JP2004051877A - Method for producing aqueous dispersion of radically polymerizable thermosetting resin and porous cured article having open pore structure - Google Patents

Method for producing aqueous dispersion of radically polymerizable thermosetting resin and porous cured article having open pore structure Download PDF

Info

Publication number
JP2004051877A
JP2004051877A JP2002213835A JP2002213835A JP2004051877A JP 2004051877 A JP2004051877 A JP 2004051877A JP 2002213835 A JP2002213835 A JP 2002213835A JP 2002213835 A JP2002213835 A JP 2002213835A JP 2004051877 A JP2004051877 A JP 2004051877A
Authority
JP
Japan
Prior art keywords
aqueous dispersion
thermosetting resin
porous
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002213835A
Other languages
Japanese (ja)
Inventor
Keizo Masawaki
正脇 敬三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan U-Pica Co Ltd
Original Assignee
Japan U-Pica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan U-Pica Co Ltd filed Critical Japan U-Pica Co Ltd
Priority to JP2002213835A priority Critical patent/JP2004051877A/en
Publication of JP2004051877A publication Critical patent/JP2004051877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Building Environments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a W/O-type aqueous dispersion of a thermosetting resin containing water particles in the resin by mixing a radically polymerizable liquid thermosetting resin with water and provide a porous cured article having a fine open pore structure by curing the aqueous dispersion in the presence or absence of a reinforcing material at normal temperature or under heating. <P>SOLUTION: The W/O-type aqueous dispersion of a thermosetting resin containing water particles uniformly dispersed in a resin is produced by mixing 100 pts. wt. of a radically polymerizable thermosetting resin with water at a mixing weight ratio of 90:10 to 30:70 in the presence of 0.1 pt. wt. of a surfactant expressed by molecular formula HO(C<SB>2</SB>H<SB>4</SB>O)<SB>m</SB>(C<SB>x</SB>H<SB>2x</SB>O)<SB>p</SB>(C<SB>2</SB>H<SB>4</SB>O)<SB>n</SB>H ((m) and (n) are each an integer of ≥1; (p) is an integer of ≥10; and X is an integer of 3-5) and having a number-average molecular weight of 1,500-6,000. The porous cured article having a fine open pore structure is produced by curing the aqueous dispersion in the presence or absence of a reinforcing material at normal temperature or under heating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液状のラジカル重合型熱硬化性樹脂と水とを混合し樹脂中に水粒子が分散したW/O型熱硬化性樹脂水性分散体の製造方法および該水性分散体を、強化材の存在下または不存在下に常温又は加熱下に硬化して得られる、微細な連続気孔を有する多孔質硬化物に関する。
【0002】
【従来の技術】
従来、水処理用等の精密濾過材に使用されている多孔質素材は、例えば、有機膜、中空糸、セラミックス、金属、熱硬化性樹脂等の多孔質材料があるが、有機膜は濾過用セルに組立てるためのコストがかかる上に、セル自体が耐久性に乏しく、中空糸は軽量であるが高価である。またセラミックスは材料自体は安価であるが軽量化が困難である。また金属は強度、耐久性を有するが耐腐食性に問題がある等の欠点もあり全てに満足できる多孔質濾過材は得られていないのが現状である。
【0003】
本発明者は、軽量で耐久性を有し、気孔径の調節が可能であり所望の形状の濾過材に適用し得る微細な連続気孔有する多孔質材料およびその製造方法を提案した(特願2001−21934、特願2001−95606)。すなわち、ラジカル重合型熱硬化性樹脂と水とを均一に分散させた水性分散体を、強化材の存在下または不存在下に常温または加熱下に硬化させて得られる微細な連続気孔を有する多孔質硬化物およびその製造方法である。この多孔質硬化物は、平均気孔径が0.01〜10.0μmの範囲で、おおよその気孔径を調節することも可能であり、その気孔率が10〜70容量%であり、該多孔質硬化物は濾過膜、天井あるいは壁材等の住宅用建材、また陶器鋳込み成形型として使用し得るものである。
【0004】
【発明が解決しようとする課題】
上記の多孔質硬化物についてさらに検討を重ねたところ、特にW/O型水性分散体を硬化させた硬化物は連続気孔を有する多孔質硬化物になり難いことが分った。本発明者は、この点について、種々検討した結果、ラジカル重合型熱硬化性樹脂のW/O型水性分散体を製造する際に、特定の界面活性剤を使用し、樹脂中に水粒子を均一に分散させたW/O型水性分散体を硬化させた硬化物は、連続した微細気孔を有する多孔質硬化物が容易に得られることが見出された。
【0005】
本発明は、微細な連続気孔を有する多孔質硬化物を製造し得る、ラジカル重合型熱硬化性樹脂水性分散体の製造方法および精密濾過膜、天井や壁材等の住宅用建材、陶器鋳込み成型型用等に好適な材料を提供することを目的とする。
【0006】
【課題を解決するための手段】
すなわち、本発明は、(1)ラジカル重合型熱硬化性樹脂100重量部に対し、下記分子式(1)で表される数平均分子量が1500〜6000である界面活性剤0.1〜10.0重量部の存在下に、前記樹脂と水とを90:10〜30:70の混合比(重量比)で混合し樹脂中に水の微粒子を均一に分散させることを特徴とするW/O型ラジカル重合型熱硬化性樹脂水性分散体の製造方法に関する。
【0007】
【化2】
HO(CO)(C2XO)(CO)H・・(1)
(式中、mおよびnは1以上の整数、pは10以上の整数、Xは3〜5の整数を示す)
【0008】
(2)また、ラジカル重合型熱硬化性樹脂は、ポリ酢酸ビニルを1〜30重量%含有することを特徴とする上記(1)記載のW/O型ラジカル重合型熱硬化性樹脂水性分散体の製造方法に関する。
【0009】
さらに本発明は、(3)上記(1)または(2)記載のW/O型ラジカル重合型熱硬化性樹脂水性分散体を、常温または加熱下に硬化した後、室温または加熱下に乾燥して得られる平均気孔径が0.01〜10.0μm、気孔率が10〜70容量%である連続気孔有することを特徴とする多孔質硬化物に関し、(4)上記(1)または(2)記載のW/O型ラジカル重合型熱硬化性樹脂水性分散体を、さらに補強材の存在下に硬化させることを特徴とする上記(3)記載の多孔質硬化物に関し、(5)上記(3)または(4)記載の連続気孔多孔質硬化物からなる濾過材、(6)上記(3)または(4)記載の連続気孔多孔質硬化物からなる陶器鋳込み成形型、および(7)上記(3)または(4)記載の連続気孔多孔質硬化物からなる住宅用建材に関する。
【0010】
本発明は、ラジカル重合型熱硬化性樹脂中に水粒子を分散させた水性分散体、特にW/O型熱硬化性樹脂水性分散体(以下、「W/O型熱硬化性樹脂水性分散体」あるいは、単に「W/O型水性分散体」ということがある)を製造するに際して、上記分子式で示される界面活性剤を使用することを特徴とし、このような界面活性剤を使用して得られたW/O型水性分散体は、樹脂相を連続相とし水粒子が不連続相を形成した海島構造を有する分散体であり、該分散体を硬化させて得られる硬化物は微細な連続気孔を有する多孔質硬化物が容易に得られる。このような連続気孔は、硬化過程において樹脂中に分散された水粒子が接合して連続化した状態で硬化が進行し、その結果として連続気孔を形成するものと推察される。したがって、該硬化物は連続相である樹脂中に微細な気孔が形成された構造になっているため、基本的には気孔を有しない樹脂硬化物と同程度の強度を有し、耐久性に優れた多孔質硬化物である。
この硬化物は平均気孔径が0.01〜10.0μm程度で、気孔率が10〜70容量%を有するものであるが、分散方法、界面活性剤の量、界面活性剤の種類、樹脂の組成等を変えることにより気孔径や気孔率を変えることが可能であり、しかもラジカル重合型熱硬化性樹脂の水性分散体から、硬化物を成形するものであるので所望の形状の成型物を容易に得ることができる。
【0011】
