JP2004052847A - Gas bearing for improved disk - Google Patents

Gas bearing for improved disk Download PDF

Info

Publication number
JP2004052847A
JP2004052847A JP2002208995A JP2002208995A JP2004052847A JP 2004052847 A JP2004052847 A JP 2004052847A JP 2002208995 A JP2002208995 A JP 2002208995A JP 2002208995 A JP2002208995 A JP 2002208995A JP 2004052847 A JP2004052847 A JP 2004052847A
Authority
JP
Japan
Prior art keywords
load
movable shaft
ball
bearing
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002208995A
Other languages
Japanese (ja)
Inventor
Yutaka Momose
百瀬 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momose Kikai Sekkei KK
Original Assignee
Momose Kikai Sekkei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momose Kikai Sekkei KK filed Critical Momose Kikai Sekkei KK
Priority to JP2002208995A priority Critical patent/JP2004052847A/en
Publication of JP2004052847A publication Critical patent/JP2004052847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that a load in a radial direction is sufficiently supported, but in particular, moderate load fluctuation can not be surely supported by only supporting an antigravity direction load with a restoring force by a pressure difference with respect to atmosphere generated in the hermetically sealed space formed between an end face and an inner wall of a movable shaft since a gas in the hermetically sealed space is leaked from a clearance of the bearing. <P>SOLUTION: A gravity direction load is received at a center point of a spherical surface of a ball 14 of a rotation movable shaft 8, and is supported by reducing a rotation torque. The antigravity direction load is supported with one-point support by the ball arranged between an end face at a side opposite to the movable shaft and an end face of a screw part member 11 set in a frame, thereby performing support of the antigravity direction load. In order to prevent seizure from occurring even when metals are in contact with each other due to application of an eccentric and unwilling load to the gas bearing, a surface and an end face of the movable shaft 8 and a ball surface are finished to be hard by surface hardening film processing such as a diamond-like processing, for example. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
単純な構成で半径方向と重力方向の両方の荷重を同時に支承する改良型気体軸受け
【0002】
【従来の技術】
近年、コンピュータに附設されるハードディスク等は軸振れを極力少なくするため、転がり軸受けから油などを利用した流体軸受けを用いる様になってきた。理由は、一般の玉軸受けでは、ボールとレース間のラジアルすきまが存在するため軸に対しての振れが大きく、該軸に直角に配置された磁気ディスク等がトラックを正しくトレースできなくなるという問題があるからである。
しかしながら、前記流体軸受けでは回転中、軸と軸受けは流体により非接触となり、高い軸受け剛性を得ることができる。このため、転がり軸受けに比して軸振れが少なくなる。ところが、油などの流体は粘性があるため、軸受けで生じる摩擦損失が大きくなり、許容回転数は2万回転以下と限定されてしまっているのが現状である。
このような軸受けの回転の限界が近年のハードディスク等の高速化の弊害になっているのが現状である。
【0003】
しかしながら、これらの流体軸受けのほとんどは、半径方向と軸方向の軸受けが、それぞれ別に構成されていることと、それぞれの軸受けが良好な楔角を維持するように溝パターンを形成したり、フォイルを有したりして、構造が複雑化していることと、
また、比較的高速回転でしか、流体軸受けとしての機能が発揮できないものが多い。
【0004】
特に、流体軸受けの中でも油を使用しているものは,高速回転になるほど油のせん断時の自己発熱等で油温があがり粘度が低下するため、2万回転を超える高速回転になると軸受け性能が落ちるという問題がある。また、空気等の気体を使用している流体軸受けは、回転が静止している時には固体接触しており、起動・停止を頻繁に行うと、やはり焼き付きの問題を生じたりする。
従って、このような気体軸受けはハードディスク等には殆ど使われていない。
【0005】
温度の依存性を少なくするには、より粘性の低い液体より気体の軸受けとすることが望ましいが、気体は粘性が低いために許容できる半径方向荷重を大きくとれないという欠点がある。そこで、ディスク等の全体荷重は軸端でできるだけ低トルクでスベリ軸受けで支承し、そして、半径方向の軸振れを極力少なくするために軸受けクリアランスを押え(径で5〜20ミクロン)、充分な軸受け長さLを確保
し、且つ、反重力方向荷重を固定軸と可動軸の一方の端面と内壁との間に形成された密閉空間に生じる大気との差圧による復元力で支承しようとする気体軸受け(特願2002−168089)が考案された
【0006】
【発明が解決しようとする課題】
しかしながら、前述の気体軸受けにおいて、半径方向荷重は充分に支承できるが、特に、反重力方向荷重を支承する上で可動軸の端面と内壁との間に形成された密閉空間に生じる大気との差圧による復元力で支承するだけでは、該密閉空間の気体が軸受けのクリアランスから洩れるため緩やかな荷重変動を確実に支承することが困難であった。
【0007】
【課題を解決するための手段】
可動軸の端面と内壁との間に密閉空間を形成し、該密閉空間に位置する部材にボールを勘入せしめ、該ボールの球面により、該両端面が積極的に重力方向で1点接触し全体の重力方向の荷重を支承する低トルクすべり軸受けとする。一方、半径方向のクリアランスからのわずかな気体の漏れがあり、反重力方向の荷重を前記密閉空間と大気の差圧による復元力だけでは確実に支承出来ないため、前記可動軸の反対側端面とフレームにセットされたネジ部材の端面間に位置するボールによって一点支承し、確実に反重力方向荷重を支承する軸受け構成とする。
