JP2004051084A - Impact absorber - Google Patents

Impact absorber Download PDF

Info

Publication number
JP2004051084A
JP2004051084A JP2003140866A JP2003140866A JP2004051084A JP 2004051084 A JP2004051084 A JP 2004051084A JP 2003140866 A JP2003140866 A JP 2003140866A JP 2003140866 A JP2003140866 A JP 2003140866A JP 2004051084 A JP2004051084 A JP 2004051084A
Authority
JP
Japan
Prior art keywords
small
tube
tubular body
shock absorber
folded edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003140866A
Other languages
Japanese (ja)
Other versions
JP4436620B2 (en
Inventor
Hiroshi Yoshida
吉田 寛
Hiroshi Goto
後藤 宏
Koji Shimozu
下津 晃治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OM Industry Co Ltd
Original Assignee
OM Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OM Industry Co Ltd filed Critical OM Industry Co Ltd
Priority to JP2003140866A priority Critical patent/JP4436620B2/en
Publication of JP2004051084A publication Critical patent/JP2004051084A/en
Application granted granted Critical
Publication of JP4436620B2 publication Critical patent/JP4436620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact absorber capable of attaining the absorption of impact energy by plastic deformation by assuring the immersion of a small pipe body into a large pipe body even if an impact is applied from the axial slanting direction of a larger angle. <P>SOLUTION: The small pipe body 101 and the large pipe body 106 are connected through a step-off portion 110 by partially contracting or expanding the diameter of a straight pipe capable of having plasticity work. The step-off portion 110 is a bumper support type impact absorber 105 formed by jointing a folded edge 107 of the small pipe body and a folded edge 108 of the large pipe body constituted of a circular-arc cross section of which the circular-arc angle is in excess of 90 degrees. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、衝撃エネルギーを塑性変形の変形エネルギーとして吸収する衝撃吸収体、例えば自動車等の車両の車体メンバ側部を構成するサイドメンバとしたり、自動車等のバンパに加えられた衝撃エネルギーを吸収して車体メンバへの前記衝撃エネルギーの伝達を防止又は抑制するバンパ支持型衝撃吸収体として利用しうる衝撃吸収体に関する。
【0002】
【従来の技術】
自動車等の車両では、衝突時における衝撃から乗員を保護するため、衝撃エネルギーを塑性変形の変形エネルギーとして吸収する衝撃吸収体が各所に使用される。例えば、車両のバンパ補強材を車体メンバに対して支持する管体からなるバンパ支持型衝撃吸収体に衝撃吸収体(以下、バンパ支持型衝撃吸収体)を利用する。
【0003】
衝撃吸収体として利用するバンパ支持型衝撃吸収体は、特許文献1や特許文献2に見られるように、軸方向(小管体及び大管体の並び方向、通常車両の前後方向に一致)から受けた衝撃エネルギーにより小管体を大管体に押し込むことにより塑性変形を引き起こし、衝撃エネルギーを塑性変形の変形エネルギーとして吸収する。衝撃吸収体を利用したバンパ支持型衝撃吸収体は、構造が簡素ながら衝撃エネルギーの吸収性能に優れており、車両重量の違いに応じて柔軟に設計を変更できる利点もある。
【0004】
また、乗員区画を保持する車体メンバとして、車両の車体メンバ側部を構成する管体からなるサイドメンバに前記衝撃吸収体(以下、サイドメンバ型衝撃吸収体)を利用する。サイドメンバに衝撃吸収体を利用した先行技術には、特許文献3〜7がある。
【0005】
特許文献3は、2つの筒状部材の端部を同軸で付き合わせ、両筒状部材の前記端部から内側に捲れ込む塑性変形(特許文献3図1参照)によって衝撃を吸収する。特許文献4は、上下2段に配列した複数の穴により対衝撃強度を長さ方向に変化させ、衝撃の程度に合わせて塑性変形する範囲を調節する。特許文献5は、比較的剛性の低い材料で構成し、内部にブラケットを断続的に架設している。特許文献6は、鏡面対称な多段筒体を接合している。そして、特許文献7は、細長い孔又は空隙を設けた衝撃吸収部材をサイドメンバの構造の一部として介在させる。
【0006】
【特許文献1】
特公昭47−045986号公報(2〜6頁、第1〜4図)
【特許文献2】
特開2001−204841号公報(2〜5頁、図2)
【特許文献3】
特開2001−241478号公報(2〜5頁、図2)
【特許文献4】
特許第2984434号公報(2〜3頁、図2)
【特許文献5】
特公昭51−021850号公報(1〜4頁、第4〜8図)
【特許文献6】
米国特許第3,998,485号明細書(3〜4頁、図2)
【特許文献7】
米国特許第6,312,028号明細書(6〜7頁、図2〜図1)
【0007】
【発明が解決しようとする課題】
上記各先行技術に見られる各衝撃吸収体は、衝撃により塑性変形を引き起こして衝撃エネルギーを変形エネルギーとして吸収する働きを有する。この働きは、基本的に、バンパ支持型衝撃吸収体でもサイドメンバ型衝撃吸収体でも変わらない。これから、衝撃吸収体は、安定して塑性変形することが望ましく、とりわけ偏荷重が加わった場合でも屈曲せず、かつ塑性変形を正しく発生させる必要がある。
【0008】
特許文献1のバンパ支持型衝撃吸収体は、小管体及び大管体が並ぶ軸方向から衝撃が加わる場合、必要十分な吸収性能を発揮できる。しかし、小管体及び大管体の境界となる段差は、塑性変形しやすくなっているため、例えば小管体に軸方向斜めから衝撃が加わると、衝撃の軸直交方向成分fhによって小管体が傾倒し、小管体を大管体に没入することによる塑性変形が発生せず、衝撃エネルギーを吸収できなくなる問題がある。
【0009】
特許文献2のバンパ支持型衝撃吸収体は、小管体、中管体及び大管体からなる3段構成のバンパ支持型衝撃吸収体により、小管体の傾倒を中管体で防止又は抑制する。しかし、中管体による小管体の傾倒防止又は抑制の作用は、限定的(およそ軸方向30度まで)であり、より大きな角度の軸方向斜めからの衝撃に対して、依然として小管体の傾倒防止が十分に達成できない。
【0010】
また、特許文献3のサイドメンバ型衝撃吸収体は、小径の筒状部材の端縁を大径の筒状部材の端縁に設けた段差平面に当接させるため、筒状部材が並ぶ軸方向に衝撃が加われば、確かに段差平面を介して両筒状部材の端縁に塑性変形を引き起こすことができる。しかし、偏荷重の場合、小径の筒状部材が段差平面上で傾倒し、屈曲してしまう問題がある。
【0011】
このほか、特許文献4、特許文献5及び特許文献7に見られるサイドメンバ型衝撃吸収体は、安定した衝撃吸収性能を得にくく(特に、特許文献4の図4荷重特性参照)、特許文献6に見られるサイドメンバ型衝撃吸収体は特許文献3同様、偏荷重によって屈曲する可能性がある。
【0012】
そこで、バンパ支持型衝撃吸収体又はサイドメンバ型衝撃吸収体について、より大きな角度の軸方向斜めから衝撃が加えられても、なお大管体に対する小管体の没入が確保して、塑性変形による衝撃エネルギーの吸収が達成できることを課題として検討した。
【0013】
【課題を解決するための手段】
検討の結果、塑性加工可能な直管を部分的に縮径又は拡径して段差を介して繋がる小管体及び大管体を形成してなり、段差を介して繋がる小管体の折返縁及び大管体の折返縁は共に円弧角度90度超の円弧状断面で、段差は前記小管体の折返縁及び大管体の折返縁を結んだS字断面にした衝撃吸収体を開発した。
【0014】
本発明に言う「90度超」とは、小管体側面から段差への折れ曲がりである小管体の折返縁の円弧部分の角度範囲、又は大管体側面から段差への折れ曲がりである小管体の折返縁の円弧部分の角度範囲が、90度(直角)ではないことを意味する。
【0015】
ここで、車両のバンパ補強材を車体メンバに対して支持する直管を部分的に縮径又は拡径して段差を介して繋がる小管体及び大管体を形成すると、バンパ補強材を支持する構造要素を兼ねることのできる衝撃吸収体(以下、バンパ支持型衝撃吸収体)となる。また、車両の車体メンバ側部を構成する直管を部分的に縮径又は拡径して段差を介して繋がる小管体及び大管体を形成すると、車体メンバを構成する構造要素自体となる衝撃吸収体(以下、サイドメンバ型衝撃吸収体)となる。
【0016】
本発明の衝撃吸収体は、段差を1以上有する多段管体に適用できるが、小管体及び大管体からなる二段管体、又は小管体、中管体及び大管体からなる三段管体が好ましい。ここで、三段管体は、小管体及び中管体、中管体及び大管体の関係それぞれが二段管体の小管体及び大管体の関係に相当し、全体として衝撃吸収体を連結した構成である。
【0017】
本発明の衝撃吸収体は、塑性加工可能な直管を部分的に縮径又は拡径して小管体又は大管体を形成するため、小管体より大管体の肉厚が薄く、相対的に大管体の方が塑性変形しやすい。また、小管体及び大管体の間に介在する段差が、小管体が大管体に対して少し没入し、段差が内向きに捲れ込んだS字断面になっており、大管体に小管体を没入しやすい。
【0018】
これから、本発明の衝撃吸収体は、小管体がそのまま大管体に没入し、段差から大管体側面にかけて内向きに捲り込ませる塑性変形を起こし、衝撃エネルギーを前記塑性変形の変形エネルギーとして吸収する。
【0019】
小管体の折返縁及び大管体の折返縁の各円弧状断面の円弧角度は、90度を超えて360度未満の範囲で考えられる。具体的な円弧角度は、(1)小管体の外径と、大管体の内径との差、(2)小管体の折返縁の円弧状断面と大管体の折返縁の円弧状断面との半径(半径の定義は後述)の異同、によって決定する。より具体的な両側縁の円弧状断面の各円弧角度は、180度前後が好ましい。
【0020】
小管体がそのまま大管体に没入し、段差から大管体側面にかけて内向きに捲り込ませる塑性変形を確実に生起するには、小管体の折返縁の円弧状断面の半径を、大管体の折返縁の円弧状断面の半径より相対的に小さくしたS字断面の段差にする。ここで、厚みの異なる小管体側面及び大管体側面に連続する小管体の折返縁及び大管体の折返縁は、それぞれ厚みを変化しながら湾曲しているので、前記各円弧状断面の半径はそれぞれ板厚の中心線の半径とする。
【0021】
上記断面構造の段差は、相対的に急峻な折返となる小管体の折返縁を介した小管体側面の捲れ込みを抑制し、逆に相対的に緩やかな折返となる大管体の折返縁を介した大管体側面の捲れ込みを誘引する。これにより、小管体はそのまま大管体に没入し、大管体の折返縁から大管体側面にかけて内側に捲れ込む塑性変形を実現できる。
【0022】
本発明は、上述のように、段差の構造を工夫することにより、小管体を必ず大管体に向けて没入させる塑性変形を実現する。しかし、小管体に斜め方向からの衝撃(偏荷重)が印加された場合、大管体に対して小管体が傾倒し、小管体側面が大管体の折返縁に当たって小管体の前記没入が遮られる虞れもある。
【0023】