また、本発明のW/O型水性分散体の製造においては、通常、撹拌されている樹脂中に水を少量ずつ添加しながら撹拌を続け樹脂中に水が分散された水性分散体、すなわちW/O型水性分散体が製造されるが、安定性が十分ではない場合や、水性分散体が貯蔵中や硬化前に不安定になり、目的とした強度の高い連続気孔を有する多孔質硬化物が得られ難い場合には、カジカル重合型熱硬化性樹脂にポリ酢酸ビニルを含むポリマーを添加することにより、目的とする安定なW/O型水性分散体が得られる。また、ポリ酢酸ビニルを含むポリマーを添加した場合は、撹拌樹脂中に少量づつ水を添加する方法を採用しなくとも、樹脂に計量した所定量の水を一括投入して撹拌することによって目的とする安定なW/O型水性分散体を得ることができる。
【0012】
本発明において、ラジカル重合型熱硬化性樹脂に添加されるポリ酢酸ビニルは、ラジカル重合型熱硬化性樹脂100重量部に対して、一般に1〜30重量部が添加されるが、好ましくは、1〜20重量部添加される。
上記のポリ酢酸ビニルとしては、酢酸ビニルの重合体で分子量5000〜200000のものが使用される。本発明でいうポリ酢酸ビニルは、酢酸ビニルの単独重合体に限定するものでなく、酢酸ビニルと他の重合性モノマーとの共重合体も使用可能である。他の重合性モノマーとの共重合体を使用する場合は、重合体中の酢酸ビニル成分が30〜99重量%、好ましくは50〜99重量%含有する共重合体が使用される。
【0013】
本発明による微細な連続気孔を有する多孔質硬化物は、平均気孔径が0.01〜10.0μmの範囲であり、気孔率が10〜70容量%を有するが、気孔径や気孔率は適宜所望に応じて調節することが可能である。本発明の多孔質硬化物は樹脂が連続相を形成しているため、多孔質でありながら機械的強度が比較的高く、軽量で、耐久性があり、濾過膜、陶器鋳込み成形型、また天井や壁材等の住宅用建材として有用である。
【0014】
本発明に使用される界面活性剤は、下記分子式(1)で表される、数平均分子量が1500〜6000ものが使用される。
【0015】
【化3】
HO(CO)(C2XO)(CO)H・・(1)
(式中、mおよびnは1以上の整数、pは10以上の整数、Xは3〜5の整数)
【0016】
本発明において、上記分子式(1)で表される界面活性剤の添加量は液状ラジカル硬化型熱硬化性樹脂100重量部に対して0.1〜10重量部、好ましくは0.5〜3.0重量部で使用される。界面活性剤の添加量が0.1重量部よりも少ない場合は添加の効果が発揮されず、10重量部を超える量を添加した場合には耐水性が低下する虞がある。
【0017】
上記分子式(1)で表される界面活性剤としては、ポリエチレンオキサイドとポリプロピレンオキサイドとの共重合物、ポリエチレンオキサイドとポリブテンオキサイドとの共重合物、ポリエチレンオキサイドとテトラヒドロフランとの共重合物、ポリエチレンオキサイドとペンテンオキサイドとの共重合物等が例示される。このような界面活性剤は、例えば、日本油脂株式会社から市販されている商品名「プロノン102」、「プロノン202」、「プロノン202B」、「プロノン204」、「プロノンB204」、「ポリセンBP434」等、また、三洋化成工業株式会社から市販されている商品名「テトラキシノールAS−200」を例示することができる。
【0018】
本発明におけるW/O型水性分散体は、液状のラジカル重合性熱硬化性樹脂と水とを機械的混合手段により混合することにより容易に製造することができる。具体的には、手動による撹拌や200rpm程度の低速攪拌機でもW/O型水性分散体を得ることも可能であるが、通常は、ディゾルバー(高速回転ミキサー)、ホモミキサーなどの機械的混合手段、あるいは超音波照射等の手段により、必要に応じて促進剤を添加溶解した液状のラジカル重合性熱硬化性樹脂中に水を少量づつ加え、混合することにより安定した水性分散体を得ることができる。使用される水は、イオン交換水、蒸留水および水道水のいずれでも差し支えなく特に限定するものではない。尚、先に記述したようにポリ酢酸ビニルを添加した場合は、水を少量づつ添加することなく所定量の水を一括して添加して撹拌することもできる。
【0019】
本発明におけるW/O型水性分散体は、液状のラジカル重合性熱硬化性樹脂と水との混合割合を、重量比で90:10〜30:70の範囲で、好ましくは、80:20〜40:60の範囲で使用して製造される。水の混合割合が上記の範囲よりも多い場合、すなわち重量比で70を超える場合は、硬化物中の樹脂含量が少なく薄い樹脂膜の硬化物となるため、硬化物の強度が低下するので好ましくない。一方、水の混合割合が上記範囲よりも少ない場合、すなわち重量比で10未満の場合は、気孔率が低くなり、また気孔の連続性が低下し透水性が低下するため、本発明の目的とする微細な連続気孔を有する多孔質硬化物が得られ難い。
【0020】
本発明における液状のラジカル重合型熱硬化性樹脂は、液状不飽和ポリエステル樹脂、液状エポキシ(メタ)アクリレート樹脂、液状ウレタン(メタ)アクリレート樹脂あるいは液状(メタ)アクリル樹脂(いわゆるアクリルシラップ)が使用される。
【0021】
本発明における液状不飽和ポリエステル樹脂は、グリコール類を主成分とする多価アルコール類とα,β−不飽和二塩基酸および/またはその無水物、さらに必要に応じて飽和二塩基酸および/またはその無水物とを重縮合させて得られる不飽和ポリエステルをスチレン等のエチレン性不飽和二重結合を有する重合性単量体に溶解した液状樹脂である。
【0022】
上記のグリコール類は、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ペンタエリスリトール、ペンタエリスリットジアリエーテルのようなペンタエリスリトール誘導体、アリルグリシジルエーテル、水素化ビスフェノールA、ビスフェノールA誘導体、等が例示される。
【0023】
また上記のα,β−不飽和二塩基酸および/またはその無水物としては、例えば、マレイン酸またはその無水物、フマル酸、イタコン酸などが例示される。これらは単独で、または2種以上を混合して使用することができる。
【0024】
飽和二塩基酸および/またはその無水物としては、例えば、無水フタル酸、テレフタル酸、イソフタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、アジピン酸、セバシン酸、テトラブロム無水フタル酸、ヘット酸、ヘキサハイドロ無水フタル酸、1,3−シクロヘキサンジカルボン酸、1,4―シクロヘキサンジカルボン酸等が例示される。これらは単独で、または2種以上を混合して使用することができる。
【0025】
また、エチレン性不飽和二重結合を有する重合性単量体としては、例えば、スチレン、ビニルトルエン、α−メチルスチレン、酢酸ビニル、メタクリル酸メチル、メタクリル酸エチル等のビニルモノマー、ジアリルフタレート、ジアリルイソフタレート、トリアリルイソシアヌレート、ジアリルテトラブロムフタレート等のアリルモノマー、フェノキシエチルアクリレート、1,6−ヘキサンジオールアクリレート、トリメチロールプロパントリアクリレート、2−ヒドロキシエチルアクリレート等のアクリレート類等が例示される。これらは単独でまたは2種以上を混合して使用することができる。またこれらのうちスチレン、ビニルトルエンなどのビニル系モノマーが通常一般的に使用される。
【0026】
なお、本発明における液状不飽和ポリエステル樹脂は、回収PET、すなわち高分子量ポリエチレンテレフタレート製品の廃棄物、例えば、使用済みペットボトル、シート、フィルム等の廃棄物、成形屑、切断屑等を、原料の一部に使用して製造された不飽和ポリエステルを、上記同様にエチレン性不飽和二重結合を有する重合性単量体に溶解した液状不飽和ポリエステル樹脂も使用することができる。
【0027】
本発明における液状エポキシ(メタ)アクリレート樹脂としては、1分子中に2個以上のグリシジルエーテル基を有するエポキシ樹脂にアクリル酸またはメタクリル酸を付加反応させて得られる分子末端に(メタ)アクロイル基を有するエポキシ(メタ)アクリレートを、エチレン性α,β−不飽和二重結合を有する重合性単量体に溶解した液状樹脂である。上記1分子中に2個以上のグリシジルエーテル基を有するエポキシ樹脂は、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS等、あるいはこれらの誘導体からのビスフェノール型エポキシ樹脂、ビキシレノールおよびその誘導体からのビキシレノール型エポキシ樹脂、ビフェノールおよびその誘導体からのビフェノール型エポキシ樹脂、あるいはナフタレンおよびその誘導体からのナフタレン型エポキシ樹脂、さらにはノボラック型エポキシ樹脂などのエポキシ樹脂が挙げられ、これらは単独で、または2種以上を混合して使用することができる。エチレン性α,β−不飽和二重結合を有する重合性単量体は、上記した不飽和ポリエステル樹脂に使用されると同様の重合性単量体を使用することができ、液状エポキシ(メタ)アクリレート樹脂は、上記のエポキシ(メタ)アクリレートを、例えばスチレン、ジエチレングリコールジメタクリレートなどの液状の重合性単量体に溶解した液状樹脂である。
【0028】
また本発明における液状ウレタン(メタ)アクリレート樹脂は、ポリアルコールおよび/またはポリエステルポリオールおよび/またはポリエーテルポリオールとジイソシアネートとを反応させて分子末端をイソシアネート化し、これにアルコール性水酸基を有するアクリレートまたはメタクリレートを反応させるか、または先ずアルコール性水酸基を有するアクリレートまたはメタクリレートとイソシアネートとをイソシアネート基を残して反応させた後、ポリアルコールおよび/またはポリエステルポリオールおよび/またはポリエーテルポリオールとを反応させて得られる分子末端に(メタ)アクロイル基を有するウレタン(メタ)アクリレートを、例えばスチレン、ジエチレングリコールジメタクリレートなどの液状の重合性単量体に溶解した液状樹脂である。これらは単独で、または2種以上の混合物で使用することができる。
【0029】
また本発明に使用される液状のアクリル樹脂またはメタクリル樹脂としては、メチルメタクリレートを主成分とし部分的に他の重合性単量体を共重合体させたメチルメタクリレート共重合体、またはこの共重合体をメチルメタクリレートに溶解した液状樹脂であって、通常アクリルシラップと呼ばれるものであり。なお、これらの液状樹脂は熱硬化性とするには、例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレートのような多官能性メタクリレートまたはアクリレート系の単量体が併用される。
【0030】
本発明のW/O型水性分散体から得られる多孔質硬化物に、さらに強度、耐久性などを付与するために補強材が使用される。補強材としては、一般的に強化材として使用されるガラスクロス、カーボンクロス、ガラスチョップストランドマット、アラミド繊維、ポリエステル繊維、アクリル繊維、ポリプロピレン繊維のような合成繊維クロス、あるいはこれら合成繊維不織布、レイヨン系不織布等が使用可能である。また、廃棄FRP製品から回収された繊維状強化材やFRP粉砕品を補強材として使用することができる。