また、前述のごときボールで一点支承していても長時間の使用に対して磨耗が発生し、その磨耗粉がディスクに影響を及ぼすことが考えられるため、前記ボールとの接触端面がディスク側に露出しないように回りの部材を構成している。
更に、、固定軸と可動軸の偏芯で不本意な半径方向荷重が気体軸受けにかかり、金属同士が接触しても不本意な焼き付けを生じないためにも該固定軸と可動軸の一方でシャフト側の表面は固く仕上げられていることが望ましい。例えば、ダイアモンドライク加工等の表面硬化膜処理が,表面を硬くし接触部が低摩擦となる面から非常によい。また、このような表面処理をした結果、気体軸受け効果を向上させることと軸受け端面空間の機密効果を向上させることも可能である。
このような表面加工膜は可動軸、ネジ部材およびボール表面に施されておれば良い。
【0008】
【発明の実施の形態】
代表的な改良型気体軸受けの実施例として重力方向と直角に回転するハードディスク用の軸受けとして、以下説明を行う。
【0009】
【実施例】
図1は、本発明装置の1実施例の断面図であって、1はコンピュータに附設されるスピンドルモータで駆動されるハードディスクの全体を示す。スピンドルモータはロータ部2、ステータ5、コイル部4およびロータマグネット6で構成され、数枚の磁気ディスク7は前記ロータ2に数本のネジ16でロータ2と共に可動軸8に固定されている。そして、該可動軸8はフレーム3の軸受けシリンダー部9と所定のクリアランス(径で5〜20ミクロン)をもって勘合している。
また、前記可動軸8の下端面8aは平坦面となっており、ボール支持部材18に密閉的に勘合したボール14の球面と常時中心一点で接触している。該接触によりロータ2は回転自由であるが重力方向の荷重を確実に支承する。
また、前記ボール支持部材18と可動軸8の下端部8aとロータ2のシリンダー部9で囲われた空間10は密封されているため、反重力方向の急激な荷重が作用しても前記密閉空間10と大気の圧力差で直ちに復元する構成となっている。更に、反重力方向の荷重に対して、前記可動軸8の上端部14に設けられたキリ穴15の勾配面15aとフレーム13にセットされたネジ部材11の端面間に位置するボール12で一点支承する構成となっている。
そして、前記キリ穴15内に前記ボール12と前記ネジ部材11の接触面が位置しているため、該接触面で生ずる磨耗粉が前記ディスク7のある外部に飛散することがない構成となっている。
図2はとフレーム13にセットされたネジ部材11側にボール12が勘合され前記可動軸8の反対側端面15aと一点接触し、接触面15aが可動軸8の内側になるように構成された他の実施例を示す。
【0010】
【発明の効果】
以上説明したように本発明の気体軸受けは構成が簡単で、半径方向とボール球面の中心1点で重力方向の荷重を受け、また,反重力方向の荷重に対しても前述の密閉空間の復元力と前記可動軸の反対側端面とフレームにセットされたネジ部材の端面間に位置するボールによって確実に支承し、回転も高速に限らず低速の回転でも、半径方向で固定軸と可動軸が接触することがない構造簡単な気体軸受けを提供するものである。
このような気体軸受けは、高速回転で軸受け部の温度が上昇しても、空気等の気体の特性で粘性は低下せずかえって粘性が上がり、軸受け効果をあげることとなり、軸振れに対する剛性が確保されるというメリットを生む。
かつ、不本意な荷重が作用しても、固定軸および可動軸に例えばダイヤモンドライク加工のような表面硬化処理膜が施されておれば、焼きつくことを容易に回避でき、更に、軸受け効果、密封効果を増すこともある。
更に、本実施例はコンピュータに附設するハードディスクの構成で説明したが、重力方向に直角な面で回転するDVD用光ディスクに対しても適用できることは自明である。
【図面の簡単な説明】
【図1】半径方向と重力方向の荷重を支承する改良型ハードディスク用気体軸受けの構成の説明図である。(実施例1)
【符号の説明】
1  ハードディスク
[0001]
TECHNICAL FIELD OF THE INVENTION
[0002] An improved gas bearing that supports both radial and gravitational loads simultaneously with a simple configuration.
[Prior art]
2. Description of the Related Art In recent years, hard disks and the like attached to computers have come to use fluid bearings using oil or the like from rolling bearings in order to minimize shaft runout. The reason is that in a general ball bearing, there is a large clearance between the ball and the race because of the radial clearance between the ball and the race, so that a magnetic disk or the like disposed at right angles to the shaft cannot correctly trace the track. Because there is.
However, in the fluid bearing, the shaft and the bearing are not in contact with each other by the fluid during rotation, so that high bearing rigidity can be obtained. For this reason, shaft runout is reduced as compared with the rolling bearing. However, fluids such as oil are viscous, so that the friction loss generated in the bearing increases, and the permissible rotation speed is limited to 20,000 or less at present.
At present, such a limit of the rotation of the bearing is an adverse effect of speeding up of a hard disk or the like in recent years.
[0003]
However, in most of these fluid bearings, the radial and axial bearings are separately formed, and the groove pattern or the foil is formed so that each bearing maintains a good wedge angle. Having a complicated structure,
In many cases, the function as a fluid bearing can be exhibited only at a relatively high rotation speed.
[0004]
In particular, among the fluid bearings that use oil, the higher the speed, the higher the temperature of the oil and the lower the viscosity due to self-heating during shearing of the oil. There is a problem of falling. Further, a fluid bearing using a gas such as air has a solid contact when the rotation is stationary, and if it is started and stopped frequently, the problem of burn-in also occurs.