そこで、段差は小管体の折返縁及び大管体の折返縁を環状側面で結んだS字断面にするとよい。小管体の折返縁及び大管体の折返縁の各円弧状断面の半径は同じであっても、異なってもよい。すなわち、上述のように、小管体の折返縁の円弧状断面の半径を、大管体の折返縁の円弧状断面の半径より相対的に小さくした場合でも、環状側面が捲れ込みを引き起こす阻害要素にはならない。
【0024】
環状側面は、円弧角度が共に180度で等しい小管体の折返縁及び大管体の折返縁を結ぶS字断面の段差を形成した場合、小管体側面及び大管体側面に平行となる。しかし、小管体の折返縁及び大管体の折返縁の各円弧状断面の半径を異ならせて、環状側面を小管体から大管体に向けて徐変に縮径又は拡径する錐台側面にすると好ましい。より好ましくは、小管体の折返縁の円弧状断面の半径を、大管体の折返縁の円弧状断面の半径より相対的に小さくしたS字断面の段差を形成し、小管体に向かって開いた逆錐台形状の環状側面にする。
【0025】
小管体の折返縁及び大管体の折返縁を結ぶ環状側面は、斜め方向からの衝撃により小管体が傾倒する場合、傾倒軸となる小管体の折返縁を大管体の折返縁から遠ざけているので、早い段階で小管体側面を大管体の折返縁又は環状側面に当接させ、小管体が大きく傾倒することを防止する。そして、小管体が大管体に没入を始めた段階では、大管体の折返縁又は環状側面に小管体側面を摺接させながら傾倒を補正し、確実な小管体の大管体への没入を保証する。
【0026】
より積極的に小管体の傾倒防止を図るには、大管体への没入に際して小環体自身の傾倒を抑制又は防止する傾倒防止体を小管体の内面に固着するとよい。この傾倒防止体は、小管体の内径に等しい外径の小径環部と、大管体の内径に等しい外径の大径環部とからなり、小径環部は小管体の内面に固着し、段差を越えて小管体から大管体に突出させ、大径環部は前記小径環部が段差を越えた位置で大管体の内面に当接させることにより、軸方向斜めから小管体に加えられた衝撃に対し、小管体と一体となる傾倒防止体が大管体の内面を基礎として対抗し、小管体の傾倒を防止又は抑制する。
【0027】
ここで、「大管体の内面に当接する」とは、大管体に対して小管体が没入する際に、大径環部が大管体の内面に、継続的に又は断続的に、点接触、線接触又は面接触する場合を含む。また、大径環部が全体的に接する必要はなく、点接触であれば小環体の傾倒を防止したい方向に複数点接触点があればよく、線接触又は面接触の場合は、周方向に断続的に接すればよい。
【0028】
傾倒防止体が、大管体に没入する小環体自身の傾倒を抑制又は防止する機能を発揮するには、小管体が円滑に大管体に没入する必要がある。これから、傾倒防止体の適用と共に、小管体の折返縁の円弧状断面の半径を、大管体の折返縁の円弧状断面の半径より相対的に小さくしたS字断面の段差を形成することが望ましい。
【0029】
上記傾倒防止体を構成する小径環部及び大径環部は、それぞれ別部材で構成して連結してもよいし、衝撃吸収体を構成する有段管体同様、塑性変形可能な環体を部分的に縮径又は拡径して段差を介して一体成形してもよい。この場合、小径環部が小管体、大径環部が大管体に相当するが、傾倒防止体は塑性変形による衝撃吸収作用を必要としないので、小径環部及び大径環部を結ぶ段差には、上述までの構造的限定は必要ない。
【0030】
塑性変形可能な環体を部分的に縮径又は拡径して段差を介して一体成形した傾倒防止体は、小管体から大管体に突出する小径環部を大管体の内面に当接するまで拡径して大径環部を形成するとよい。すなわち、小径環部は相対的に長尺な管体状に構成し、この小径環部の端縁を大管体の内面に当接するまで拡径する。
【0031】
また、傾倒防止体は、小管体から大管体に突出する小径環部を大管体の内面に当接するまで拡径し、小管体に向けて折り返したカーリングとして大径環部を形成したり、小管体から大管体に突出する小径環部を大管体の内面に当接するまで拡径し、大管体の半径内向きに折り返したカーリングとして大径環部を形成してもよい。このように、大径環部をカーリングして形成することで、軸方向斜めから加えられる衝撃に対抗する構造強度を大径環部に与えることができる。
【0032】
更に、傾倒防止体は、大管体の内面に接面する筒状環を大径環部に設けるとよい。広い面積で大管体の内面に接面する筒状環は、軸方向斜めから加えられる衝撃による圧力(衝撃力/接面面積)を低下させ、小管体の傾倒を防止又は抑制する傾倒防止体の働きを強化する。この筒状環は、大管体の内面に接面することから、基本的には大管体の相似形状となる。上記カーリングは、筒状環の端縁に形成するとよい。
【0033】
本発明の傾倒防止体は、小管体の傾倒に対して大管体を基礎に対抗することができればよい。これから、小管体は、大管体への没入に際して小管体自身の傾倒を抑制又は防止する傾倒防止体を内面と一体に形成してなり、該傾倒防止体は小管体の折返縁を大管体の内面に向けて拡開して形成することもできる。
【0034】
上記傾倒防止体は、小管体の折返縁の円弧状断面の半径を、大管体の折返縁の円弧状断面の半径より相対的に小さくしたS字断面の段差の前記小管体の折返縁を、大管体の内面に向けて拡開して形成したり、小管体の折返縁及び大管体の折返縁を環状側面で結んだS字断面の段差の前記小管体の折返縁を、大管体の内面に向けて拡開して形成する。各傾倒防止体は、それぞれ大管体に対して小管体を確実に没入させながら、かつ小管体の折返縁を傾倒防止体として大管体の内面に摺接させることができる。
【0035】
【発明の実施の形態】
以下、バンパ支持型衝撃吸収体の実施形態について図を参照しながら説明する。図1は本発明のバンパ支持型衝撃吸収体105及びサイドメンバ型衝撃吸収体112の使用態様を表す斜視図、図2は小管体101に向けて折り返したカーリング102により大径環部103を形成した傾倒防止体104を取り付けた二段管体構成のバンパ支持型衝撃吸収体105の断面図、図3は同バンパ支持型衝撃吸収体105に軸方向の衝撃Fが加わり始めた段階を表した図2相当断面図、図4は同バンパ支持型衝撃吸収体105に軸方向斜めから衝撃Fが加わり始めた段階を表した図2相当断面図で、図5は同バンパ支持型衝撃吸収体105が軸方向の衝撃Fを吸収し終えた段階を表した図2相当断面図である。
【0036】
本例のバンパ支持型衝撃吸収体105は、図2に見られるように、塑性加工可能な直管体を部分的に縮径又は拡径して段差を介した小管体101及び大管体106を形成した二段管体からなる。本例は、小管体101及び大管体106を軸方向(図2中一点鎖線参照、以下同じ)に縮退し、小曲率半径断面の小管体の折返縁107と大曲率半径断面の大管体の折返縁108とを環状側面109で結んだS字断面の段差110を形成している。こうしたバンパ支持型衝撃吸収体105は、図1に見られるように、車体メンバ111を構成するサイドメンバ型衝撃吸収体112の前端それぞれに大管体106を接続し、小管体101,101にバンパ補強材113を架設する態様で使用される。
【0037】
本例の傾倒防止体104は、小管体101の内径に等しい外径の小径環部114と、大管体106の内径に等しい外径の大径環部103とからなる。大径環部103は、小管体101から大管体106に突出する小径環部114を大管体106の内面に当接するまで拡径し、小管体101に向けて折り返したカーリング102であり、段差110を越えた位置で大管体106の内面に前記カーリング102の端縁を当接させている。この傾倒防止体104は、小管体101の内面にスポット溶接(図2中スポット溶接痕115を図示)で固着している。
【0038】
小管体101に軸方向からの衝撃F(図3中白抜き矢印)が加わると、図3に見られるように、大管体106に対して小管体101が没入していき、段差110が有する環状側面109を延ばしながら、段差110を介して小管体101により大管体106を内側へ捲り込ませ(塑性変形:図3中黒塗り矢印)、衝撃Fの衝撃エネルギーを大管体106の変形エネルギーとして吸収する。ここで、環状側面109と大管体106とはそれぞれに塑性変形(延性)を伴うが、大部分の塑性変形は、大管体106が捲れ込む量に合わせて環状側面109が延びる態様で生じる。
【0039】
本例の場合、段差110を挟んだ小管体の折返縁107は相対的に半径の小さな円弧状断面、大管体の折返縁108は相対的に半径の大きな円弧状断面であるため、相対的に大管体の折返縁108が塑性変形しやすくなっており、小管体101が捲れることなく、大管体106のみが一方的に捲れ込んでいく。このように、衝撃Fの衝撃エネルギーを吸収する塑性変形は、専ら径の大きな大管体106の捲れ込みにより達成されるので、小管体101が捲れ込む同種バンパ支持型衝撃吸収体に比べ、吸収できる衝撃エネルギーの総量は多い。
【0040】
また、本例は、小管体の折返縁107と大管体の折返縁108とを環状側面109で結んだ段差110を形成していることから、小管体101が大管体106に没入する過程で延びる環状側面109が、小管体101及び大管体106の間に介在することになる。この小管体101及び大管体106の間に介在する環状側面109は、小管体101の傾倒を防止又は抑制する働きがあり、図3に見られるように、ある程度小管体101が大管体106に没入した段階では、もはや小管体101が傾倒する虞れはない。
【0041】
問題は、衝撃Fが最初から軸方向斜めから加わる場合である。軸方向斜めから加わる衝撃Fは、図4に見られるように、大管体106に対して小管体101を押し込んでいく軸方向成分fv(図4中下向き実線矢印)と、小管体101を傾倒させようとする軸直交成分fh(図4中右向き実線矢印)とに分解できる。
【0042】
傾倒防止体104は、前記軸直交成分fhを受けて傾倒しようとする小管体101に対し、軸直交成分fh上流側では小管体の折返縁107が大管体106の内面に接近することに対抗し(図4中右側における実線矢印及び破線矢印参照)、また軸直交成分fh下流側では小管体の折返縁107が大管体106の内面から離隔することに対抗する(図4中左側における実線矢印及び破線矢印参照)。
【0043】
上記各対抗は、大径環部103が大管体106の内面に当接し、傾倒防止体104が小管体101の傾倒方向に対して自由を制限されていることで実現している。すなわち、小管体101が傾倒するには、前記自由の制限を破壊する程度の負荷=傾倒防止体104全体を変形させるに足りる衝撃が加わらなければならない。傾倒防止体104は、小径環部114を小管体101に接面して固着しており、また大管体106に対しても大径環部103を構成するカーリング102を当接させているため、傾倒防止体104の変形には全体の変形を必要とする。
【0044】
更に、本例の傾倒防止体104は略円筒状であるため、小管体101に対する軸直交成分fhがどの方向から加わっても、傾倒防止体104の変形に必要な負荷は等しくできる。このように、小径環部114を小管体101の内面に固着し、大径環部103を大管体106の内面に当接させる傾倒防止体104を設けることにより、小管体101の傾倒(特に衝撃Fが加わり始めた初期段階の傾倒)は防止できる。
【0045】
そして、既述したように、小管体101がある程度大管体106に没入すれば、環状側面109が小管体101の傾倒を防止できるから、本発明のバンパ支持型衝撃吸収体105は、仮に最初から軸方向斜めの衝撃Fが加わっても、小管体101を傾倒させることなく、確実に大管体106に没入させて、衝撃Fの衝撃エネルギーを吸収できる。
【0046】
傾倒を防止された小管体101は、図5に見られるように、傾倒防止体104の大径環部103を構成するカーリング102がサイドメンバ型衝撃吸収体112の前端(図1参照、大管体106の端縁に一致)に当接するまで、大管体106に対して没入できる。バンパ支持型衝撃吸収体としてどれほどの衝撃Fの衝撃エネルギーを吸収できるかは、小管体の没入量で決定されるため、例えば、サイドメンバの前端に傾倒防止体が没入できる没入孔等を開孔しておけば、更に小管体の没入を図ることができる。この場合、大径環部が当接する基礎がなくなるため、前記没入孔に連続して大径環部が当接できるガイドを設けておくとよい。
【0047】
図6は大管体106の半径内向きに折り返したカーリング116及び大管体106の内面に接面する筒状環117により大径環部103を形成した別例の傾倒防止体118を取り付けた二段管体構成のバンパ支持型衝撃吸収体119の図2相当断面図であり、図7は同バンパ支持型衝撃吸収体119が軸方向の衝撃Fの衝撃エネルギーを吸収し終えた段階を表した図6相当断面図である。
【0048】
傾倒防止体は、小管体の傾倒に対抗するため、大管体の内面を基礎として衝撃Fの軸直交方向成分fhに対抗しうる大径環部を有する構造であればよい。本例の大径環部103は、図6に見られるように、小管体101から大管体106に突出する小径環部114を大管体106の内面に当接するまで拡径し、大管体106の内面に接面する筒状環117を形成した後、大管体106の半径内向きに折り返したカーリング116を形成した構造である。
【0049】
本例の大径環部103が、小管体101の傾倒防止を図る働きは、上述の例(図2以下参照)と変わりはない。大管体106の内面に広く接面する筒状環117は、小管体101の傾倒に対する対抗力を強化する働きを有する。本例は、更に筒状環117に続いて大管体106の半径方向内向きのカーリング116を形成しているので、大径環部103の構造強度が高く、よりよく小管体の傾倒を防止できる。