【0031】
本発明により得られるW/O型水性分散体は、良好な粘度、揺変性を示しものであり、通常の不飽和ポリエステル樹脂のように微粉末シリカで揺変性を付与する必要がなく、垂直面でも垂れることなくハンドレイアップ、スプレイアップ法で容易に精密濾過材、陶器鋳込み成形型材、天井材や壁材等の住宅用建材に成形することができる。
【0032】
本発明において、W/O型水性分散体を硬化させて硬化物を製造するに際しては、硬化剤および必要に応じ促進剤を添加して使用されるが、必要に応じ添加される促進剤は予め液状熱硬化性樹脂に添加してW/O型水性分散体を調製することが望ましく、硬化剤は通常は硬化に際して添加される。硬化剤が粉末あるいはペースト状で樹脂への均一溶解に時間がかかる場合は、硬化剤を予め液状熱硬化性樹脂に添加してW/O型水性分散体を調製し、必要に応じて添加される促進剤は使用するに際して添加される。
【0033】
本発明に使用される硬化剤としては、通常有機過酸化物が使用される。そのような硬化剤として代表的なものは、メチルエチルケトンパーオキサイドで代表されるケトンパーオキサイド類、1,1−ビス(t−ヘキシルパーオキシ)3,3,5−トリメチルシクロヘキサンで代表されるパーオキシケタール類、クメンハイドロパーオキサイドで代表されるハイドロパーオキサイド類、ジクミルパーオキサイドで代表されるジアルキルパーオキサイド類、ベンゾイルパーオキサイドで代表されるジアシルパーオキサイド類、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネートで代表されるパーオキシジカーボネート類、t−ブチルパーオキシベンゾエートで代表されるパーオキシベンゾエート類などを挙げられる。このような硬化剤は、通常、液状ラジカル重合型熱硬化性樹脂100重量部に対して0.5〜3.0重量部の範囲で使用され、好ましくは0.5〜2.0重量部が使用される。
【0034】
上記の促進剤は、ナフテン酸コバルトで代表される有機酸の金属塩(金属石鹸)類、N,N−ジメチルアニリン、N,N−ジメチルパラトルイジンなどの3級アミン類、フェロセン等、不飽和ポリエステル樹脂の室温硬化に通常使用される促進剤が使用される。これらの促進剤は、例えば、硬化剤としてケトンパーオキサイド、やハイドロパーオキサイドを使用した場合はナフテン酸コバルトのような金属石鹸との組合せが好ましく、硬化剤がジアシルパーオキサイドである場合には3級アミンとの組合せが好ましく、硬化剤がパーオキシジカーボネートである場合にはフェロセンとの組合せが好ましい。このような促進剤は、金属石鹸類は液状ラジカル重合型熱硬化性樹脂100重量部に対して金属含有量6%のものに換算して0.2〜5.0重量部の範囲で使用され、好ましくは0.5〜3.0重量部が使用される。3級アミン類は液状ラジカル重合型熱硬化性樹脂100重量部に対して0.05〜1.0重量部の範囲で使用され、好ましくは0.1〜0.5重量部が使用される。
【0035】
本発明の連続気孔を有する多孔質硬化物は、先に記述したように平均気孔径0.01〜10.0μmを有するものであるが、気孔径を1μm以下に調節した多孔質硬化物を容易に得ることができるので、1μm以上の大きさを有する大腸菌等の濾過を目的とする濾過膜として使用することができる。
【0036】
また、本発明の多孔質硬化物は、ミクロン単位の連続した気孔を有していることから、含水物質と接触すると微細気孔の表面張力により含水物質中の水分脱水作用を示すので陶器鋳込み成形型として使用することができる。
【0037】
本発明の多孔質硬化物は、熱硬化性樹脂を原料として製造されるものであり、抗菌剤、防黴材、消臭剤の添加による特殊機能の付与が容易である。また連続多孔質であるため表面積が広く十分な調湿能力を有している。該多孔質硬化物は気孔率を10〜70容量%まで変化させることが可能であり、ミクロン単位の気孔を多く含有するので十分な断熱効果も有する。このような特性から住宅用壁材として、中空の壁材を成形し調温空気のダクト兼用壁材として、また防滴性能を利用して浴室用天井や壁材等住宅用建材として使用することができる。
【0038】
その他、本発明の多孔質硬化物は、微細な連続気孔を有し通気性に優れており、義肢ソケット用途やエアーフィルター等への使用も可能である。
【0039】
【実施例】
次に本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0040】
実施例1
内径20cm、高さ30cmの金属製容器に、液状不飽和ポリエステル樹脂(日本ユピカ(株)製、商品名「ユピカ6502」)300gを秤量し、これに硬化剤として市販の50重量%濃度の過酸化ベンゾイル6g(樹脂100gに対して純分1g)、界面活性剤として「プロノン102」(ポリエチレンオキサイドとポリプロピレンオキサイドとの共重合物 日本油脂(株)製)6gを加えよく混合したのち、羽根の外径が4cmのディゾルバーを使用して回転数2000rpmで撹拌しながら水道水200g(樹脂60gに対して40g)を2分間かけて徐々に加え、添加終了後2分間高速撹拌して、W/O型水性分散体を得た。得られた水性分散体はB型粘度計、No.4ローター使用時、60回転での粘度は35ポイズであり、6回転での粘度は220ポイズであった。得られたW/O型水性分散体に、N,N−ジメチルアニリン0.6gを加え十分に溶解した後、該水性分散体を450g/m のガラスチョップドストランドマット3プライに含浸させた後、ポリエステルフィルムで覆い、室温で一昼夜放置して硬化させた。硬化後ポリエステルフィルムを取り除き室温で一昼夜放置し乾燥させ、厚さ3mmのガラス繊維強化の精密濾過膜を得た。得られた濾過膜の気孔率は約32容量%で、平均気孔径は0.1μmであった
【0041】
実施例2
内径10cm、高さ15cmの金属製容器に、液状エポキシアクリレート樹脂(日本ユピカ(株)製、商品名「ネオポール8250L」)700gを秤量し、これに硬化促進剤として市販の「6%ナフテン酸コバルト」14g(樹脂100gに対して2g)、界面活性剤として「プロノンB204」(ポリエチレンオキサイドとポリブテンオキサイドとの共重合物 日本油脂(株)製)6gを加えよく混合したのち、羽根の外径が4cmのディゾルバーを使用して回転数1000rpmで撹拌しながら水道水300g(樹脂70gに対して30g)を2分間かけて徐々に加えて、W/O型水性分散体を得た。得られた水性分散体はB型粘度計、No.4ローター使用時、60回転での粘度は8ポイズであり、6回転での粘度は32ポイズであった。得られたW/O型水性分散体に、市販MEKPO(日本油脂(株)製、商品名「パーメックN」)10gを加え十分に溶解した後、450g/m のガラスチョップドストランドマットおよびポリエステル不織布をセットして、60℃に保たれた型の一方を減圧にし、他方から該水性分散体を圧入して、圧入完了後5分間保持させた後脱型し、室温で一昼夜放置乾燥させて厚さ2mmの繊維強化の精密濾過膜を得た。得られた濾過膜の気孔率は約25容量%で、平均気孔径は0.05μmであった。
【0042】
実施例3
内径20cm、高さ30cmの金属製容器に、液状不飽和ポリエステル樹脂(日本ユピカ(株)製、商品名「ユピカ6510」)400g、ポリ酢酸ビニル溶液(日本ユピカ(株)製、商品名「A−73」(スチレン50%溶液))100gを秤量し、これに硬化促進剤として市販の「6%ナフテン酸コバルト」7.5g(樹脂(ポリ酢酸ビニル溶液を含む)100gに対して1.5g)、硬化促進助剤として「N,N−ジメチルアニリン」1g(樹脂(ポリ酢酸ビニル溶液を含む)100gに対して0.2g)界面活性剤として「プロノン202B」(ポリエチレンオキサイドとポリプロピレンオキサイドとの共重合物 日本油脂(株)製)10gを加え、よく混合した後水道水500g(樹脂50gに対して50g)を加え、ステンレス製へらを使用して手で2分間撹拌して、W/O型水性分散体を得た。得られた水性分散体はB型粘度計、No.4ローター使用時、60回転での粘度は65ポイズであり、6回転での粘度は320ポイズであった。得られたW/O型水性分散体に、市販MEKPO(日本油脂(株)製、商品名「パーメックN」)10gを加え十分に溶解した後、該水性分散体をあらかじめ用意しておいたポリエステル樹脂製型に流し込み、室温で2時間、次いで50℃で1時間硬化させ、硬化後70℃で30分乾燥させ、厚さ15mmの枡形多孔質硬化物を得た。得られた硬化物の気孔率は約45容量%で、平均気孔径は0.2μmであった。
得られた枡形成形体に陶器成型用原料であるスラリーを流し込み1時間後に余剰スラリーを流し出し、多孔質枡形成形体から陶器予備成形体を脱型して厚さ10mmの陶器予備成型品を得た。
【0043】
実施例4
内径20cm、高さ30cmの金属製容器に、液状ウレタンクリレート樹脂(日本ユピカ(株)製、商品名「ユピカ8932」)380g、ポリ酢酸ビニル溶液(日本ユピカ(株)製、商品名「A−73」(スチレン50%溶液))20gを秤量し、これに硬化剤として市販の50重量%濃度の過酸化ベンゾイル8g(樹脂(ポリ酢酸ビニル溶液を含む)100gに対して純分1g)、界面活性剤として「プロノン202」(ポリエチレンオキサイドとポリプロピレンオキサイドとの共重合物 日本油脂(株)製)4gを加えよく混合したのち、羽根の外径が4cmのディゾルバーを使用して回転数500rpmで撹拌しながら水道水400g(樹脂(ポリ酢酸ビニル溶液を含む)50gに対して50g)を2分間かけて徐々に加え、添加終了後2分間撹拌して、W/O型水性分散体を得た。得られた水性分散体はB型粘度計、No.4ローター使用時、60回転での粘度は38ポイズであり、6回転での粘度は146ポイズであった。得られたW/O型水性分散体に、N,N−ジメチルアニリン0.8gを加え十分に溶解した後、該水性分散体を再生ガラス繊維(綿状)80gに練り込み、離型剤を塗布した400mm角のFRP板で挟み、50℃で1時間硬化させ、硬化後型から取りだし70℃で30分乾燥させ、厚さ10mmの繊維強化の連続気孔を有するFRP壁材を得た。得られた硬化物の気孔率は約45容量%で、平均気孔径は2.8μmであった
【0044】
実施例5
内径20cm、高さ30cmの金属製容器に、液状不飽和ポリエステル樹脂(日本ユピカ(株)製、商品名「ユピカ6510」)300gを秤量し、これに硬化剤として市販の50重量%濃度の過酸化ベンゾイル6g(樹脂100gに対して純分1g)、抗菌剤として「ノバロンAG300」東亞合成(株)製)1.5g、防黴剤として「カビノン800」東亞合成(株)製)1.5g、消臭剤として「ケスモンTNS200」東亞合成(株)製)1.5g、および界面活性剤として「プロノンB204」(ポリエチレンオキサイドとポリブテンオキサイドとの共重合物 日本油脂(株)製)6gを加えよく混合したのち、羽根の外径が4cmのディゾルバーを使用して回転数1000rpmで撹拌しながら水道水100g(樹脂75gに対して25g)を2分間かけて徐々に加え、添加終了後2分間撹拌して、W/O型水性分散体を得た。得られた水性分散体はB型粘度計、No.4ローター使用時、60回転での粘度は8ポイズであり、6回転での粘度は20ポイズであった。得られたW/O型水性分散体に、N,N−ジメチルアニリン0.6gを加え十分に溶解した後、該水性分散体をポリエステル不織布1プライ+450g/m のガラスチョップドストランドマット3プライに含浸させた後、ポリエステルフィルムで覆い、室温で一昼夜放置して硬化させた。硬化後ポリエステルフィルムを取り除き室温で一昼夜放置し乾燥させ、厚さ4mmのガラス繊維強化の多孔質硬化物を得た。得られた硬化物の気孔率は約21容量%で、平均気孔径は0.08μmであった。