Therefore, such a gas bearing is hardly used for a hard disk or the like.
[0005]
In order to reduce the temperature dependence, it is desirable to use a gas bearing rather than a less viscous liquid, but there is a drawback that the gas has a low viscosity so that an allowable radial load cannot be increased. Therefore, the entire load of the disk etc. is supported by a sliding bearing at the shaft end with as low torque as possible, and the bearing clearance is held down (5 to 20 microns in diameter) to minimize the radial runout, and sufficient bearing A gas that secures the length L and is intended to support the anti-gravity direction load by the restoring force due to the differential pressure between the fixed shaft and the movable shaft and the atmosphere generated in the closed space formed between one end face of the movable shaft and the inner wall. A bearing (Japanese Patent Application No. 2002-168089) was devised.
[Problems to be solved by the invention]
However, in the above-mentioned gas bearing, the radial load can be sufficiently supported, but in particular, in supporting the anti-gravity load, the difference between the air generated in the closed space formed between the end face of the movable shaft and the inner wall is considered. It is difficult to reliably support a gradual change in load by simply supporting with a restoring force due to pressure because gas in the closed space leaks from the clearance of the bearing.
[0007]
[Means for Solving the Problems]
A closed space is formed between the end surface of the movable shaft and the inner wall, and a ball is inserted into a member located in the closed space. The spherical surface of the ball causes the both end surfaces to positively contact at one point in the direction of gravity. A low torque sliding bearing that supports the entire load in the direction of gravity. On the other hand, there is a slight leakage of gas from the radial clearance, and the load in the antigravity direction cannot be reliably supported only by the restoring force due to the differential pressure between the enclosed space and the atmosphere. The bearing is configured to be supported at one point by a ball located between the end faces of the screw members set on the frame, and to reliably support the anti-gravity load.
Also, even if the ball is supported at one point as described above, wear may occur over a long period of use, and the worn powder may affect the disc. The surrounding members are configured so as not to be exposed.
Further, an undesired radial load is applied to the gas bearing due to the eccentricity of the fixed shaft and the movable shaft, so that undesired burning does not occur even if the metals come into contact with each other, so that one of the fixed shaft and the movable shaft is The surface on the shaft side is desirably hardened. For example, a surface-hardened film treatment such as diamond-like processing is very good in terms of hardening the surface and reducing the friction at the contact portion. In addition, as a result of such a surface treatment, it is possible to improve the gas bearing effect and the airtight effect of the bearing end face space.
Such a surface processed film may be applied to the movable shaft, the screw member, and the ball surface.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
A representative improved gas bearing will be described below as a bearing for a hard disk rotating at right angles to the direction of gravity.
[0009]
【Example】