【0050】
ここで、筒状環117を含めて軸方向に幅のある大径環部103は、大管体106に没入する小管体101の小管体の折返縁107の変位を制限し、図7に見られるように、結果として小管体101の没入量を減少させる。この場合、筒状環に続くカーリングを省くことで、筒状環に至る大径環部平面が塑性変形できる余地を残し、例えば小管体の折返縁で前記大径環部103を圧潰して、小管体の没入量を稼ぐこともできる。
【0051】
図8は小管体の折返縁107と大管体の折返縁108とを結んでなる段差120の前記小管体の折返縁を大管体106の内面に向けて拡開して形成した別例の傾倒防止体121を設けた二段管体構成のバンパ支持型衝撃吸収体122の図2相当断面図であり、図9は同バンパ支持型衝撃吸収体122が軸方向の衝撃Fの衝撃エネルギーを吸収し終えた段階を表した図8相当断面図である。
【0052】
バンパ支持型衝撃吸収体と別体の傾倒防止体は、設計及び製造の自由度が高く好ましいが、大径環部と一体の小径環部を小管体に固着する組立工程を要求する。これに対し、図8に見られる傾倒防止体121は、小管体101と一体に大径環部103のみを成形するため、小径環部を小管体に固着する組立工程を必要としない利点がある。
【0053】
本例の傾倒防止体121は、小曲率半径断面の小管体の折返縁107と大曲率半径断面の大管体の折返縁108とを結んだ段差120を作り、前記小管体の折返縁107を大管体106の内面に向けて拡開して大管体106の内面に当接し、形成している。上述の各例に見られるような上方に開いた形状ではないが、小管体の折返縁107及び大管体の折返縁108を結ぶ環状側面が環状側面109に相当し、小管体101と一体に形成した傾倒防止体121と共に小管体101の傾倒防止を図ることができる。
【0054】
小管体101は、軸方向からの衝撃Fを受けて、小管体の折返縁107を大管体106の半径方向外向きに押し広げながら大管体106に没入していくため、前記小管体の折返縁107は大管体106に対して小管体101が没入していく過程で大管体106の内面に必ず摺接する。本例の傾倒防止体121は、小管体101から小管体の折返縁107にかけて緩やかな曲率で拡開しているので、小管体101が下端をサイドメンバ型衝撃吸収体112の前端(図1参照、大管体106の端縁に一致)に達すると、図9に見られるように、小管体の折返縁107から小管体101にかけて塑性変形して若干広がって没入を停止する。
【0055】
次に、サイドメンバ型衝撃吸収体の実施形態について図を参照しながら説明する。図10はサイドメンバ型衝撃吸収体112の軸方向断面図、図11は別例のサイドメンバ型衝撃吸収体112の軸方向断面図、図12は図10中A部拡大断面図で、図13は小管体201を大管体202に没入させる過程を表した図12相当断面図である。
【0056】
本例は、図1及び図10に見られるように、サイドメンバ型衝撃吸収体112を構成する小管体201の拡開した取付先端123,123間にクロスメンバ124を架設して車体メンバ111を構成し、このクロスメンバ124から各小管体201と同軸に突設したバンパ支持型衝撃吸収体105でバンパ補強材113を支持している。取付先端123を拡開するのは、クロスメンバ124とサイドメンバ型衝撃吸収体112との接合強度を高めるためであり、このほか図11に見られるように、後部を開放したクロスメンバ124に小管体201先端をそのまま差し込んで接合してもよい。
【0057】
本発明は、段差203の大管体の折返縁204から大管体側面205にかけて確実に塑性変形を引き起こすため、段差203は、図12に見られるように、前後する小管体201及び大管体202の両管体側面207,205から連続して形成した円弧角度180度の円弧状断面からなる小管体の折返縁206及び大管体の折返縁204を連結して形成している。
【0058】
特に、本例では、大管体の折返縁204の円弧状断面の半径を、小管体の折返縁206の円弧状断面の半径より約1.7倍大きくしている。この半径比に伴い、図12から明らかなように、小管体の折返縁206は相対的に急峻な折返となり、大管体の折返縁204は相対的に緩やかに大管体側面205と連続する構造になる。
【0059】
このような段差203を介して小管体201及び大管体202を連結することで、小管体201の外径は大管体202の内径よりも小さくなり、図13に見られるように、サイドメンバ型衝撃吸収体112の軸方向に衝撃Fが加われば、バンパ支持型衝撃吸収体105における衝撃吸収(本例では塑性変形による衝撃吸収)の後又は略同時に、小管体201が大管体202へ没入していく。
【0060】
この小管体の大管体への没入は、主として大管体の折返縁から大管体側面にかけての塑性変形に基づく(図13中太線矢印参照)。これは、直管を拡径して大管体202を形成する(又は直管を縮径して小管体201を形成する)ことで、大管体側面205の厚みは小管体側面207の厚みより小さくなり、相対的に小管体201よりも大管体202を塑性変形しやすくできるからである。この塑性変形は、大管体側面205を内側へ捲り込ませるように連続して生ずるので、安定して高い衝撃エネルギーの吸収を実現できる利点がある。
【0061】
衝撃Fが斜め方向から印加される場合に小管体201の傾倒を防止するには、小管体の折返縁206及び大管体の折返縁204を環状側面208で結ぶ段差203を形成するとよい。図14は小管体側面207及び大管体側面205に平行な円筒状環状側面208で小管体の折返縁206及び大管体の折返縁204を結んだサイドメンバ型衝撃吸収体112の図12相当断面図、図15は斜め方向からの衝撃Fを受けて小管体201が少し傾倒した状態を表した図14相当断面図で、図16は更に衝撃Fの印加が続き、傾倒を修正しながら小管体201が大管体202に没入していく状態を表した図14相当断面図である。
【0062】
本例のサイドメンバ型衝撃吸収体112は、図14に見られるように、相対的に半径の大きな大管体の折返縁204から小管体201の没入方向へ離隔して小管体の折返縁206を形成し、小管体の折返縁206及び大管体の折返縁204を円筒状環状側面208で結んだ段差203を形成している。
【0063】
小管体201は、環状側面208に小管体側面207を密着させていないので、衝撃Fがサイドメンバ型衝撃吸収体112の軸方向からずれた斜め方向から印加されると、図15に見られるように、前記小管体側面207は小管体の折返縁206を傾倒軸として環状側面208又は大管体の折返縁204に当接するまで傾倒するが、小管体側面207が環状側面208又は大管体の折返縁204に当接すると、小管体201の傾倒は規制される。
【0064】
そして、更に衝撃Fが印加されると、衝撃Fのサイドメンバ型衝撃吸収体112の軸直交方向成分fhは環状側面208に受け止められて小管体201の傾倒を進めることができず、図16に見られるように、衝撃Fのサイドメンバ型衝撃吸収体112の軸方向成分fvのみが小管体201を大管体202に没入させる運動に寄与する。
【0065】
小管体の傾倒は、小管体の折返縁を傾倒軸とするもので、小管体の折返縁から環状側面又は大管体の折返縁の円弧状断面への接線の範囲でしか許されない。よって、小管体201が大管体202に没入していく段階で、小管体201は小管体側面207を環状側面208又は大管体の折返縁204の円弧状断面に摺接しながら傾倒を暫時修正され、衝撃Fは段差203から大管体側面205を内側に捲り込ませる塑性変形にのみ寄与させることができる。
【0066】
上記環状側面208は、小管体側面207又は大管体側面205と平行でなくてもよい。図17は小管体201から大管体202に向けて縮径する円錐台状環状側面209を形成したサイドメンバ型衝撃吸収体112の図12相当断面図であり、図18は衝撃Fの印加を受けて小管体201が大管体202に没入していく状態を表した図17相当断面図である。
【0067】
環状側面は、小管体の傾倒を防止するものであり、直接的には傾倒する小管体側面に接触し、間接的には傾倒軸となる小管体の折返縁の円弧状断面を大管体の折返縁の円弧状断面から離隔して傾倒角度を規制することで、小管体の傾倒を防止する。これから、前記傾倒防止機能を発揮できれば環状側面の形状は自由であり、図17及び図18に見られるように、円錐台状環状側面209でも、妨げられずに小管体201を大管体202へ没入させることができる。
【0068】
【発明の効果】
本発明の衝撃吸収体は、段差形状の特定や、傾倒防止体の付設により、従来に比べてより大きな角度の軸方向斜めから衝撃が加えられても、なお大管体に対する小管体の没入が確保でき、衝撃エネルギーを塑性変形の変形エネルギーとして吸収する衝撃吸収性能を十分に発揮することができる。
【0069】
従来は、軸方向斜め約30度を限度として小管体が傾倒していたが、本発明のバンパ支持型衝撃吸収体では、軸直交方向成分fhが軸方向成分fvを超える軸方向斜め45度までの範囲で、大管体に対する小管体の没入が確保できる。傾倒防止体は、小管体の傾倒を簡素な構造で防止又は抑制できる効果がある。
【0070】
本発明は、車両のバンパ補強材を車体メンバに対して支持する管体からなるバンパ支持型衝撃吸収体や、車両の車体メンバ側部を構成する管体からなるサイドメンバ型衝撃吸収体を提供する。サイドメンバ型衝撃吸収体の場合、段差で屈曲し、車体や燃料タンクに接触する危険性を回避できるようになり、安全性向上の効果を得る。
【図面の簡単な説明】
【図1】バンパ支持型衝撃吸収体及びサイドメンバ型衝撃吸収体の使用態様を表す斜視図である。
【図2】小管体に向けたカーリングの大径環部を形成した傾倒防止体を取り付けたバンパ支持型衝撃吸収体の断面図である。
【図3】同バンパ支持型衝撃吸収体に軸方向の衝撃Fが加わり始めた段階を表した図2相当断面図である。
【図4】同バンパ支持型衝撃吸収体に軸方向斜めから衝撃Fが加わり始めた段階を表した図2相当断面図である。
【図5】同バンパ支持型衝撃吸収体が軸方向の衝撃Fを吸収し終えた段階を表した図2相当断面図である。
【図6】カーリング及び筒状環により大径環部を形成した傾倒防止体を取り付けたバンパ支持型衝撃吸収体の図2相当断面図である。
【図7】同バンパ支持型衝撃吸収体が軸方向の衝撃Fを吸収し終えた段階を表した図6相当断面図である。
【図8】小管体の折返縁を拡開して形成した傾倒防止体を設けたバンパ支持型衝撃吸収体の図2相当断面図である。
【図9】同バンパ支持型衝撃吸収体が軸方向の衝撃Fを吸収し終えた段階を表した図8相当断面図である。
【図10】サイドメンバ型衝撃吸収体の軸方向断面図である。
【図11】別例のサイドメンバ型衝撃吸収体の軸方向断面図である。
【図12】図10中A部拡大断面図である。
【図13】小管体を大管体に没入させる過程を表した図12相当断面図である。
【図14】円筒状環状側面で小管体の折返縁及び大管体の折返縁を結んだサイドメンバ型衝撃吸収体の図12相当断面図である。
【図15】斜め方向からの衝撃Fを受けて小管体が少し傾倒した状態を表した図14相当断面図である。
【図16】更に衝撃Fの印加が続き、傾倒を修正しながら小管体が大管体に没入していく状態を表した図14相当断面図である。
【図17】円錐台状環状側面を形成したサイドメンバ型衝撃吸収体の図12相当断面図である。
【図18】衝撃Fの印加を受けて小管体が大管体に没入していく状態を表した図17相当断面図である。
【符号の説明】
101 小管体
102 カーリング
103 大径環部
104 傾倒防止体
105 バンパ支持型衝撃吸収体
106 大管体
107 小管体の折返縁
108 大管体の折返縁
109 環状側面
110 段差
112 サイドメンバ型衝撃吸収体
114 小径環部
116 カーリング
117 筒状環
201 小管体
202 大管体
203 段差
204 大管体の折返縁
205 大管体側面
206 小管体の折返縁
207 小管体側面
208 環状側面
209 円錐台状環状側面
F 衝撃
fv 衝撃の軸方向成分
fh 衝撃の軸直交方向性分
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a shock absorber that absorbs impact energy as deformation energy of plastic deformation, for example, a side member constituting a vehicle body member side portion of a vehicle such as an automobile, or absorbs impact energy applied to a bumper of an automobile or the like. The present invention relates to a shock absorber that can be used as a bumper-supported shock absorber to prevent or suppress transmission of the shock energy to a vehicle body member.