【0045】
上記の防黴材および抗菌材を含有したガラス繊維強化多孔質硬化物を壁材として使用し、該壁材に水を放水して完全に濡らした後放水を止め壁面を観察した結果、壁面表面に水滴は認められず一見して乾いているような状態であった。また、該多孔質硬化物を浴室壁に配置し3ヶ月後の表面を観測した結果、カビの発生および表面のぬめりは認められなかった。
【0046】
比較例1
内径20cm、高さ30cmの金属製容器に、液状不飽和ポリエステル樹脂(日本ユピカ(株)製、商品名「ユピカ6510」)500gを秤量し、これに硬化促進剤として市販の「6%ナフテン酸コバルト」7.5g(樹脂100gに対して1.5g)、硬化促進助剤として「N,N−ジメチルアニリン」1g(樹脂100gに対して0.2g)界面活性剤として「ニューコール1103」(ポリオキシエチレンラウリルエーテル 日本乳化剤(株)製)10gを加えよく混合したのち、羽根の外径が4cmのディゾルバーを使用して回転数1000rpmで撹拌しながら水道水500g(樹脂50gに対して50g)を加え、W/O型水性分散体を得た。得られた水性分散体はB型粘度計、No.4ローター使用時、60回転での粘度は35ポイズであり、6回転での粘度は160ポイズであった。得られたW/O型水性分散体に、市販MEKPO(日本油脂(株)製、商品名「パーメックN」)10gを加え十分に溶解した後、該水性分散体をあらかじめ用意しておいたポリエステル樹脂製の型に流し込み、室温で2時間硬化させさらに50℃で1時間硬化させ、硬化後70℃で30分乾燥させ、厚さ15mmの枡形多孔質硬化物を得た。得られた硬化物は90℃で1時間乾燥したが乾燥減量は1.2gで、分散された水分は硬化物中に存在した状態であり、連続気孔を有する多孔質硬化物は得られなかった。
【0047】
尚、硬化物の気孔率、気孔径は下記により測定した。
【0048】
(1)気孔率
硬化物から、略1cmの測定用試料を作成し、乾燥状態の重量と水を飽和させた状態の重量、すなわち上記試料の乾燥状態における重量と、試料を1日水中に浸漬して水を飽和させた状態の重量をそれぞれ測定し、水の比重を1.0として、その値の差[(水を飽和させた状態の重量)−(乾燥状態の重量)]を気孔部分の容積(a)(単位ml)とする。また、試料の縦(b)(cm)、横(c)(cm)、高さ(d)(cm)を測定し、次式により気孔率(X)(容量%)を求めた。
【数1】
X(%)=a/(b×c×d)×100
【0049】
(2)気孔径
板状成型物の場合は得られた成型品を使用し、またブロック状成型物の場合は、圧さ2mmに切断して板状の試料を作成する。得られた板状の試料を縦横約5cmの長さに切り出し、気孔径測定用試料とした。この試料をパームポロメーター「CFP−1200」(Porous Materials Inc.製)を使用して、表面張力の小さい試薬を飽和させた湿潤試料に対する空気圧と空気流量から気孔径を測定した。
【0050】
【発明の効果】
(1)本発明における特定の界面活性剤を使用することにより、樹脂中に水粒子を均一に分散させたW/O型水性分散体を硬化させた硬化物は、連続した微細気孔を有する多孔質硬化物が得られる。
【0051】
(2)また本発明のW/O型水性分散体より得られる多孔質硬化物は、連続相が熱硬化性樹脂で構成されていることから熱硬化性樹脂が有している強度と同程度の機械的強度を有し、軽量で耐久性に優れた多孔質硬化物であり、濾過材の高強度化を実現し耐久性の向上が可能である。更に、住宅用建材としては調湿能力を有する耐久性のある壁材等を提供することができる。
【0052】
(3)また、本発明の多孔質硬化物は、その微細な気孔の表面張力により含水物質水に対し脱水作用を示し、優れた耐久性を有していることから、陶器鋳込み成型用型材として有用なものである。
【0053】
(4)また、本発明の連続気孔を有する多孔質硬化物は適度な気孔径を有する多孔質硬化物であることから、適度な通気性に優れているので、通気性が要求される義肢ソケット用材料として使用することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aqueous W / O-type thermosetting resin dispersion in which water particles are dispersed in a resin by mixing a liquid radical-polymerization type thermosetting resin and water, and the aqueous dispersion is used as a reinforcing material. The present invention relates to a porous cured product having fine continuous pores, which is obtained by curing at room temperature or under heating in the presence or absence of a polymer.
[0002]
[Prior art]
Conventionally, porous materials used for microfiltration materials for water treatment and the like include, for example, porous materials such as organic membranes, hollow fibers, ceramics, metals, and thermosetting resins. In addition to the cost for assembling the cell, the cell itself has poor durability, and the hollow fiber is lightweight but expensive. Ceramics are inexpensive, but it is difficult to reduce the weight. In addition, metals have strength and durability, but have drawbacks such as a problem in corrosion resistance, and at present, a porous filter material that can satisfy all of them has not been obtained.
[0003]
The present inventor has proposed a porous material having fine continuous pores, which is lightweight and durable, has an adjustable pore diameter, and can be applied to a filter material having a desired shape, and a method for producing the porous material (Japanese Patent Application 2001). -21934, Japanese Patent Application No. 2001-95606). That is, a porous material having fine continuous pores obtained by curing an aqueous dispersion in which a radical polymerization type thermosetting resin and water are uniformly dispersed at room temperature or under heating in the presence or absence of a reinforcing material. And a method for producing the same. The porous cured product can have an approximate pore size adjustable within an average pore size range of 0.01 to 10.0 μm, and has a porosity of 10 to 70% by volume. The cured product can be used as a housing material such as a filtration membrane, a ceiling or a wall material, or a ceramic casting mold.
[0004]
[Problems to be solved by the invention]
Further examination of the above-mentioned porous cured product revealed that a cured product obtained by curing the W / O aqueous dispersion was particularly difficult to become a porous cured product having continuous pores. As a result of various studies on this point, the present inventor has found that, when producing a W / O type aqueous dispersion of a radical polymerization type thermosetting resin, a specific surfactant is used, and water particles are contained in the resin. It has been found that a cured product obtained by curing a uniformly dispersed W / O-type aqueous dispersion can easily obtain a porous cured product having continuous fine pores.