FIG. 1 is a sectional view of one embodiment of the apparatus of the present invention, wherein 1 shows the entire hard disk driven by a spindle motor attached to a computer. The spindle motor includes a rotor section 2, a stator 5, a coil section 4 and a rotor magnet 6. Several magnetic disks 7 are fixed to the movable shaft 8 together with the rotor 2 by several screws 16 on the rotor 2. The movable shaft 8 is fitted with the bearing cylinder 9 of the frame 3 with a predetermined clearance (5 to 20 microns in diameter).
Further, the lower end surface 8a of the movable shaft 8 is a flat surface, and is always in contact with the spherical surface of the ball 14 hermetically fitted to the ball support member 18 at one central point. Due to the contact, the rotor 2 is free to rotate, but reliably supports the load in the direction of gravity.
Further, since the space 10 surrounded by the ball support member 18, the lower end portion 8a of the movable shaft 8 and the cylinder portion 9 of the rotor 2 is sealed, the sealed space is not affected by a sudden load acting in the antigravity direction. It is configured to restore immediately with the pressure difference between 10 and the atmosphere. Further, the ball 12 located between the inclined surface 15a of the drill hole 15 provided in the upper end portion 14 of the movable shaft 8 and the end surface of the screw member 11 set in the frame 13 responds to the load in the antigravity direction. It has a configuration to support.
Further, since the contact surface between the ball 12 and the screw member 11 is located in the drill hole 15, the wear powder generated on the contact surface is not scattered outside the disk 7. I have.
In FIG. 2, the ball 12 is fitted to the screw member 11 side set on the frame 13 so as to make one-point contact with the opposite end surface 15a of the movable shaft 8 so that the contact surface 15a is located inside the movable shaft 8. Another embodiment will be described.
[0010]
【The invention's effect】
As described above, the gas bearing of the present invention has a simple structure, receives a load in the gravitational direction at one point in the radial direction and at the center of the spherical surface of the ball, and restores the above-mentioned closed space against a load in the antigravity direction. The force and the ball positioned between the opposite end surface of the movable shaft and the end surface of the screw member set on the frame are securely supported, and the rotation of the fixed shaft and the movable shaft in the radial direction can be performed not only at high speed but also at low speed. An object of the present invention is to provide a gas bearing having a simple structure without contact.
Even if the temperature of the bearing part rises at high speed rotation, the viscosity of such a gas bearing does not decrease due to the characteristics of gas such as air, but rather increases, increasing the bearing effect and securing rigidity against shaft runout. It has the advantage of being done.
And, even if an undesired load is applied, if the fixed shaft and the movable shaft are provided with a surface hardening film such as diamond-like processing, seizure can be easily avoided, and further, the bearing effect, May increase the sealing effect.
Furthermore, although the present embodiment has been described with reference to the configuration of the hard disk attached to the computer, it is obvious that the present invention can also be applied to a DVD optical disk that rotates on a plane perpendicular to the direction of gravity.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a configuration of an improved hard disk gas bearing that supports loads in a radial direction and a gravitational direction. (Example 1)
[Explanation of symbols]
1 Hard disk