[0002]
[Prior art]
2. Description of the Related Art In vehicles such as automobiles, impact absorbers that absorb impact energy as deformation energy of plastic deformation are used in various places in order to protect an occupant from an impact at the time of a collision. For example, a shock absorber (hereinafter referred to as a bumper support shock absorber) is used as a bumper support type shock absorber composed of a tube body that supports a bumper reinforcement of a vehicle with respect to a vehicle body member.
[0003]
A bumper-supported shock absorber used as a shock absorber is, as seen in Patent Literature 1 and Patent Literature 2, received in an axial direction (corresponding to a direction in which small pipes and large pipes are arranged, which is generally the front-rear direction of a vehicle). The small tubular body is pushed into the large tubular body by the impact energy, thereby causing plastic deformation and absorbing the impact energy as deformation energy of the plastic deformation. The bumper-supporting type shock absorber using the shock absorber has a simple structure and excellent shock energy absorption performance, and has an advantage that the design can be flexibly changed according to a difference in vehicle weight.
[0004]
In addition, as the vehicle body member that holds the occupant compartment, the above-described shock absorber (hereinafter, a side member type shock absorber) is used as a side member formed of a tube constituting a vehicle body member side portion of the vehicle. Prior arts using a shock absorber for a side member include Patent Documents 3 to 7.
[0005]
In Patent Literature 3, the ends of two cylindrical members are coaxially attached to each other, and impact is absorbed by plastic deformation (see FIG. 1 of Patent Literature 3) in which both ends of the cylindrical members are rolled inward from the ends. In Patent Literature 4, impact strength is changed in a length direction by a plurality of holes arranged in two upper and lower stages, and a range of plastic deformation is adjusted according to the degree of impact. In Patent Document 5, the bracket is made of a material having relatively low rigidity, and a bracket is intermittently installed inside. In Patent Document 6, a mirror-symmetric multi-stage cylindrical body is joined. In Patent Literature 7, a shock absorbing member having an elongated hole or a gap is interposed as a part of the structure of the side member.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 47-045986 (pages 2 to 6, FIG. 1 to FIG. 4)
[Patent Document 2]
JP 2001-204841 A (pages 2 to 5, FIG. 2)
[Patent Document 3]
JP 2001-241478 A (pages 2 to 5, FIG. 2)
[Patent Document 4]
Japanese Patent No. 2984434 (2 to 3 pages, FIG. 2)
[Patent Document 5]
JP-B-51-02850 (pages 1 to 4; FIGS. 4 to 8)
[Patent Document 6]
U.S. Pat. No. 3,998,485 (3-4 pages, FIG. 2)
[Patent Document 7]
US Pat. No. 6,312,028 (pages 6 to 7, FIGS. 2 to 1)
[0007]
[Problems to be solved by the invention]
Each impact absorber found in each of the above prior arts has a function of causing a plastic deformation by an impact and absorbing impact energy as deformation energy. This operation is basically the same for the bumper-supported shock absorber and the side member-type shock absorber. For this reason, it is desirable that the shock absorber be plastically deformed stably. In particular, it is necessary that the shock absorber does not bend even when an eccentric load is applied and that the plastic deformation is correctly generated.
[0008]
The bumper-supported shock absorber of Patent Document 1 can exhibit necessary and sufficient absorption performance when an impact is applied from the axial direction in which the small pipes and the large pipes are arranged. However, since the step at the boundary between the small pipe and the large pipe is easily plastically deformed, for example, when an impact is applied to the small pipe obliquely in the axial direction, the small pipe is tilted due to the axial orthogonal component fh of the impact. However, there is a problem in that the plastic deformation due to the immersion of the small tube into the large tube does not occur, and the impact energy cannot be absorbed.
[0009]
The bumper-supported shock absorber of Patent Literature 2 prevents or suppresses the tilting of the small tube by the middle tube using a three-stage bumper-supported shock absorber composed of a small tube, a medium tube, and a large tube. However, the action of preventing or suppressing the tilting of the small tubular body by the middle tubular body is limited (up to approximately 30 degrees in the axial direction), and the tilting of the small tubular body is still prevented against the impact from a larger angle in the axial direction. Cannot be achieved sufficiently.
[0010]
Further, in the side member type shock absorber of Patent Document 3, the edge of the small-diameter tubular member is brought into contact with the step plane provided at the edge of the large-diameter tubular member, and therefore, the axial direction in which the tubular members are arranged. , It is possible to cause plastic deformation at the edges of both tubular members via the step plane. However, in the case of an unbalanced load, there is a problem that the small-diameter cylindrical member is inclined and bent on the step plane.
[0011]
In addition, the side member type shock absorbers disclosed in Patent Document 4, Patent Document 5, and Patent Document 7 have difficulty in obtaining a stable shock absorbing performance (in particular, see FIG. 4 load characteristics of Patent Document 4). The side member type shock absorber shown in JP-A-2003-157404 may be bent by an unbalanced load as in Patent Document 3.