[0005]
The present invention relates to a method for producing an aqueous dispersion of a thermosetting resin, which is capable of producing a porous cured product having fine continuous pores, a microfiltration membrane, a building material for a house such as a ceiling or a wall material, and a pottery casting. An object is to provide a material suitable for a mold or the like.
[0006]
[Means for Solving the Problems]
That is, the present invention provides (1) a surfactant having a number average molecular weight of 1500 to 6000 represented by the following molecular formula (1) of 0.1 to 10.0 per 100 parts by weight of a radical polymerization type thermosetting resin. W / O type wherein the resin and water are mixed at a mixing ratio (weight ratio) of 90:10 to 30:70 in the presence of parts by weight to uniformly disperse fine particles of water in the resin. The present invention relates to a method for producing a radical polymerization type thermosetting resin aqueous dispersion.
[0007]
Embedded image
HO (C 2 H 4 O) m (C X H 2X O) p (C 2 H 4 O) n H ・ ・ (1)
(Wherein, m and n are integers of 1 or more, p is an integer of 10 or more, and X is an integer of 3 to 5)
[0008]
(2) The W / O radical polymerization type thermosetting resin aqueous dispersion according to the above (1), wherein the radical polymerization type thermosetting resin contains 1 to 30% by weight of polyvinyl acetate. And a method for producing the same.
[0009]
Further, the present invention provides (3) curing the aqueous dispersion of the W / O-type radical polymerization type thermosetting resin described in the above (1) or (2) at room temperature or under heating and then drying at room temperature or under heating. (4) The above-described (1) or (2), wherein the porous cured product has continuous pores having an average pore diameter of 0.01 to 10.0 μm and a porosity of 10 to 70% by volume. The W / O-type radical polymerization type thermosetting resin aqueous dispersion according to the above (3), wherein the aqueous dispersion is further cured in the presence of a reinforcing material. ) Or (4) a filter material comprising the cured porous continuous material according to (4); (6) a pottery casting mold comprising the cured porous porous material according to (3) or (4) above; 3) or a house made of the cured porous porous material according to (4). On building materials.
[0010]
The present invention relates to an aqueous dispersion in which water particles are dispersed in a radical polymerization type thermosetting resin, in particular, an aqueous dispersion of a W / O type thermosetting resin (hereinafter referred to as an “aqueous dispersion of a W / O type thermosetting resin”). Or simply referred to as "W / O-type aqueous dispersion"), characterized by using a surfactant represented by the above molecular formula. The obtained W / O type aqueous dispersion is a dispersion having a sea-island structure in which a resin phase is a continuous phase and water particles form a discontinuous phase, and a cured product obtained by curing the dispersion is a fine continuous product. A porous cured product having pores can be easily obtained. It is presumed that such continuous pores undergo curing in a state where water particles dispersed in the resin are joined and become continuous during the curing process, and as a result, continuous pores are formed. Therefore, since the cured product has a structure in which fine pores are formed in a resin that is a continuous phase, the cured product basically has the same strength as a cured resin having no pores, and has durability. It is an excellent porous cured product.
The cured product has an average pore diameter of about 0.01 to 10.0 μm and a porosity of 10 to 70% by volume. The dispersion method, the amount of the surfactant, the type of the surfactant, It is possible to change the pore diameter and porosity by changing the composition, etc., and to mold a cured product from an aqueous dispersion of a radical polymerization type thermosetting resin. Can be obtained.
[0011]
In the production of the W / O-type aqueous dispersion of the present invention, usually, an aqueous dispersion in which water is dispersed in the resin while stirring is continued while adding water little by little to the resin being stirred, ie, W / O type aqueous dispersion is produced, but the stability is not sufficient, or the aqueous dispersion becomes unstable during storage or before curing, and has the intended high strength porous cured product having continuous pores Is difficult to obtain, the desired stable W / O-type aqueous dispersion can be obtained by adding a polymer containing polyvinyl acetate to the radical polymerization type thermosetting resin. In addition, when a polymer containing polyvinyl acetate is added, it is not necessary to adopt a method of adding water little by little into the stirred resin, but by introducing a predetermined amount of water measured in the resin and stirring the resin, A stable W / O-type aqueous dispersion can be obtained.
[0012]
In the present invention, generally 1 to 30 parts by weight of polyvinyl acetate is added to the radical polymerization type thermosetting resin based on 100 parts by weight of the radical polymerization type thermosetting resin. ~ 20 parts by weight are added.
As the above-mentioned polyvinyl acetate, a vinyl acetate polymer having a molecular weight of 5,000 to 200,000 is used. The polyvinyl acetate referred to in the present invention is not limited to a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another polymerizable monomer can also be used. When a copolymer with another polymerizable monomer is used, a copolymer containing 30 to 99% by weight, preferably 50 to 99% by weight of a vinyl acetate component in the polymer is used.
[0013]
The porous cured product having fine continuous pores according to the present invention has an average pore diameter in the range of 0.01 to 10.0 μm and a porosity of 10 to 70% by volume. It can be adjusted as desired. The porous cured product of the present invention has a relatively high mechanical strength, is lightweight, is durable, and has a filtration membrane, a pottery casting mold, and a ceiling because the resin forms a continuous phase. It is useful as a building material for houses such as walls and wall materials.
[0014]
As the surfactant used in the present invention, those having a number average molecular weight of 1500 to 6000 represented by the following molecular formula (1) are used.
[0015]
Embedded image
HO (C 2 H 4 O) m (C X H 2X O) p (C 2 H 4 O) n H ・ ・ (1)
(Where m and n are integers of 1 or more, p is an integer of 10 or more, and X is an integer of 3 to 5)
[0016]
In the present invention, the amount of the surfactant represented by the molecular formula (1) is 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight, per 100 parts by weight of the liquid radical-curable thermosetting resin. Used at 0 parts by weight. When the amount of the surfactant is less than 0.1 part by weight, the effect of the addition is not exhibited, and when the amount exceeds 10 parts by weight, the water resistance may be reduced.
[0017]
Examples of the surfactant represented by the molecular formula (1) include a copolymer of polyethylene oxide and polypropylene oxide, a copolymer of polyethylene oxide and polybutene oxide, a copolymer of polyethylene oxide and tetrahydrofuran, and a copolymer of polyethylene oxide and polyethylene oxide. Examples thereof include copolymers with pentene oxide. Such surfactants are commercially available from Nippon Yushi Co., Ltd. under the trade names “Pronon 102”, “Pronon 202”, “Pronon 202B”, “Pronon 204”, “Pronon B204”, “Polycene BP434”, for example. And the trade name “Tetraxinol AS-200” commercially available from Sanyo Chemical Industries, Ltd.
[0018]
The W / O-type aqueous dispersion in the present invention can be easily produced by mixing a liquid radically polymerizable thermosetting resin and water by a mechanical mixing means. Specifically, it is possible to obtain a W / O-type aqueous dispersion by manual stirring or a low-speed stirrer of about 200 rpm, but usually, mechanical mixing means such as a dissolver (high-speed rotary mixer) and a homomixer, Alternatively, by means of ultrasonic irradiation or the like, a stable aqueous dispersion can be obtained by adding water little by little to a liquid radically polymerizable thermosetting resin in which an accelerator is added and dissolved as necessary, and mixing. . The water used may be any of ion-exchanged water, distilled water and tap water, and is not particularly limited. When polyvinyl acetate is added as described above, a predetermined amount of water can be added at a time and stirred without adding water little by little.
[0019]
The W / O-type aqueous dispersion in the present invention has a mixing ratio of a liquid radically polymerizable thermosetting resin and water in a weight ratio of 90:10 to 30:70, preferably 80:20 to Manufactured using a range of 40:60. When the mixing ratio of water is more than the above range, that is, when the weight ratio exceeds 70, the resin content in the cured product is small, and the cured product is a thin resin film, and the strength of the cured product is reduced. Absent. On the other hand, when the mixing ratio of water is less than the above range, that is, when the weight ratio is less than 10, the porosity is low, and the continuity of the pores is reduced, and the water permeability is reduced. It is difficult to obtain a porous cured product having fine continuous pores.
[0020]
As the liquid radical polymerization type thermosetting resin in the present invention, a liquid unsaturated polyester resin, a liquid epoxy (meth) acrylate resin, a liquid urethane (meth) acrylate resin, or a liquid (meth) acrylic resin (so-called acrylic syrup) is used. You.
[0021]
The liquid unsaturated polyester resin in the present invention comprises a polyhydric alcohol containing a glycol as a main component and an α, β-unsaturated dibasic acid and / or an anhydride thereof, and if necessary, a saturated dibasic acid and / or It is a liquid resin obtained by dissolving an unsaturated polyester obtained by polycondensation with the anhydride in a polymerizable monomer having an ethylenically unsaturated double bond such as styrene.
[0022]
Examples of the above glycols include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, pentaerythritol, and pentaerythritol. Examples thereof include pentaerythritol derivatives such as diallyether, allyl glycidyl ether, hydrogenated bisphenol A, bisphenol A derivatives, and the like.
[0023]
Examples of the α, β-unsaturated dibasic acid and / or anhydride thereof include maleic acid or its anhydride, fumaric acid, and itaconic acid. These can be used alone or in combination of two or more.
[0024]
Examples of the saturated dibasic acid and / or its anhydride include phthalic anhydride, terephthalic acid, isophthalic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, adipic acid, sebacic acid, and tetrabromo. Examples thereof include phthalic anhydride, heptic acid, hexahydrophthalic anhydride, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid. These can be used alone or in combination of two or more.