Claims (1)

固定軸と可動軸間の5〜20ミクロンの径方向のクリアランスで半径方向の荷重を支承し、片方の軸端面をボール球面とし、該ボール球面が相手軸端面と積極的に接触して、全体の重力方向の荷重を支承し、反重力方向の荷重は前記可動軸の端面と固定軸の内壁との間に形成された密閉空間に生じる大気との差圧による復元力で支承する気体軸受けにおいて、前述の差圧による復元力のみならず、前記可動軸の反対側端面とフレームにセットされたネジ部材の端面間に位置するボールによって一点支承することを特徴とする改良型気体軸受。A radial load is supported by a radial clearance of 5 to 20 microns between the fixed shaft and the movable shaft, one of the shaft end surfaces is a ball spherical surface, and the ball spherical surface is positively in contact with a mating shaft end surface. In the gas bearing, which supports the load in the direction of gravity, and the load in the direction of antigravity supports the restoring force due to the differential pressure between the end surface of the movable shaft and the atmosphere generated in the closed space formed between the inner wall of the fixed shaft and the air. An improved gas bearing characterized in that it is supported not only by the restoring force due to the above-mentioned differential pressure but also by a ball located between the opposite end face of the movable shaft and the end face of the screw member set on the frame.
JP2002208995A 2002-07-18 2002-07-18 Gas bearing for improved disk Pending JP2004052847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208995A JP2004052847A (en) 2002-07-18 2002-07-18 Gas bearing for improved disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208995A JP2004052847A (en) 2002-07-18 2002-07-18 Gas bearing for improved disk

Publications (1)

Publication Number Publication Date
JP2004052847A true JP2004052847A (en) 2004-02-19

Family

ID=31932957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208995A Pending JP2004052847A (en) 2002-07-18 2002-07-18 Gas bearing for improved disk

Country Status (1)

Country Link
JP (1) JP2004052847A (en)

Similar Documents

Publication Publication Date Title
JP2870057B2 (en) Dynamic pressure bearing device
JPH06333331A (en) Disk rotating device
US20080075398A1 (en) Fluid dynamic bearing device and storage disk driving device using the same
JPH11283321A (en) Disk drive device having high impact durability and magnetic disk device
JP2007177808A (en) Hydrodynamic bearing unit
US20030174915A1 (en) Constant pressure magnetically preloaded FDB motor
KR100709101B1 (en) Hydrodynamic bearing unit
US6293702B1 (en) Rolling bearing
JP2006211795A (en) Spindle motor
JP2004052847A (en) Gas bearing for improved disk
US6911753B2 (en) Gas dynamic bearing motor
JP2004044636A (en) Gas bearing for improved disk
JP2004044738A (en) Gas bearing for improvement disk
JP3241651B2 (en) Hemisphere bearing device that prevents hemisphere deformation
KR20050094757A (en) Bearing unit, and rotation driving device having bearing unit
JP2004011818A (en) Gas bearing for disk
JP2002310143A (en) Fluid leakage preventing device for fluid bearing
JP4078628B2 (en) Pump-in pump-out judgment method
JP4024007B2 (en) Hydrodynamic bearing unit
WO2022064985A1 (en) Dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP2002369446A (en) Disk drive
JPH1196658A (en) Bearing unit and disk driving device
JP2004116623A (en) Fluid bearing device
KR940000809Y1 (en) Bearing device
KR100376998B1 (en) Hydrostatic bearing motor