[0012]
Therefore, even if an impact is applied to the bumper-supported shock absorber or the side member-type shock absorber obliquely at a larger angle in the axial direction, the small tube is still immersed in the large tube, and the impact due to plastic deformation is ensured. We considered that energy absorption could be achieved.
[0013]
[Means for Solving the Problems]
As a result of the study, the small pipe or large pipe connected through the step is formed by partially reducing or expanding the diameter of the straight pipe that can be plastically processed, and the folded edge and large size of the small pipe connected through the step are formed. We have developed a shock absorber in which the folded edges of the tubes are both arc-shaped cross sections with an arc angle of more than 90 degrees, and the steps have an S-shaped cross section connecting the folded edges of the small and large tubes.
[0014]
The term “exceeding 90 degrees” referred to in the present invention refers to the angle range of the arc portion of the folded edge of the small tube which is bent from the side of the small tube to the step, or the folding of the small tube which is bent from the side of the large tube to the step. This means that the angle range of the arc portion of the edge is not 90 degrees (right angle).
[0015]
Here, when the straight pipe that supports the bumper reinforcement of the vehicle with respect to the vehicle body member is partially reduced or enlarged to form a small pipe and a large pipe that are connected via a step, the bumper reinforcement is supported. It is a shock absorber that can also serve as a structural element (hereinafter, bumper-supported shock absorber). In addition, when a small pipe and a large pipe connected to each other through a step by partially reducing or expanding the diameter of a straight pipe forming a side part of a vehicle body member of a vehicle, an impact which becomes a structural element forming the body member itself is obtained. It becomes an absorber (hereinafter, a side member type shock absorber).
[0016]
The shock absorber of the present invention can be applied to a multi-stage tube having one or more steps, but a two-stage tube consisting of a small tube and a large tube, or a three-stage tube consisting of a small tube, a medium tube, and a large tube The body is preferred. Here, in the three-stage tube, the relationship between the small tube and the middle tube, the relationship between the middle tube and the large tube respectively corresponds to the relationship between the small tube and the large tube of the two-stage tube, and as a whole, the shock absorber is used. It is a linked configuration.
[0017]
Since the shock absorber of the present invention forms a small pipe or a large pipe by partially reducing or expanding the diameter of a plastically processable straight pipe, the wall thickness of the large pipe is smaller than the small pipe, In addition, large pipes are more prone to plastic deformation. In addition, the step interposed between the small pipe and the large pipe has an S-shaped cross section in which the small pipe is slightly immersed in the large pipe and the step is rolled inward. Easy to immerse your body.
[0018]
From this, the shock absorber of the present invention causes plastic deformation in which the small pipe is immersed in the large pipe as it is and rolls inward from the step to the side of the large pipe, and absorbs impact energy as deformation energy of the plastic deformation. I do.
[0019]
The arc angle of each arc-shaped cross section of the folded edge of the small tubular body and the folded edge of the large tubular body is considered to be in a range of more than 90 degrees and less than 360 degrees. The specific arc angles are (1) the difference between the outer diameter of the small tube and the inner diameter of the large tube, (2) the arc-shaped cross section of the folded edge of the small tube and the arc-shaped cross section of the folded edge of the large tube. (The definition of the radius will be described later). More specifically, each arc angle of the arc-shaped cross section of both side edges is preferably about 180 degrees.
[0020]
To reliably generate plastic deformation in which the small pipe immerses into the large pipe and rolls inward from the step to the side of the large pipe, the radius of the arc-shaped cross section of the folded edge of the small pipe is determined by the large pipe Of the S-shaped cross section relatively smaller than the radius of the arc-shaped cross section of the folded edge. Here, since the folded edge of the small tube and the folded edge of the large tube that are continuous with the small tube side surface and the large tube side having different thicknesses are each curved while changing the thickness, the radius of each of the arc-shaped cross sections is Is the radius of the center line of the plate thickness.
[0021]
The step of the above cross-sectional structure suppresses the winding of the side surface of the small tubular body through the folded edge of the small tubular body that is relatively steeply folded, and conversely, the folded edge of the large tubular body that is relatively loosely folded. Induces the side of the large tube to be entangled. Thereby, the small tube is immersed in the large tube as it is, and plastic deformation can be realized in which the small tube is rolled inward from the folded edge of the large tube to the side surface of the large tube.
[0022]
As described above, the present invention realizes plastic deformation in which a small tube is always immersed toward a large tube by devising a structure of a step. However, when an impact (biased load) is applied to the small tube from an oblique direction, the small tube inclines with respect to the large tube, and the side surface of the small tube hits the folded edge of the large tube to prevent the immersion of the small tube. There is a possibility that it will be done.
[0023]
Therefore, the step is preferably an S-shaped cross section in which the folded edge of the small tubular body and the folded edge of the large tubular body are connected by an annular side surface. The radius of each arc-shaped cross section of the folded edge of the small tube and the folded edge of the large tube may be the same or different. That is, as described above, even when the radius of the arc-shaped cross section of the folded edge of the small tubular body is relatively smaller than the radius of the arc-shaped cross section of the folded edge of the large tubular body, the annular side surface causes the roll-up to be hindered. It does not become.
[0024]
The annular side surface is parallel to the small tube side surface and the large tube side surface when a step of an S-shaped cross section connecting the folded edge of the small tube body and the folded edge of the large tube body having the same arc angle of 180 degrees is formed. However, by changing the radius of each of the arc-shaped cross-sections of the folded edge of the small tube and the folded edge of the large tube, the frustoconical surface whose diameter gradually decreases or expands from the small tube toward the large tube. Is preferable. More preferably, the radius of the arc-shaped cross-section of the folded edge of the small tube is relatively smaller than the radius of the arc-shaped cross-section of the folded edge of the large tube to form a step having an S-shaped cross-section, and the step is opened toward the small tube. The shape is an inverted frustum-shaped annular side surface.
[0025]
The annular side surface connecting the folded edge of the small tubular body and the folded edge of the large tubular body should be separated from the folded edge of the large tubular body by turning the folded edge of the small tubular body, which becomes the tilt axis, when the small tubular body is inclined by an oblique impact. Therefore, the small tube side is brought into contact with the folded edge or the annular side surface of the large tube at an early stage to prevent the small tube from tilting greatly. At the stage when the small tube starts to sink into the large tube, the inclination is corrected while sliding the small tube side against the folded edge or annular side surface of the large tube, and the small tube is securely inserted into the large tube. Guarantee.
[0026]
In order to more positively prevent the tilting of the small tubular body, it is preferable to attach an anti-tilt body for suppressing or preventing the tilting of the small annular body itself when immersing in the large tubular body to the inner surface of the small tubular body. This tilting prevention body is composed of a small-diameter ring having an outer diameter equal to the inner diameter of the small tube and a large-diameter ring having an outer diameter equal to the inner diameter of the large tube, and the small-diameter ring is fixed to the inner surface of the small tube, By projecting from the small tubular body to the large tubular body beyond the step, the large-diameter annular portion is brought into contact with the inner surface of the large tubular body at a position where the small-diameter annular portion exceeds the step, so that the small-diameter annular portion is added to the small tubular body obliquely in the axial direction. An anti-tilt body integral with the small tube counters the received impact on the basis of the inner surface of the large tube to prevent or suppress the small tube from tilting.
[0027]
Here, `` abut on the inner surface of the large tube '' means that when the small tube is immersed in the large tube, the large-diameter ring portion is continuously or intermittently on the inner surface of the large tube. Including point contact, line contact or surface contact. In addition, the large-diameter ring portion does not need to contact the whole, and if there is a point contact, it is sufficient if there is a plurality of points of contact in the direction in which the small ring is desired to be tilted. Intermittently.
[0028]
In order for the anti-tilt body to exhibit the function of suppressing or preventing the tilting of the small ring itself immersed in the large pipe, the small pipe needs to be smoothly immersed in the large pipe. From this, it is possible to form a step having an S-shaped cross section in which the radius of the arc-shaped cross section of the folded edge of the small pipe is relatively smaller than the radius of the arc-shaped cross section of the folded edge of the large pipe together with the application of the anti-tilt body. desirable.
[0029]
The small-diameter ring portion and the large-diameter ring portion that constitute the above-described tilting prevention member may be formed by separate members and connected together, or a plastically deformable ring body, like the stepped pipe that constitutes the shock absorber. The diameter may be partially reduced or expanded to be integrally formed through a step. In this case, the small-diameter ring corresponds to the small pipe, and the large-diameter ring corresponds to the large pipe. However, since the tilting prevention body does not require the shock absorbing action by plastic deformation, a step connecting the small-diameter ring and the large-diameter ring is required. Does not require the structural limitation described above.
[0030]
An anti-tilt body in which a plastically deformable ring is partially reduced or expanded in diameter and integrally formed through a step makes a small-diameter ring projecting from the small tube into the large tube abut on the inner surface of the large tube. It is advisable to form a large-diameter ring portion by expanding the diameter to the maximum. That is, the small-diameter annular portion is formed in a relatively long tubular shape, and the diameter of the small-diameter annular portion is increased until it comes into contact with the inner surface of the large tubular body.
[0031]
In addition, the anti-tilt body expands a small-diameter ring portion protruding from the small tube to the large tube until it comes into contact with the inner surface of the large tube, and forms a large-diameter ring as curling turned toward the small tube. Alternatively, the small-diameter annular portion protruding from the small tubular body to the large tubular body may be enlarged until it comes into contact with the inner surface of the large tubular body, and the large-diameter annular portion may be formed as a curling which is turned inward in a radius of the large tubular body. Thus, by forming the large-diameter annular portion by curling, it is possible to give the large-diameter annular portion a structural strength against an impact applied obliquely in the axial direction.
[0032]
Furthermore, it is preferable that the large-diameter annular portion of the anti-tilt body be provided with a cylindrical ring that is in contact with the inner surface of the large tube. A tubular ring that contacts the inner surface of the large tube with a large area reduces the pressure (impact force / contact surface area) due to the impact applied obliquely in the axial direction, and prevents or suppresses the small tube from tilting. Strengthen the work of. Since this cylindrical ring is in contact with the inner surface of the large tube, it has a basically similar shape to the large tube. The curling may be formed at the edge of the cylindrical ring.
[0033]
The anti-tilt body of the present invention only needs to be able to counter the tilt of the small tubular body on the basis of the large tubular body. From this, the small tubular body is formed integrally with the inner surface of an anti-tilt body for suppressing or preventing the tilt of the small tubular body itself when immersed in the large tubular body, and the tilt-preventing body forms the folded edge of the small tubular body with the large tubular body. It can also be formed by expanding toward the inner surface of.