[0025]
Examples of the polymerizable monomer having an ethylenically unsaturated double bond include, for example, styrene, vinyl toluene, α-methyl styrene, vinyl acetate, methyl methacrylate, and vinyl monomers such as ethyl methacrylate, diallyl phthalate, diallyl Examples include allyl monomers such as isophthalate, triallyl isocyanurate, diallyl tetrabromophthalate, and acrylates such as phenoxyethyl acrylate, 1,6-hexanediol acrylate, trimethylolpropane triacrylate, and 2-hydroxyethyl acrylate. These can be used alone or in combination of two or more. Of these, vinyl monomers such as styrene and vinyltoluene are generally used.
[0026]
In the present invention, the liquid unsaturated polyester resin is recovered PET, that is, waste of high molecular weight polyethylene terephthalate products, for example, waste of used PET bottles, sheets and films, molding waste, cutting waste, etc. A liquid unsaturated polyester resin obtained by dissolving an unsaturated polyester partially used in a polymerizable monomer having an ethylenically unsaturated double bond in the same manner as described above can also be used.
[0027]
As the liquid epoxy (meth) acrylate resin in the present invention, a (meth) acryloyl group is added to a molecular terminal obtained by adding an acrylic acid or methacrylic acid to an epoxy resin having two or more glycidyl ether groups in one molecule. Is a liquid resin obtained by dissolving an epoxy (meth) acrylate having the same in a polymerizable monomer having an ethylenic α, β-unsaturated double bond. Examples of the epoxy resin having two or more glycidyl ether groups in one molecule include bisphenol A, bisphenol F, bisphenol S, and the like, or a bisphenol-type epoxy resin derived from these derivatives, bixylenol, and bixylenol from the derivatives thereof. Epoxy resins, biphenol-type epoxy resins from biphenol and its derivatives, or naphthalene-type epoxy resins from naphthalene and its derivatives, and epoxy resins such as novolak-type epoxy resins. These may be used alone or in combination of two or more. Can be used in combination. As the polymerizable monomer having an ethylenic α, β-unsaturated double bond, the same polymerizable monomer as used in the above-mentioned unsaturated polyester resin can be used, and a liquid epoxy (meth) The acrylate resin is a liquid resin obtained by dissolving the above epoxy (meth) acrylate in a liquid polymerizable monomer such as styrene and diethylene glycol dimethacrylate.
[0028]
The liquid urethane (meth) acrylate resin in the present invention is obtained by reacting a polyalcohol and / or a polyester polyol and / or a polyether polyol with a diisocyanate to form an isocyanate at the molecular terminal thereof, and converting the acrylate or methacrylate having an alcoholic hydroxyl group into an isocyanate. Reaction, or first, an acrylate or methacrylate having an alcoholic hydroxyl group is reacted with an isocyanate while leaving an isocyanate group, and then a molecular end obtained by reacting with a polyalcohol and / or a polyester polyol and / or a polyether polyol. Urethane (meth) acrylate having a (meth) acryloyl group in the form of a liquid polymerizable monomer such as styrene and diethylene glycol dimethacrylate It is dissolved liquid resin. These can be used alone or in a mixture of two or more.
[0029]
Further, as the liquid acrylic resin or methacrylic resin used in the present invention, a methyl methacrylate copolymer in which methyl methacrylate is a main component and another copolymerizable monomer is partially copolymerized, or this copolymer Is a liquid resin in which is dissolved in methyl methacrylate, which is usually called acrylic syrup. In order to make these liquid resins thermosetting, for example, polyfunctional methacrylates such as ethylene glycol dimethacrylate and diethylene glycol dimethacrylate or acrylate monomers are used in combination.
[0030]
A reinforcing material is used to further impart strength, durability, and the like to the porous cured product obtained from the W / O aqueous dispersion of the present invention. As a reinforcing material, glass cloth, carbon cloth, glass chop strand mat, synthetic fiber cloth such as aramid fiber, polyester fiber, acrylic fiber, polypropylene fiber, or these synthetic fiber non-woven fabric, rayon which is generally used as a reinforcing material A nonwoven fabric or the like can be used. Further, a fibrous reinforcing material recovered from a waste FRP product or a FRP crushed product can be used as a reinforcing material.
[0031]
The W / O-type aqueous dispersion obtained by the present invention exhibits good viscosity and thixotropic properties, and does not need to be imparted with thixotropic properties using finely divided silica as in an ordinary unsaturated polyester resin. However, it can be easily formed into housing materials such as precision filtration materials, pottery casting mold materials, ceiling materials and wall materials by hand lay-up and spray-up methods without dripping.
[0032]
In the present invention, when the W / O-type aqueous dispersion is cured to produce a cured product, a curing agent and, if necessary, an accelerator are used. It is desirable to prepare a W / O-type aqueous dispersion by adding to a liquid thermosetting resin, and a curing agent is usually added during curing. If the curing agent takes a long time to dissolve uniformly in the resin in the form of a powder or paste, the curing agent is added to the liquid thermosetting resin in advance to prepare a W / O-type aqueous dispersion, and added as necessary. The accelerator is added when used.
[0033]
As the curing agent used in the present invention, an organic peroxide is usually used. Representative examples of such curing agents include ketone peroxides represented by methyl ethyl ketone peroxide and peroxy represented by 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane. Ketals, hydroperoxides represented by cumene hydroperoxide, dialkyl peroxides represented by dicumyl peroxide, diacyl peroxides represented by benzoyl peroxide, bis (4-t-butylcyclohexyl) Examples include peroxydicarbonates represented by peroxydicarbonate, peroxybenzoates represented by t-butylperoxybenzoate, and the like. Such a curing agent is usually used in an amount of 0.5 to 3.0 parts by weight, preferably 0.5 to 2.0 parts by weight, based on 100 parts by weight of the liquid radical polymerization type thermosetting resin. used.
[0034]
The above accelerators include metal salts (metal soaps) of organic acids represented by cobalt naphthenate, tertiary amines such as N, N-dimethylaniline and N, N-dimethylparatoluidine, and unsaturated compounds such as ferrocene. Accelerators commonly used for room temperature curing of polyester resins are used. These accelerators are preferably used in combination with a metal soap such as cobalt naphthenate when ketone peroxide or hydroperoxide is used as a curing agent, or 3 when the curing agent is diacyl peroxide. A combination with a secondary amine is preferred, and when the curing agent is peroxydicarbonate, a combination with ferrocene is preferred. Such accelerators are used in the range of 0.2 to 5.0 parts by weight in terms of metal soaps in terms of a metal content of 6% based on 100 parts by weight of the liquid radical polymerization type thermosetting resin. , Preferably 0.5 to 3.0 parts by weight. Tertiary amines are used in an amount of 0.05 to 1.0 part by weight, preferably 0.1 to 0.5 part by weight, based on 100 parts by weight of the liquid radical polymerization type thermosetting resin.
[0035]
The porous cured product having continuous pores according to the present invention has an average pore size of 0.01 to 10.0 μm as described above. However, a porous cured product in which the pore size is adjusted to 1 μm or less can be easily obtained. Therefore, it can be used as a filtration membrane for filtering E. coli or the like having a size of 1 μm or more.
[0036]
In addition, since the porous cured product of the present invention has continuous pores in micron units, when it comes into contact with a water-containing substance, it exhibits a water dehydration effect in the water-containing substance due to the surface tension of the fine pores. Can be used as
[0037]
The porous cured product of the present invention is produced using a thermosetting resin as a raw material, and it is easy to provide a special function by adding an antibacterial agent, a fungicide, and a deodorant. Further, since it is continuous porous, it has a large surface area and has a sufficient humidity control ability. The porous cured product can change the porosity from 10 to 70% by volume, and has a sufficient heat insulating effect because it contains many pores in the order of microns. Due to these characteristics, hollow wall material should be molded as a wall material for housing and used as a wall material that also serves as a duct for temperature-controlled air, and also used as a building material for housing such as ceilings and wall materials for bathrooms using drip-proof performance. Can be.
[0038]
In addition, the porous cured product of the present invention has fine continuous pores and excellent air permeability, and can be used for prosthetic socket applications, air filters, and the like.
[0039]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0040]
Example 1
In a metal container having an inner diameter of 20 cm and a height of 30 cm, 300 g of a liquid unsaturated polyester resin (trade name "Yupika 6502" manufactured by Nippon Yupika Co., Ltd.) is weighed, and a commercially available 50% by weight hardener is used as a curing agent. After adding 6 g of benzoyl oxide (1 g of pure content to 100 g of resin) and 6 g of "Pronone 102" (copolymer of polyethylene oxide and polypropylene oxide, manufactured by NOF CORPORATION) as a surfactant, and mixing well, Using a 4 cm outer diameter dissolver, 200 g of tap water (40 g per 60 g of resin) is gradually added over 2 minutes while stirring at a rotation speed of 2000 rpm, and after completion of the addition, the mixture is stirred at a high speed for 2 minutes to obtain W / O. A type aqueous dispersion was obtained. The resulting aqueous dispersion was a B-type viscometer, When a 4-rotor was used, the viscosity at 60 rotations was 35 poise, and the viscosity at 6 rotations was 220 poise. 0.6 g of N, N-dimethylaniline was added to the obtained W / O-type aqueous dispersion and dissolved sufficiently. 2 Was impregnated with 3 plies of glass chopped strand mat, covered with a polyester film, and allowed to stand at room temperature for 24 hours to cure. After curing, the polyester film was removed, and the film was allowed to stand at room temperature for 24 hours and dried to obtain a glass fiber reinforced microfiltration membrane having a thickness of 3 mm. The porosity of the obtained filtration membrane was about 32% by volume, and the average pore diameter was 0.1 μm.
