検知できる位置に配置したことを特徴とする冷水機。A cooling tank that stores cooling water, a cooling coil that is arranged in the cooling water in the cooling tank and generates an ice layer on the surface, one end is connected to a water supply source and cold water is poured out from the other end, In a chiller equipped with a water supply pipe having a chilled water coil passing through the inside of the cooling tank at an intermediate portion, and an ice sensor for detecting an amount of ice generated by the cooling coil, a cooling position of the ice sensor is cooled. A water cooler characterized by being located at a position where the level of cooling water and the amount of ice in a storage tank can be detected.
JP2002213228A 2002-07-23 2002-07-23 Water cooling machine Pending JP2004053176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213228A JP2004053176A (en) 2002-07-23 2002-07-23 Water cooling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213228A JP2004053176A (en) 2002-07-23 2002-07-23 Water cooling machine

Publications (1)

Publication Number Publication Date
JP2004053176A true JP2004053176A (en) 2004-02-19

Family

ID=31935876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213228A Pending JP2004053176A (en) 2002-07-23 2002-07-23 Water cooling machine

Country Status (1)

Country Link
JP (1) JP2004053176A (en)

Similar Documents

Publication Publication Date Title
US6725675B2 (en) Flaked ice making machine
JP5376779B2 (en) Beverage dispenser
JP2008119282A (en) Beverage dispenser
JP2009047403A (en) Beverage dispenser
JP2008101833A (en) Hot water tank for beverage supply device
JP2007202943A (en) Drink dispenser
JP2017165445A (en) Beverage dispenser
JP2001133109A (en) Cold water pour-out device
JP5458730B2 (en) Beverage supply equipment
JP2006193181A (en) Drink water dispenser
JP2004053176A (en) Water cooling machine
JP4008393B2 (en) Water cooler
JP3886282B2 (en) Beverage supply equipment
JP2003192097A (en) Cold drink feed device
JP5219356B2 (en) Cold water supply device
JP2001002193A (en) Beverage feeder
JP3970620B2 (en) Ice storage type beverage dispenser
JP4147026B2 (en) Cold beverage supply device
JP4225470B2 (en) Beverage dispenser
JP2005128751A (en) Drainage device for beverage dispenser device
JP4127136B2 (en) Beverage supply equipment
JP4445688B2 (en) Cold beverage supply device
JP4477792B2 (en) Ice storage chiller with carbonator
JP2001283316A (en) Automatic vending machine
JP2009198147A (en) Beverage providing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040615

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

A131 Notification of reasons for refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612