[0034]
The above-mentioned tilting prevention body is configured such that the radius of the arc-shaped cross section of the folded edge of the small tube is relatively smaller than the radius of the arc-shaped cross section of the folded edge of the large tube. , The folded edge of the small tube having an S-shaped cross section in which the folded edge of the small tube and the folded edge of the large tube are connected by an annular side surface, It is formed by expanding toward the inner surface of the tube. Each of the tilt-preventing members can make the folded edge of the small tube slidably contact the inner surface of the large tube as the tilt-preventing member, while ensuring that the small tube is immersed in the large tube.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a bumper-supported shock absorber will be described with reference to the drawings. FIG. 1 is a perspective view showing a use mode of a bumper supporting type shock absorber 105 and a side member type shock absorber 112 of the present invention. FIG. 2 is a diagram showing a large-diameter ring portion 103 formed by a curling 102 folded toward a small tube 101. FIG. 3 is a cross-sectional view of a bumper-supported shock absorber 105 having a two-stage tube structure to which the tilt-preventing body 104 is attached. FIG. 3 shows a stage in which an axial shock F starts to be applied to the bumper-supported shock absorber 105. FIG. 4 is a cross-sectional view corresponding to FIG. 2, and FIG. 4 is a cross-sectional view corresponding to FIG. 2 showing a stage in which an impact F starts to be applied to the bumper-supported shock absorber 105 obliquely in the axial direction. FIG. 3 is a cross-sectional view corresponding to FIG.
[0036]
As shown in FIG. 2, the bumper-supported shock absorber 105 of the present embodiment includes a small pipe 101 and a large pipe 106 which are formed by partially reducing or expanding a plastically processable straight pipe through a step. Formed of a two-stage tube. In this example, the small pipe 101 and the large pipe 106 are contracted in the axial direction (refer to a dashed line in FIG. 2; the same applies hereinafter), the folded edge 107 of the small pipe having a small radius of curvature and the large pipe having a large radius of curvature. A step 110 having an S-shaped cross-section is formed by connecting the folded edge 108 of the sheet with an annular side surface 109. As shown in FIG. 1, the bumper supporting type shock absorber 105 has a large pipe 106 connected to each of the front ends of side member type shock absorbers 112 constituting a vehicle body member 111, and bumpers attached to the small pipes 101, 101. It is used in a mode in which the reinforcing member 113 is erected.
[0037]
The tilt preventing body 104 of the present example includes a small-diameter ring portion 114 having an outer diameter equal to the inner diameter of the small tube 101 and a large-diameter ring portion 103 having an outer diameter equal to the inner diameter of the large tube 106. The large-diameter annular portion 103 is a curling 102 which is formed by expanding a small-diameter annular portion 114 protruding from the small tubular body 101 to the large tubular body 106 until the small-diameter annular portion 114 comes into contact with the inner surface of the large tubular body 106 and turned back toward the small tubular body 101. The edge of the curling 102 is brought into contact with the inner surface of the large tube 106 at a position beyond the step 110. The tilt preventing body 104 is fixed to the inner surface of the small tube body 101 by spot welding (spot welding marks 115 are shown in FIG. 2).
[0038]
When an impact F (open arrow in FIG. 3) is applied to the small tubular body 101 from the axial direction, the small tubular body 101 is immersed in the large tubular body 106 as shown in FIG. While extending the annular side surface 109, the large pipe 106 is rolled inward by the small pipe 101 through the step 110 (plastic deformation: black arrow in FIG. 3), and the impact energy of the impact F is deformed to the large pipe 106. Absorb as energy. Here, the annular side surface 109 and the large tubular body 106 are each accompanied by plastic deformation (ductility), but most of the plastic deformation occurs in a mode in which the annular side surface 109 extends in accordance with the amount of the large tubular body 106 being rolled up. .
[0039]
In the case of the present example, the folded edge 107 of the small tube sandwiching the step 110 has an arc-shaped cross section with a relatively small radius, and the folded edge 108 of the large tube has an arc-shaped cross section with a relatively large radius. In addition, the folded edge 108 of the large tube is easily plastically deformed, and the large tube 106 is unilaterally rolled without the small tube 101 being rolled. As described above, the plastic deformation for absorbing the impact energy of the impact F is achieved only by the winding of the large pipe 106 having a large diameter. The total amount of impact energy that can be produced is large.
[0040]
Further, in this example, since the step 110 is formed by connecting the folded edge 107 of the small tubular body and the folded edge 108 of the large tubular body with the annular side surface 109, the process of the small tubular body 101 immersing in the large tubular body 106 is performed. Is extended between the small tube 101 and the large tube 106. The annular side surface 109 interposed between the small tube 101 and the large tube 106 has a function of preventing or suppressing the tilting of the small tube 101, and as shown in FIG. At the stage of immersion, there is no longer a possibility that the small tubular body 101 is tilted.
[0041]
The problem is that the impact F is applied obliquely from the beginning. As shown in FIG. 4, the impact F applied obliquely in the axial direction causes an axial component fv (solid arrow pointing downward in FIG. 4) pushing the small tube 101 against the large tube 106 and tilting the small tube 101. It can be decomposed into an axis orthogonal component fh (solid right arrow in FIG. 4) to be made.
[0042]
The tilt preventing body 104 opposes the folded edge 107 of the small tube approaching the inner surface of the large tube 106 on the upstream side of the axis orthogonal component fh with respect to the small tube 101 that is inclined to receive the axis orthogonal component fh. 4 (see the solid arrow and the dashed arrow on the right side in FIG. 4), and opposes that the folded edge 107 of the small tube is separated from the inner surface of the large tube 106 on the downstream side of the axis orthogonal component fh (the solid line on the left in FIG. 4). Arrows and dashed arrows).
[0043]
The opposition is realized by the large-diameter annular portion 103 abutting on the inner surface of the large tubular body 106 and the tilt preventing body 104 being restricted in the tilting direction of the small tubular body 101. That is, in order for the small tubular body 101 to incline, a load enough to break the restriction of freedom = an impact sufficient to deform the entire antitilt body 104 must be applied. The anti-tilt body 104 has the small-diameter ring 114 in contact with the small tube 101 and is fixed thereto, and the curling 102 constituting the large-diameter ring 103 is also in contact with the large tube 106. In addition, the deformation of the tilt preventing body 104 requires the entire deformation.
[0044]
Furthermore, since the tilt prevention body 104 of this example is substantially cylindrical, the load required for deformation of the tilt prevention body 104 can be equalized regardless of the direction in which the axis orthogonal component fh is applied to the small tubular body 101. As described above, the small-diameter annular portion 114 is fixed to the inner surface of the small tubular body 101 and the large-diameter annular portion 103 is provided with the tilt preventing body 104 that abuts against the inner surface of the large tubular body 106, whereby the small tubular body 101 is tilted (particularly, tilted). The tilting at the initial stage when the impact F starts to be applied) can be prevented.
[0045]
As described above, if the small tubular body 101 is partially immersed in the large tubular body 106, the annular side surface 109 can prevent the small tubular body 101 from tilting. Even if a shock F obliquely applied in the axial direction is applied, the small tube 101 can be reliably immersed in the large tube 106 without tilting, and the shock energy of the shock F can be absorbed.
[0046]
As shown in FIG. 5, the small tube body 101 whose inclination has been prevented has a curling 102 which constitutes a large-diameter annular portion 103 of an inclination prevention body 104 and a front end of a side member type shock absorber 112 (see FIG. Until it abuts against the edge of the body 106). The amount of impact energy of the impact F that can be absorbed as a bumper-supported impact absorber is determined by the amount of immersion of the small tubular body. By doing so, it is possible to further immerse the small tubular body. In this case, since there is no foundation on which the large-diameter ring portion abuts, it is preferable to provide a guide that can continuously contact the large-diameter ring portion with the immersion hole.
[0047]
FIG. 6 shows another example of a tilt prevention body 118 in which a large-diameter ring portion 103 is formed by a curling 116 turned inward in a radius of the large pipe 106 and a cylindrical ring 117 in contact with the inner surface of the large pipe 106. FIG. 7 is a cross-sectional view corresponding to FIG. 2 of the bumper-supported shock absorber 119 having a two-stage tubular structure. FIG. 7 shows a stage in which the bumper-supported shock absorber 119 has finished absorbing the impact energy of the impact F in the axial direction. FIG. 7 is a sectional view corresponding to FIG.
[0048]
In order to counter the tilting of the small tubular body, the tilt preventing body may have a structure having a large-diameter ring portion capable of resisting the component fh orthogonal to the axis of the impact F based on the inner surface of the large tubular body. As shown in FIG. 6, the large-diameter annular portion 103 of the present example expands a small-diameter annular portion 114 protruding from the small tubular body 101 to the large tubular body 106 until the small-diameter annular portion 114 comes into contact with the inner surface of the large tubular body 106. This is a structure in which a cylindrical ring 117 that is in contact with the inner surface of the body 106 is formed, and then the curling 116 is formed by turning the radius of the large tube body 106 inward.
[0049]
The function of the large-diameter annular portion 103 of the present example for preventing the small tubular body 101 from tilting is not different from the above-described example (see FIG. 2 and subsequent figures). The tubular ring 117 that widely contacts the inner surface of the large tube 106 has a function of enhancing the resistance to tilting of the small tube 101. In this example, since the curling 116 inward in the radial direction of the large tube body 106 is further formed following the cylindrical ring 117, the structural strength of the large diameter ring portion 103 is high, and the tilting of the small tube body is prevented better. it can.
[0050]
Here, the large-diameter annular portion 103 having a width in the axial direction including the cylindrical ring 117 restricts the displacement of the folded edge 107 of the small tube 101 of the small tube 101 immersed in the large tube 106, as shown in FIG. As a result, the amount of immersion of the small tubular body 101 is reduced. In this case, by eliminating the curling following the tubular ring, the large-diameter ring portion plane leading to the tubular ring leaves room for plastic deformation, for example, by crushing the large-diameter ring portion 103 at the folded edge of the small tube, You can also gain the amount of immersion of the tubule.
[0051]
FIG. 8 shows another example in which the folded edge of the small tubular body of the step 120 formed by connecting the folded edge 107 of the small tubular body and the folded edge 108 of the large tubular body is expanded toward the inner surface of the large tubular body 106. FIG. 9 is a sectional view corresponding to FIG. 2 of a bumper-supported shock absorber 122 having a two-stage tubular structure provided with an anti-tilt body 121. FIG. FIG. 9 is a cross-sectional view corresponding to FIG. 8, illustrating a stage in which absorption has been completed.