[0041]
Example 2
In a metal container having an inner diameter of 10 cm and a height of 15 cm, 700 g of a liquid epoxy acrylate resin (manufactured by Nippon Yupika Co., Ltd., trade name "Neopol 8250L") is weighed, and commercially available "6% cobalt naphthenate as a curing accelerator" is added thereto. After adding 14 g (2 g per 100 g of resin) and 6 g of "Pronone B204" (copolymer of polyethylene oxide and polybutene oxide, manufactured by Nippon Oil & Fats Co., Ltd.) as a surfactant, the outer diameter of the blade was reduced. Using a 4 cm dissolver, 300 g of tap water (30 g per 70 g of resin) was gradually added over 2 minutes while stirring at 1,000 rpm to obtain a W / O aqueous dispersion. The resulting aqueous dispersion was a B-type viscometer, When a 4-rotor was used, the viscosity at 60 rotations was 8 poise, and the viscosity at 6 rotations was 32 poise. To the obtained W / O-type aqueous dispersion, 10 g of commercially available MEKPO (manufactured by NOF CORPORATION, trade name “Permec N”) was added and sufficiently dissolved, and then 450 g / m 2 2 A glass chopped strand mat and a polyester non-woven fabric were set, and one of the molds kept at 60 ° C. was depressurized, and the aqueous dispersion was press-fitted from the other, held for 5 minutes after the completion of the press-fitting, and then demolded. It was left to dry at room temperature for 24 hours to obtain a fiber-reinforced microfiltration membrane having a thickness of 2 mm. The porosity of the obtained filtration membrane was about 25% by volume, and the average pore diameter was 0.05 μm.
[0042]
Example 3
In a metal container having an inner diameter of 20 cm and a height of 30 cm, 400 g of a liquid unsaturated polyester resin (trade name “Yupika 6510” manufactured by Nippon Yupika Co., Ltd.) and a polyvinyl acetate solution (trade name “A” manufactured by Nippon Yupika Co., Ltd.) -73 "(50% styrene solution), 100 g, and 7.5 g of a commercially available" 6% cobalt naphthenate "as a curing accelerator (1.5 g per 100 g of resin (including a polyvinyl acetate solution)) ), 1 g of "N, N-dimethylaniline" (0.2 g per 100 g of resin (including polyvinyl acetate solution)) as a curing accelerator, and "Pronone 202B" (a mixture of polyethylene oxide and polypropylene oxide) as a surfactant. 10 g of a copolymer (manufactured by NOF Corporation) was added, mixed well, and then 500 g of tap water (50 g for 50 g of resin) was added. The mixture was stirred by hand with a spatula for 2 minutes to obtain a W / O-type aqueous dispersion. The resulting aqueous dispersion was a B-type viscometer, When a 4-rotor was used, the viscosity at 60 rotations was 65 poise, and the viscosity at 6 rotations was 320 poise. To the obtained W / O-type aqueous dispersion, 10 g of commercially available MEKPO (trade name “Permec N” manufactured by NOF Corporation) was added and sufficiently dissolved, and then the polyester prepared with the aqueous dispersion in advance was used. The mixture was poured into a resin mold, cured at room temperature for 2 hours, and then at 50 ° C. for 1 hour. After curing, the cured product was dried at 70 ° C. for 30 minutes to obtain a square-shaped porous cured product having a thickness of 15 mm. The porosity of the obtained cured product was about 45% by volume, and the average pore diameter was 0.2 μm.
The slurry which is a raw material for pottery molding is poured into the obtained porcelain mold forming body, and after 1 hour, the excess slurry is poured out. Was.
[0043]
Example 4
In a metal container having an inner diameter of 20 cm and a height of 30 cm, 380 g of liquid urethane tank resin (trade name “Yupika 8932”, manufactured by Nippon Yupika Co., Ltd.) and a polyvinyl acetate solution (trade name “A, manufactured by Nippon Yupika Co., Ltd.”) -73 "(a 50% solution of styrene)), and 20 g of a commercially available 50% by weight benzoyl peroxide (1 g of a pure content per 100 g of a resin (including a polyvinyl acetate solution)) as a curing agent. After adding 4 g of “Pronone 202” (copolymer of polyethylene oxide and polypropylene oxide, manufactured by Nippon Oil & Fats Co., Ltd.) as a surfactant and mixing well, using a dissolver having an outer diameter of the blade of 4 cm at a rotation speed of 500 rpm. While stirring, 400 g of tap water (50 g for 50 g of resin (including polyvinyl acetate solution)) is gradually added over 2 minutes, and the addition is completed. After stirring for 2 minutes, a W / O aqueous dispersion was obtained. The resulting aqueous dispersion was a B-type viscometer, When a 4-rotor was used, the viscosity at 60 rotations was 38 poise, and the viscosity at 6 rotations was 146 poise. After adding 0.8 g of N, N-dimethylaniline to the obtained W / O-type aqueous dispersion and sufficiently dissolving it, the aqueous dispersion is kneaded into 80 g of recycled glass fiber (cotton-like), and a release agent is added. It was sandwiched between the applied 400 mm square FRP plates, cured at 50 ° C. for 1 hour, taken out of the mold, and dried at 70 ° C. for 30 minutes to obtain a 10 mm thick FRP wall material having continuous fiber-reinforced pores. The porosity of the obtained cured product was about 45% by volume, and the average pore size was 2.8 μm.
[0044]
Example 5
In a metal container having an inner diameter of 20 cm and a height of 30 cm, 300 g of a liquid unsaturated polyester resin (trade name “Yupika 6510” manufactured by Nippon Yupika Co., Ltd.) is weighed, and a commercially available 50% by weight excess as a curing agent is added thereto. 6 g of benzoyl oxide (1 g of pure content per 100 g of resin), 1.5 g of "Novalon AG300" manufactured by Toagosei Co., Ltd. as an antibacterial agent, and 1.5 g of "Cavinon 800" manufactured by Toagosei Co., Ltd. as an antifungal agent 1.5 g of "Kesmon TNS200" manufactured by Toagosei Co., Ltd. as a deodorant, and 6 g of "Pronone B204" (manufactured by NOF Corporation, a copolymer of polyethylene oxide and polybutene oxide) as a surfactant. After mixing well, 100 g of tap water (based on 75 g of resin) was stirred while using a dissolver having an outer diameter of the blade of 4 cm at a rotation speed of 1,000 rpm. 25 g) was gradually added over 2 minutes, and the mixture was stirred for 2 minutes after completion of the addition to obtain a W / O aqueous dispersion. The resulting aqueous dispersion was a B-type viscometer, When a 4-rotor was used, the viscosity at 60 rotations was 8 poise, and the viscosity at 6 rotations was 20 poise. After 0.6 g of N, N-dimethylaniline was added to the obtained W / O-type aqueous dispersion and sufficiently dissolved, the aqueous dispersion was mixed with 1 ply of polyester nonwoven fabric + 450 g / m. 2 Was impregnated with 3 plies of glass chopped strand mat, covered with a polyester film, and allowed to stand at room temperature for 24 hours to cure. After curing, the polyester film was removed, and the film was allowed to stand at room temperature for 24 hours and dried to obtain a glass fiber-reinforced porous cured product having a thickness of 4 mm. The porosity of the obtained cured product was about 21% by volume, and the average pore size was 0.08 μm.
[0045]
As a result of using the glass fiber reinforced porous cured material containing the above-mentioned antifungal material and antibacterial material as a wall material, water was completely sprayed on the wall material, and then water was stopped. No water droplets were observed, and it seemed to be dry at first glance. Further, as a result of arranging the porous cured product on the bathroom wall and observing the surface three months later, no mold was generated and no slimming of the surface was observed.
[0046]
Comparative Example 1
In a metal container having an inner diameter of 20 cm and a height of 30 cm, 500 g of a liquid unsaturated polyester resin (trade name “Yupika 6510” manufactured by Nippon Yupika Co., Ltd.) is weighed, and commercially available “6% naphthenic acid” is used as a curing accelerator. 7.5 g of cobalt (1.5 g per 100 g of resin), 1 g of N, N-dimethylaniline as a curing accelerator (0.2 g per 100 g of resin), and Newcol 1103 as a surfactant ( After adding 10 g of polyoxyethylene lauryl ether (manufactured by Nippon Emulsifier Co., Ltd.) and mixing well, 500 g of tap water (50 g for 50 g of resin) while stirring at 1000 rpm using a dissolver having an outer diameter of the blade of 4 cm. Was added to obtain a W / O aqueous dispersion. The resulting aqueous dispersion was a B-type viscometer, When a 4-rotor was used, the viscosity at 60 rotations was 35 poise, and the viscosity at 6 rotations was 160 poise. To the obtained W / O-type aqueous dispersion, 10 g of commercially available MEKPO (trade name “Permec N” manufactured by NOF Corporation) was added and sufficiently dissolved, and then the polyester prepared with the aqueous dispersion in advance was used. The mixture was poured into a resin mold, cured at room temperature for 2 hours, further cured at 50 ° C. for 1 hour, and dried at 70 ° C. for 30 minutes to obtain a square-shaped porous cured product having a thickness of 15 mm. The obtained cured product was dried at 90 ° C. for 1 hour, but the loss on drying was 1.2 g, the dispersed water was present in the cured product, and a porous cured product having continuous pores was not obtained. .