[0052]
Although the bumper-supporting type shock absorber and the tilting preventive body which are separate from each other are preferred because of their high degree of freedom in design and manufacture, they require an assembling step of fixing the small-diameter annular portion integral with the large-diameter annular portion to the small tubular body. On the other hand, the tilting prevention body 121 shown in FIG. 8 has an advantage that it does not require an assembling step of fixing the small-diameter annular portion to the small tubular body because only the large-diameter annular portion 103 is formed integrally with the small tubular body 101. .
[0053]
The anti-tilt body 121 of the present example forms a step 120 connecting the folded edge 107 of the small tubular body with a small radius of curvature cross section and the folded edge 108 of the large tubular body with a large radius of curvature cross section, and forms the folded edge 107 of the small tubular body. It is expanded toward the inner surface of the large tube 106 and abuts against the inner surface of the large tube 106 to form. Although it is not an upwardly open shape as seen in each of the above-described examples, the annular side surface connecting the folded edge 107 of the small tube and the folded edge 108 of the large tube corresponds to the annular side surface 109, and is integrated with the small tube 101. The tilting prevention of the small tube body 101 can be aimed at together with the tilting prevention body 121 formed.
[0054]
The small tubular body 101 receives the impact F from the axial direction and pushes the folded edge 107 of the small tubular body outward in the radial direction of the large tubular body 106 while immersing in the large tubular body 106. The folded edge 107 always comes into sliding contact with the inner surface of the large tube 106 while the small tube 101 is immersed in the large tube 106. Since the tilting prevention body 121 of this example is expanded at a gentle curvature from the small tube 101 to the folded edge 107 of the small tube, the small tube 101 has a lower end at the front end of the side member type shock absorber 112 (see FIG. 1). , The edge of the large tube 106), as shown in FIG. 9, the small tube is plastically deformed from the folded edge 107 to the small tube 101 and slightly spreads to stop immersion.
[0055]
Next, an embodiment of a side member type shock absorber will be described with reference to the drawings. 10 is an axial sectional view of the side member type shock absorber 112, FIG. 11 is an axial sectional view of another example of the side member shock absorber 112, FIG. 12 is an enlarged sectional view of a portion A in FIG. FIG. 13 is a sectional view corresponding to FIG. 12 illustrating a process of immersing the small tubular body 201 in the large tubular body 202.
[0056]
In this embodiment, as shown in FIGS. 1 and 10, a cross member 124 is provided between the expanded mounting tips 123 of the small tubular body 201 constituting the side member type shock absorber 112 so that the vehicle body member 111 is attached. The bumper reinforcing member 113 is supported by a bumper supporting type shock absorber 105 protruding from the cross member 124 coaxially with each of the small pipes 201. The reason why the mounting tip 123 is expanded is to increase the joining strength between the cross member 124 and the side member type shock absorber 112. In addition, as shown in FIG. The tip of the body 201 may be directly inserted and joined.
[0057]
Since the present invention reliably causes plastic deformation from the folded edge 204 of the large tube of the step 203 to the side surface 205 of the large tube, as shown in FIG. A folded edge 206 of a small tubular body and a folded edge 204 of a large tubular body having an arc-shaped cross section with an arc angle of 180 degrees continuously formed from both tubular body side surfaces 207 and 205 of the tubular body 202 are formed.
[0058]
In particular, in this example, the radius of the arc-shaped cross section of the folded edge 204 of the large tube is set to be approximately 1.7 times larger than the radius of the arc-shaped cross section of the folded edge 206 of the small tube. With this radius ratio, as is clear from FIG. 12, the folded edge 206 of the small tube is relatively steeply folded, and the folded edge 204 of the large tube is relatively gently continuous with the side surface 205 of the large tube. Structure.
[0059]
By connecting the small tube 201 and the large tube 202 via such a step 203, the outer diameter of the small tube 201 becomes smaller than the inner diameter of the large tube 202, and as shown in FIG. When the impact F is applied in the axial direction of the mold shock absorber 112, the small tube 201 is moved to the large tube 202 after or almost simultaneously with the shock absorption (in this example, the shock absorption by plastic deformation) in the bumper-supported shock absorber 105. Immerse yourself.
[0060]
The immersion of the small tube into the large tube is based mainly on plastic deformation from the folded edge of the large tube to the side surface of the large tube (see a thick arrow in FIG. 13). This is because the diameter of the straight pipe is expanded to form the large pipe 202 (or the diameter of the straight pipe is reduced to form the small pipe 201). This is because the large tube 202 can be relatively easily plastically deformed more than the small tube 201. Since this plastic deformation occurs continuously so that the large tubular body side surface 205 is rolled inward, there is an advantage that stable absorption of high impact energy can be realized.
[0061]
In order to prevent the small tube 201 from tilting when the impact F is applied from an oblique direction, a step 203 connecting the folded edge 206 of the small tube and the folded edge 204 of the large tube with an annular side surface 208 may be formed. FIG. 14 is equivalent to FIG. 12 of the side member type shock absorber 112 in which the folded edge 206 of the small tube and the folded edge 204 of the large tube are connected by the cylindrical annular side surface 208 parallel to the small tube side 207 and the large tube side 205. 15 is a sectional view corresponding to FIG. 14 showing a state in which the small tubular body 201 is slightly tilted in response to an oblique impact F, and FIG. FIG. 15 is a sectional view corresponding to FIG. 14, showing a state in which a body 201 is immersed in a large tubular body 202.
[0062]
As shown in FIG. 14, the side member type shock absorber 112 of this example is separated from the folded edge 204 of the large pipe having a relatively large radius in the direction of immersion of the small pipe 201 so as to have the folded edge 206 of the small pipe. To form a step 203 connecting the folded edge 206 of the small tubular body and the folded edge 204 of the large tubular body with a cylindrical annular side surface 208.
[0063]
Since the small tubular body 201 does not adhere the small tubular body side surface 207 to the annular side surface 208, when the impact F is applied from an oblique direction deviated from the axial direction of the side member type shock absorber 112, as shown in FIG. Meanwhile, the small tubular body side surface 207 is tilted with the folded edge 206 of the small tubular body as an axis of inclination until the small tubular body side surface 207 comes into contact with the annular side surface 208 or the folded edge 204 of the large tubular body. When the small tube 201 is in contact with the folded edge 204, the inclination of the small tube 201 is restricted.
[0064]
Further, when the impact F is further applied, the component fh in the axis orthogonal direction of the side member type shock absorber 112 of the impact F is received by the annular side surface 208, and the inclination of the small tubular body 201 cannot be advanced. As can be seen, only the axial component fv of the impact F of the side member type shock absorber 112 contributes to the movement of the small tube 201 into the large tube 202.
[0065]
The tilting of the small tubular body has the folding edge of the small tubular body as a tilt axis, and is allowed only in a range of a tangent from the folded edge of the small tubular body to the circular side surface or the arc-shaped cross section of the folded edge of the large tubular body. Therefore, at the stage where the small tube 201 is immersed in the large tube 202, the small tube 201 temporarily corrects the tilt while sliding the small tube side surface 207 on the annular side surface 208 or the arc-shaped cross section of the folded edge 204 of the large tube. The impact F can contribute only to the plastic deformation that causes the large tubular body side surface 205 to be rolled inward from the step 203.
[0066]
The annular side surface 208 may not be parallel to the small tube side 207 or the large tube side 205. FIG. 17 is a cross-sectional view corresponding to FIG. 12 of the side member type shock absorber 112 in which the truncated conical annular side surface 209 which reduces in diameter from the small tube body 201 toward the large tube body 202 is shown. FIG. 18 is a cross-sectional view corresponding to FIG. 17, illustrating a state in which the small pipe 201 is received and sunk into the large pipe 202.
[0067]
The annular side surface prevents the small tubular body from tilting, and directly contacts the tilting small tubular body side surface, and indirectly forms the arc-shaped cross section of the folded edge of the small tubular body as the tilting axis of the large tubular body. By restricting the tilt angle away from the arc-shaped cross section of the folded edge, the tilt of the small tubular body is prevented. From this, the shape of the annular side surface is free as long as the tilting prevention function can be exhibited, and as shown in FIGS. 17 and 18, even the frustoconical annular side surface 209 allows the small tube 201 to move to the large tube 202 without being hindered. It can be immersive.
[0068]
【The invention's effect】
According to the shock absorber of the present invention, even when an impact is applied from an oblique direction at a larger angle than in the past, the small pipe body can still be immersed in the large pipe body by specifying the step shape and attaching the tilt prevention body. As a result, it is possible to sufficiently exhibit the shock absorbing performance of absorbing the impact energy as the deformation energy of the plastic deformation.
[0069]
Conventionally, the small tubular body tilts up to about 30 degrees in the axial diagonal direction. However, in the bumper-supported shock absorber of the present invention, the axial orthogonal component fh is up to 45 degrees in the axial diagonal direction exceeding the axial component fv. Within the range, the immersion of the small tube into the large tube can be ensured. The tilting prevention body has an effect of preventing or suppressing the tilting of the small tubular body with a simple structure.
[0070]
The present invention provides a bumper-supporting-type shock absorber composed of a tube for supporting a vehicle bumper reinforcing material to a vehicle body member, and a side member-type shock absorber composed of a tube constituting a vehicle body member side portion of a vehicle. I do. In the case of the side member type shock absorber, it is possible to avoid the risk of being bent at the step and coming into contact with the vehicle body or the fuel tank, and an effect of improving safety is obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a usage mode of a bumper-supported shock absorber and a side member type shock absorber.
FIG. 2 is a cross-sectional view of a bumper-supported shock absorber to which an anti-tilt body formed with a large-diameter annular portion of curling toward a small tubular body is attached.
FIG. 3 is a sectional view corresponding to FIG. 2, showing a stage in which an impact F in the axial direction starts to be applied to the bumper-supported shock absorber.
FIG. 4 is a sectional view corresponding to FIG. 2, showing a stage in which an impact F starts to be applied to the bumper-supported shock absorber obliquely in the axial direction.
FIG. 5 is a sectional view corresponding to FIG. 2, showing a stage in which the bumper-supported shock absorber has completely absorbed an axial shock F;
FIG. 6 is a sectional view, corresponding to FIG. 2, of a bumper-supported shock absorber to which an anti-tilt body having a large-diameter ring formed by a curling and a tubular ring is attached.
FIG. 7 is a cross-sectional view corresponding to FIG. 6, illustrating a stage in which the bumper-supported shock absorber has completely absorbed the shock F in the axial direction.
FIG. 8 is a sectional view corresponding to FIG. 2 of a bumper-supported shock absorber provided with an anti-tilt body formed by expanding a folded edge of a small tubular body.