[0047]
The porosity and pore diameter of the cured product were measured as follows.
[0048]
(1) Porosity
Approximately 1cm from the cured product 3 A sample for measurement is prepared, and the weight in a dry state and the weight in a state where water is saturated, that is, the weight in a dry state of the sample and the weight in a state where the sample is immersed in water and saturated with water for 1 day are Each was measured, and the specific gravity of water was set to 1.0, and the difference between the values [(weight in water-saturated state)-(weight in dry state)] was defined as the volume (a) of the pore portion (unit: ml). . The length (b) (cm), width (c) (cm), and height (d) (cm) of the sample were measured, and the porosity (X) (volume%) was determined by the following equation.
(Equation 1)
X (%) = a / (b × c × d) × 100
[0049]
(2) Pore diameter
In the case of a plate-like molded product, the obtained molded product is used, and in the case of a block-shaped molded product, a plate-like sample is prepared by cutting to a pressure of 2 mm. The obtained plate-shaped sample was cut into a length of about 5 cm in length and width to obtain a sample for pore diameter measurement. The pore diameter of this sample was measured using a palm porometer “CFP-1200” (manufactured by Porous Materials Inc.) from the air pressure and air flow rate of the wet sample saturated with a reagent having a small surface tension.
[0050]
【The invention's effect】
(1) A cured product obtained by curing a W / O-type aqueous dispersion in which water particles are uniformly dispersed in a resin by using a specific surfactant in the present invention is a porous material having continuous fine pores. A cured product is obtained.
[0051]
(2) Further, the porous cured product obtained from the W / O aqueous dispersion of the present invention has the same strength as the thermosetting resin because the continuous phase is composed of the thermosetting resin. This is a porous cured product having the above mechanical strength, lightweight and excellent in durability, realizing high strength of the filter material and improving durability. Furthermore, durable wall materials and the like having a humidity control ability can be provided as building materials for houses.
[0052]
(3) Further, the porous cured product of the present invention exhibits a dehydration effect on water-containing water due to the surface tension of its fine pores, and has excellent durability. It is useful.
[0053]
(4) Since the porous cured product having continuous pores of the present invention is a porous cured product having an appropriate pore diameter, it has excellent moderate air permeability. It can be used as an application material.

Claims (7)

ラジカル重合型熱硬化性樹脂100重量部に対し、下記分子式(1)で表される数平均分子量が1500〜6000である界面活性剤0.1〜10.0重量部の存在下に、前記樹脂と水とを90:10〜30:70の混合比(重量比)で混合し樹脂中に水の微粒子を均一に分散させることを特徴とするW/O型ラジカル重合型熱硬化性樹脂水性分散体の製造方法。
Figure 2004051877
(式中、mおよびnは1以上の整数、pは10以上の整数、Xは3〜5の整数を示す)
In the presence of 0.1 to 10.0 parts by weight of a surfactant having a number average molecular weight of 1500 to 6000 represented by the following molecular formula (1) based on 100 parts by weight of a radical polymerization type thermosetting resin, And water are mixed at a mixing ratio (weight ratio) of 90:10 to 30:70 to uniformly disperse fine particles of water in the resin. How to make the body.
Figure 2004051877
(Wherein, m and n are integers of 1 or more, p is an integer of 10 or more, and X is an integer of 3 to 5)
ラジカル重合型熱硬化性樹脂は、ポリ酢酸ビニルを1〜30重量%含有することを特徴とする請求項1記載のW/O型ラジカル重合型熱硬化性樹脂水性分散体の製造方法。The method for producing an aqueous dispersion of a W / O type radical polymerization type thermosetting resin according to claim 1, wherein the radical polymerization type thermosetting resin contains 1 to 30% by weight of polyvinyl acetate. 請求項1または請求項2記載のW/O型ラジカル重合型熱硬化性樹脂水性分散体を、常温または加熱下に硬化した後、室温または加熱下に乾燥し得られる平均気孔径が0.01〜10.0μm、気孔率が10〜70容量%である連続気孔を有することを特徴とする多孔質硬化物。The W / O type radical polymerization type thermosetting resin aqueous dispersion according to claim 1 or 2 is cured at room temperature or under heating, and then dried at room temperature or under heating to have an average pore diameter of 0.01. A porous cured product having continuous pores of up to 10.0 μm and a porosity of 10 to 70% by volume. 請求項1または請求項2記載のW/O型ラジカル重合型熱硬化性樹脂水性分散体を、補強材の存在下に硬化させることを特徴とする請求項3記載の多孔質硬化物。4. The porous cured product according to claim 3, wherein the W / O-type radical polymerization type thermosetting resin aqueous dispersion according to claim 1 or 2 is cured in the presence of a reinforcing material. 請求項3または4記載の連続気孔多孔質硬化物からなる濾過材。A filter medium comprising the cured porous porous material according to claim 3. 請求項3または4記載の連続気孔多孔質硬化物からなる陶器鋳込み成形型。A pottery casting mold comprising the cured porous porous material according to claim 3 or 4. 請求項3または4記載の連続気孔多孔質硬化物からなる住宅用建材。A residential building material comprising the cured porous porous material according to claim 3.
JP2002213835A 2002-07-23 2002-07-23 Method for producing aqueous dispersion of radically polymerizable thermosetting resin and porous cured article having open pore structure Pending JP2004051877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213835A JP2004051877A (en) 2002-07-23 2002-07-23 Method for producing aqueous dispersion of radically polymerizable thermosetting resin and porous cured article having open pore structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213835A JP2004051877A (en) 2002-07-23 2002-07-23 Method for producing aqueous dispersion of radically polymerizable thermosetting resin and porous cured article having open pore structure

Publications (1)

Publication Number Publication Date
JP2004051877A true JP2004051877A (en) 2004-02-19

Family

ID=31936327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213835A Pending JP2004051877A (en) 2002-07-23 2002-07-23 Method for producing aqueous dispersion of radically polymerizable thermosetting resin and porous cured article having open pore structure

Country Status (1)

Country Link
JP (1) JP2004051877A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083335A (en) * 2004-09-17 2006-03-30 Konishi Co Ltd Aqueous polyurethane composition and aqueous adhesive
JP2008519887A (en) * 2004-11-10 2008-06-12 ダウ グローバル テクノロジーズ インコーポレイティド Epoxy vinyl esters and unsaturated polyester resins toughened with amphiphilic block copolymers.
JP2017110081A (en) * 2015-12-15 2017-06-22 出光ユニテック株式会社 Resin sheet, laminated sheet, molding, molded article and method for producing the same
JP2019065199A (en) * 2017-10-02 2019-04-25 双和化学産業株式会社 Fiber reinforced resin composition and material for fiber reinforced resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083335A (en) * 2004-09-17 2006-03-30 Konishi Co Ltd Aqueous polyurethane composition and aqueous adhesive
JP2008519887A (en) * 2004-11-10 2008-06-12 ダウ グローバル テクノロジーズ インコーポレイティド Epoxy vinyl esters and unsaturated polyester resins toughened with amphiphilic block copolymers.
JP2017110081A (en) * 2015-12-15 2017-06-22 出光ユニテック株式会社 Resin sheet, laminated sheet, molding, molded article and method for producing the same
JP2019065199A (en) * 2017-10-02 2019-04-25 双和化学産業株式会社 Fiber reinforced resin composition and material for fiber reinforced resin composition
JP6999919B2 (en) 2017-10-02 2022-02-04 双和化学産業株式会社 Materials for fiber reinforced resin compositions and fiber reinforced resin compositions

Similar Documents

Publication Publication Date Title
KR100812577B1 (en) O/w aqueous thermosetting resin dispersion, frp precision filter medium made with the aqueous dispersion, and process for producing the same
WO1996000753A1 (en) Unsaturated polyester resin composition and process for molding said composition
TW201219430A (en) W/o emulsion, foam, and functional foam
US5969009A (en) Molding material and molded motor
JPH09241496A (en) Unsaturated polyester resin composition and sheet-like molding material
JP2004051877A (en) Method for producing aqueous dispersion of radically polymerizable thermosetting resin and porous cured article having open pore structure
WO2002059172A1 (en) Process for producing fine cured-resin particle
JP4820010B2 (en) Porous cured product and method for producing the same
JP2002239354A (en) Frp microfilter medium and its production method
JP2002266463A (en) Wall material
JP3697672B2 (en) Mold material, mold motor and method for disassembling mold material
JP4564209B2 (en) Surface material for heat molding
JP2002179805A (en) O/w type aqueous thermosetting resin dispersion
JP3518931B2 (en) Thermosetting composition, molding material, and method for decomposing molding material
JP4845291B2 (en) Insulation material
JP4753333B2 (en) Method for producing fiber-reinforced porous cured product
JP2020079358A (en) Thermosetting resin composition and cured product thereof
JPH09183122A (en) Manufacture of sheet molding compound
JPH09151222A (en) Molding material
JP2002293978A (en) Method for producing porous cured product
JPS61151226A (en) Lightweight electrical insulating material composition
JPH10158481A (en) Unsaturated polyester resin and shrinkage lowering agent
JP2023130239A (en) Method for producing radical curable resin composition
JP4495389B2 (en) Method for producing porous molded product
Chen et al. Teardrop-Shaped Hollow Polystyrene Nanoparticles for Improving the Mechanical and Thermal Properties of Polyvinyl Alcohol-Based Syntactic Foam Films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071128