FIG. 9 is a sectional view corresponding to FIG. 8, illustrating a stage in which the bumper-supported shock absorber has completely absorbed the shock F in the axial direction.
FIG. 10 is an axial sectional view of a side member type shock absorber.
FIG. 11 is an axial sectional view of another example of a side member type shock absorber.
FIG. 12 is an enlarged sectional view of a portion A in FIG. 10;
FIG. 13 is a sectional view corresponding to FIG. 12, showing a process of immersing the small tubular body into the large tubular body.
FIG. 14 is a sectional view corresponding to FIG. 12 of a side member type shock absorber in which a folded edge of a small tube and a folded edge of a large tube are connected by a cylindrical annular side surface.
FIG. 15 is a sectional view corresponding to FIG. 14, showing a state in which the small tubular body is slightly tilted by receiving an impact F from an oblique direction.
FIG. 16 is a sectional view corresponding to FIG. 14 showing a state in which the application of the impact F continues and the small tube is immersed in the large tube while correcting the tilt.
17 is a sectional view corresponding to FIG. 12 of a side member type shock absorber having a frustoconical annular side surface.
FIG. 18 is a sectional view corresponding to FIG. 17, showing a state in which a small tubular body is immersed in a large tubular body in response to application of an impact F;
[Explanation of symbols]
101 tubule
102 Curling
103 Large diameter ring
104 Anti-tilt body
105 Bumper supported shock absorber
106 Large tube
107 Folded edge of small tubular body
108 Folded edge of large pipe
109 Annular side
110 steps
112 Side member type shock absorber
114 Small diameter ring
116 Curling
117 Cylindrical ring
201 small tubular body
202 Large tube
203 steps
204 Folded edge of large pipe
205 Large tube side
206 Folded edge of tubule
207 Small tube side
208 Annular side
209 Frustoconical annular side surface
F impact
fv axial component of impact
fh Directional component of impact

Claims (12)

塑性加工可能な直管を部分的に縮径又は拡径して段差を介して繋がる小管体及び大管体を形成してなり、段差を介して繋がる小管体の折返縁及び大管体の折返縁は共に円弧角度90度超の円弧状断面で、段差は前記小管体の折返縁及び大管体の折返縁を結んだS字断面にしてなる衝撃吸収体。A small pipe or large pipe connected through a step is formed by partially reducing or expanding the diameter of a straight pipe that can be plastically processed, and the folded edge and the large pipe of the small pipe connected through the step are formed. The shock absorber has an edge having an arc-shaped cross section having an arc angle of more than 90 degrees, and a step having an S-shaped cross section connecting the turning edge of the small pipe and the turning edge of the large pipe. 車両のバンパ補強材を車体メンバに対して支持する直管を部分的に縮径又は拡径して段差を介して繋がる小管体及び大管体を形成してなる請求項1記載の衝撃吸収体。2. The shock absorber according to claim 1, wherein the straight pipe supporting the bumper reinforcement of the vehicle to the vehicle body member is partially reduced in diameter or enlarged to form a small pipe and a large pipe connected via a step. . 車両の車体メンバ側部を構成する直管を部分的に縮径又は拡径して段差を介して繋がる小管体及び大管体を形成してなる請求項1記載の衝撃吸収体。2. The shock absorber according to claim 1, wherein a small pipe and a large pipe which are connected to each other through a step by partially reducing or expanding the diameter of a straight pipe constituting a vehicle body member side portion of the vehicle. 段差は、小管体の折返縁の円弧状断面の半径を、大管体の折返縁の円弧状断面の半径より相対的に小さくしたS字断面にしてなる請求項1記載の衝撃吸収体。2. The shock absorber according to claim 1, wherein the step has an S-shaped cross-section in which the radius of the arc-shaped cross section of the folded edge of the small tube is relatively smaller than the radius of the arc-shaped cross-section of the folded edge of the large tube. 段差は、小管体の折返縁及び大管体の折返縁を環状側面で結んだS字断面にしてなる請求項1記載の衝撃吸収体。2. The shock absorber according to claim 1, wherein the step has an S-shaped cross section in which the folded edge of the small tube and the folded edge of the large tube are connected by an annular side surface. 小管体は、大管体への没入に際して小管体自身の傾倒を抑制又は防止する傾倒防止体を内面に固着してなり、該傾倒防止体は小管体の内径に等しい外径の小径環部と、大管体の内径に等しい外径の大径環部とからなり、小径環部は小管体の内面に固着し、段差を越えて小管体から大管体に突出させ、大径環部は前記小径環部が段差を越えた位置で大管体の内面に当接させてなる請求項1記載の衝撃吸収体。The small tubular body has an anti-tilt body fixed to the inner surface for suppressing or preventing tilting of the small tubular body itself when immersed in the large tubular body. A large-diameter annular portion having an outer diameter equal to the inner diameter of the large-diameter tube, the small-diameter annular portion is fixed to the inner surface of the small-diameter tube, and projects from the small-diameter tube to the large-diameter tube over the step. 2. The shock absorber according to claim 1, wherein the small-diameter annular portion is in contact with the inner surface of the large pipe at a position beyond the step. 傾倒防止体は、小管体から大管体に突出する小径環部を大管体の内面に当接するまで拡径して大径環部を形成してなる請求項6記載の衝撃吸収体。7. The shock absorber according to claim 6, wherein the tilt-preventing body forms a large-diameter annular portion by expanding a small-diameter annular portion projecting from the small tubular body to the large tubular body until the small-diameter annular portion comes into contact with the inner surface of the large tubular body. 傾倒防止体は、小管体から大管体に突出する小径環部を大管体の内面に当接するまで拡径し、小管体に向けて折り返したカーリングとして大径環部を形成してなる請求項6記載の衝撃吸収体。The tilt preventing body is formed by expanding a small-diameter annular portion protruding from the small tubular body to the large tubular body until it comes into contact with an inner surface of the large tubular body, and forming a large-diameter annular portion as curling folded toward the small tubular body. Item 7. The shock absorber according to Item 6. 傾倒防止体は、大管体の内面に接面する筒状環を大径環部に設けてなる請求項6記載の衝撃吸収体。7. The shock absorber according to claim 6, wherein the tilt-preventing body is provided with a cylindrical ring in contact with the inner surface of the large tube at the large-diameter ring portion. 小管体は、大管体への没入に際して小管体自身の傾倒を抑制又は防止する傾倒防止体を内面と一体に形成してなり、該傾倒防止体は小管体の折返縁を大管体の内面に向けて拡開して形成してなる請求項1記載の衝撃吸収体。The small tubular body is formed integrally with an inner surface of an anti-tilt body for suppressing or preventing tilting of the small tubular body itself when immersed in the large tubular body. The shock absorber according to claim 1, wherein the shock absorber is formed so as to expand toward the surface. 傾倒防止体は、小管体の折返縁の円弧状断面の半径を、大管体の折返縁の円弧状断面の半径より相対的に小さくしたS字断面の段差の前記小管体の折返縁を、大管体の内面に向けて拡開して形成してなる請求項10記載の衝撃吸収体。The anti-tilt body has a folded edge of the small tubular body having an S-shaped step with the radius of the arc-shaped cross section of the folded edge of the small tubular body relatively smaller than the radius of the arc-shaped cross section of the folded edge of the large tubular body, The shock absorber according to claim 10, wherein the shock absorber is formed by expanding toward an inner surface of the large pipe. 傾倒防止体は、小管体の折返縁及び大管体の折返縁を環状側面で結んだS字断面の段差の前記小管体の折返縁を、大管体の内面に向けて拡開して形成してなる請求項10記載の衝撃吸収体。The tilting prevention body is formed by expanding the folded edge of the small tube having a step of an S-shaped cross section connecting the folded edge of the small tube and the folded edge of the large tube with an annular side surface toward the inner surface of the large tube. The shock absorber according to claim 10, which is formed.
JP2003140866A 2002-05-29 2003-05-19 Shock absorber Expired - Fee Related JP4436620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140866A JP4436620B2 (en) 2002-05-29 2003-05-19 Shock absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002156230 2002-05-29
JP2003140866A JP4436620B2 (en) 2002-05-29 2003-05-19 Shock absorber

Publications (2)

Publication Number Publication Date
JP2004051084A true JP2004051084A (en) 2004-02-19
JP4436620B2 JP4436620B2 (en) 2010-03-24

Family

ID=31949044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140866A Expired - Fee Related JP4436620B2 (en) 2002-05-29 2003-05-19 Shock absorber

Country Status (1)

Country Link
JP (1) JP4436620B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132628A (en) * 2004-11-04 2006-05-25 Jidosha Buhin Kogyo Co Ltd Propeller shaft
JP2011085156A (en) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd Impact absorbing member
GB2476094A (en) * 2009-12-11 2011-06-15 Gm Global Tech Operations Inc Front structure for an automotive vehicle comprising an impact energy distribution structure
JP2017179989A (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Energy absorption device and earthquake-resisting wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132628A (en) * 2004-11-04 2006-05-25 Jidosha Buhin Kogyo Co Ltd Propeller shaft
JP2011085156A (en) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd Impact absorbing member
GB2476094A (en) * 2009-12-11 2011-06-15 Gm Global Tech Operations Inc Front structure for an automotive vehicle comprising an impact energy distribution structure
JP2017179989A (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Energy absorption device and earthquake-resisting wall

Also Published As

Publication number Publication date
JP4436620B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US6854574B2 (en) Shock absorber
JP3327030B2 (en) Impact energy absorbing device and its mounting structure
US6554333B2 (en) Vehicle bumper assembly
JP4057837B2 (en) Shock absorbing member
JP4219184B2 (en) Shock absorber mounting structure
JP2004262315A (en) Supporting structure of bumper reinforcement to vehicle body member
EP1923273A1 (en) Impact absorption member for vehicle
JP5776537B2 (en) Shock absorber for vehicle
JP2007503561A5 (en)
WO2005075254A1 (en) Impact absorbing device of vehicle
JP2009241869A (en) Bumper structure
JP2006205806A (en) Impact-absorbing structure for fender section
JP2010511555A (en) Energy absorber
JP2004051084A (en) Impact absorber
JP4395964B2 (en) Impact energy absorbing structure
JP3380537B2 (en) Vehicle shock absorber
JP5311730B2 (en) Bumper structure
JP2000053017A (en) Automobile energy absorptive structure
JP3939323B2 (en) Connection structure
JP2012076587A (en) Shock absorbing member
JP2007261427A (en) Bumper structure
JP2003343626A (en) Shock absorbing member
JP3501228B2 (en) Vehicle shock absorber
JP5576054B2 (en) Load absorption structure
JP4257128B2 (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees