JP2004050081A - Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus - Google Patents

Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus Download PDF

Info

Publication number
JP2004050081A
JP2004050081A JP2002212167A JP2002212167A JP2004050081A JP 2004050081 A JP2004050081 A JP 2004050081A JP 2002212167 A JP2002212167 A JP 2002212167A JP 2002212167 A JP2002212167 A JP 2002212167A JP 2004050081 A JP2004050081 A JP 2004050081A
Authority
JP
Japan
Prior art keywords
raw water
reverse osmosis
membrane
water
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002212167A
Other languages
Japanese (ja)
Inventor
Yuya Sato
佐藤 祐也
Makio Tamura
田村 真紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002212167A priority Critical patent/JP2004050081A/en
Publication of JP2004050081A publication Critical patent/JP2004050081A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spiral membrane element, a reverse osmosis membrane module, and a reverse osmosis membrane apparatus, which control the accumulation of turbid substances even when raw water high in turbidity, such as industrial water, is supplied without being pretreated, and enables water passage treatment over a long period. <P>SOLUTION: In the spiral membrane element, a bag-like separation membrane 13 is wound onto the peripheral surface of a permeation water collecting pipe 12 with raw water spacers 11a and 11b. The raw water spacers 11a and 11b are fixed to the raw water inflow side end part 15 of the separation membrane or the raw water inflow side end part 15 and concentrated water outflow side end part 16 of the separation membrane 13. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、工業用水など濁度の高い原水であっても、前処理することなく、長期間に亘り安定な通水処理が可能なスパイラル型膜エレメント、逆浸透膜モジュール及び逆浸透膜装置に関するものである。
【0002】
【従来の技術】
従来、海水の淡水化や、超純水、各種製造プロセス用水を得る方法として、逆浸透膜(RO膜)やナノ濾過膜(NF膜)を透過膜とするスパイラル型膜エレメントを用い、原水中からイオン成分や低分子成分を分離する方法が知られている。図4に例示されるように、従来から一般的に使用されているスパイラル型膜エレメントは、透過水スペーサー42の両面に逆浸透膜41を重ね合わせて3辺を接着することにより袋状膜43を形成し、該袋状膜43の開口部を透過水集水管44に取り付け、網状の原水スペーサー45と共に、透過水集水管44の外周面にスパイラル状に巻回することにより構成されている。そして、原水46はスパイラル型膜エレメント40の一方の端面側4aから供給され、原水スペーサー45に沿って流れ、スパイラル型膜エレメント40の他方の端面側4bから濃縮水48として排出される。原水46は原水スペーサー45に沿って流れる過程で、逆浸透膜41を透過して透過水47となり、この透過水47は透過水スペーサー42に沿って透過水集水管44の内部に流れ込み、透過水集水管44の端部から排出される。このように、巻回された袋状膜43間に配設される原水スペーサー45により原水経路が形成されることになる。
【0003】
このようなスパイラル型膜エレメントを用いて海水の淡水化や、超純水、各種製造プロセス用水を得る場合、通常、原水の濁質などを除去する目的で前処理が行われている。この前処理を行う理由は、スパイラル型膜エレメントの原水スペーサーの厚みは、原水流路を確保しつつできる限り原水と逆浸透膜との接触面積を大きくとるため通常1mm以下と薄く、濁質が原水流路にある原水スペーサーに蓄積され、原水流路を閉塞し易い構造となっている。このため、予め原水中の濁質を除去して濁質蓄積による通水差圧の上昇や透過水量、透過水質の低下を回避し、長期間に亘り安定な運転を行うためである。このような除濁目的で用いられる前処理装置は、例えば、凝集沈殿処理、濾過処理及び膜処理などの各装置を含むものであり、これらの装置は、設置コストや運転コストを上昇させると共に、大きな設置面積を必要とするなどの問題を有していた。このため、従来例のような薄い原水スペーサーで原水流路を確保でき、従来と同等程度の脱塩率を維持できると共に、濁質が蓄積しない構造のスパイラル型膜エレメントが開発されれば、工業用水や水道水が前処理なしで供給でき、システムの簡略化、設置面積の低減、低コスト化が可能となり、産業上の利用価値は極めて高いものとなる。
【0004】
一方、スパイラル型膜エレメントの濁質による原水流路の閉塞を防止するため、従来の格子の網目状原水スペーサーの構造を改善した種々の提案がなされている。特開昭64−47404号公報には、波板形であって該波形が蛇行する形状の原水スペーサーを用いるスパイラル型膜エレメントが開示されている。この蛇行波形形状の原水スペーサーは成型が困難であると共に、スパイラル状に巻回する際、流路が潰れる可能性が大であり、実用的ではない。
【0005】
特開平9−299770号公報には、第1の線材と第2の線材が互いに交差するように格子状に形成されてなり、第1の線材又は第2の線材が透過水集水管の長手方向と平行になるように原水スペーサーを配置する構造のものが開示されている。この構造の原水スペーサーによれば、原水が透過水集水管の長手方向と平行な方向にほぼ直線状に流れるため、圧力損失が低く、且つ原水の線速が大きくなり、原水中の濁質が蓄積し難くなる反面、集水管の長手方向に直角な方向に存在する線材が原水の流路を遮るため、当該線材に濁質が蓄積してしまい、やはり原水流路の閉塞を起こしてしまう。
【0006】
実開昭59−44506号公報には、両端部の隣接する膜封筒間に原水スペーサーが配設されているスパイラル型膜エレメントが記載されている。このスパイラル型膜エレメントによれば、高温流体を膜分離処理しても、原水スペーサーが膨張により膜面へ押し付けられるのを極力避けることができ、膜面の損傷を防止することができる。該公報には膜封筒間にある原水スペーサーが、膜封筒に接着されているか否かは不明であるものの、従来例を示す第1図との関係で記載されていることから、非接着で巻回されていることが窺い知れる。この場合、短冊状の原水スペーサーの複数枚を膜間の両端隣接位置に配置して製作することは困難であり、また長期間の運転中に原水流入側に配置した原水スペーサーは流れにのって中央部へ移動してしまい、また原水流出側に配置した原水スペーサーは脱落してしまう可能性があり、原水流路の確保が困難である。
【0007】
特開昭56−129006号公報には、原水スペーサーを省略し、透過水スペーサーに弾性変形を有する素材を使用し、原水側の運転圧力によって透過水スペーサーを潰して、原水流路を形成する方法が記載されている。しかし、この方法では、原水流入口が形成されておらず、運転開始時、原水流路への原水の供給が困難であるし、仮に通水が開始できたとしても原水の片流れが起こってしまう。
【0008】
【発明が解決しようとする課題】
このように、従来提案されている原水スペーサーは、いずれも、原水流路内に原水の淀みが生じやすい部分が存在し、この部分において濁質の蓄積が起こるか、あるいは、原水スペーサーの一部又は全部の設置を省略したものは原水流路を安定して確保することができない等の問題があり、従来行われていた原水の前処理を省略するまでには至っていないのが現状である。原水流路を確保しつつ、原水の淀む部分のない流路を形成するという観点から、原水の流入側から流出側に向かって直線状又は略直線状に延在する線材のみで形成される構造のものが最も好適なものであるが、線材同士を繋ぐ構造ではないため、工業的に製作することは困難である。
【0009】
従って、本発明の目的は、工業用水など濁度の高い原水を前処理なしで供給しても、濁質が蓄積し難く、長期間に亘り安定な通水処理が可能なスパイラル型膜エレメント、逆浸透膜モジュール及び逆浸透膜装置を提供することにある。
【0010】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、透過水集水管の外周面に袋状の分離膜を原水スペーサーと共に巻回してなるスパイラル型膜エレメントにおいて、原水中の濁質が蓄積するのは主に原水スペーサーの線材が交差する交点部分であること、原水流路の原水スペーサーを省略できれば、当然、濁質による原水流路の閉塞が起こらないこと、短冊状の原水スペーサーを分離膜の少なくとも流入側端部に固定できれば、脱落の問題は起こらず、原水流路が確保できると共に、濁質の蓄積は起こらないことなどを見出し、本発明を完成するに至った。
【0011】
すなわち、本発明(1)は、透過水集水管の外周面に袋状の分離膜を原水スペーサーと共に巻回してなるスパイラル型膜エレメントであって、該原水スペーサーは、該分離膜の原水流入側端部、又は原水流入側端部と濃縮水流出側端部に固設されてなるスパイラル型膜エレメントを提供するものである。本発明によれば、少なくとも、原水流入側端部には原水スペーサーが存在するため、原水流路への原水の供給は可能となり、通水が開始した後は通水圧により分離膜間に所定厚みの原水流路が確保される。また、原水流路の大部分が原水スペーサーが存在しないこととなり、濁質の蓄積は起こらない。
【0012】
また、本発明(2)は、前記分離膜の原水流入側端部、又は原水流入側端部と濃縮水流出側端部への原水スペーサーの固設方法が、二つ折りされた原水スペーサーを当該端部に対して両側から挟持するようにして固定する方法であることを特徴とする前記(1)記載のスパイラル型膜エレメントを提供するものである。本発明によれば、前記発明と同様の効果を奏する他、接着剤を使用しなくとも、簡易な方法で固定することができる。
【0013】
また、本発明(3)は、前記原水スペーサーの固設手段が、接着によるものであることを特徴とする前記スパイラル型膜エレメントを提供するものである。本発明によれば、前記発明と同様の効果を奏する他、確実に固定できる。
【0014】
また、本発明(4)は、前記分離膜の原水流入側端部、又は濃縮水流出側端部の前記透過水集水管に対する長手方向における長さは、それぞれ該分離膜の原水流入側端、又は濃縮水流出側端から内側へ、該分離膜の透過水集水管に対する長手方向長さの1〜10%であることを特徴とする前記スパイラル型膜エレメントを提供するものである。本発明によれば、スパイラル型膜エレメントの特性や使用条件に見合った好適な適宜の数値を選択して作製することができ、実質原水スペーサーが存在しないような原水流路を形成できる。
【0015】
また、本発明(5)は、該原水スペーサーが固設された側の分離膜端面に、該原水スペーサーの脱落を防止するための網目状部材を付設したことを特徴とする前記スパイラル型膜エレメントを提供するものである。本発明によれば、原水の流れを妨げることなく、特に、二つ折りされた原水スペーサーを接着剤を使用することなく、当該端部に対して両側から挟持するようにして固定する方法の場合、分離膜からの原水スペーサーの脱落を有効に防止できる。
【0016】
また、本発明(6)は、前記スパイラル型膜エレメントを備えることを特徴とする逆浸透膜モジュールを提供するものである。本発明によれば、前記発明と同様の効果を奏する他、水処理施設内に搬入し易く、且つそのままの形態で処理ラインに装着できる。本発明(7)は、前記逆浸透膜モジュールを備えることを特徴とする逆浸透膜装置を提供するものである。本発明の逆浸透膜装置によれば、海水の淡水化や、超純水、各種製造プロセス用水を得る場合、工業用水や水道水など濁度の高い原水を前処理なしで供給でき、システムの簡略化、設置面積の低減、低コスト化が可能となり、産業上の利用価値は極めて高い。
【0017】
【発明の実施の形態】
本発明の実施の形態におけるスパイラル型膜エレメントを図1を参照して説明する。図1は本例のスパイラル型膜エレメントの概略図である。図1中、スパイラル型膜エレメント10は透過水集水管12の外周面に袋状の分離膜13を原水スペーサー11と共に巻回してなるものであって、原水スペーサー11は、分離膜13の原水流入側端部15に固設される原水スペーサー11aと濃縮水流出側端部16に固設される原水スペーサー11bからなるものである。原水流入側端部15は、分離膜13の原水流入側Xの端18から透過水集水管12に対する長手方向における所定の長さ(図中、端から破線までの長さ)までの領域であり、濃縮水流出側端部16は、分離膜13の濃縮水流出側Yの端19から透過水集水管12に対する長手方向における所定の長さまでの領域である。この所定長さは、それぞれ該分離膜13の原水流入側Xの端18、又は濃縮水流出側Yの端19から内側へ、分離膜13の透過水集水管12に対する長手方向長さLの1〜10%である。透過水集水管12に対する長手方向における前記所定長さがLの1%未満であると、分離膜13に設置することが難しくなり、10%を越えると、原水スペーサー11への濁質の蓄積の問題が生じる。
【0018】
本例の原水スペーサー11a、11bは共に、設置場所を除いて同じものであるため、原水スペーサー11aについて説明する。原水スペーサー11aとしては、短冊状のメッシュ状物を使用することができる。短冊状物は、透過水集水管12取付け位置から透過水集水管12の長手方向に対して直角方向の分離膜13の端まで(分離膜の原水流入側Xの辺長さに相当)連続したものであっても、不連続のものであってもよいが、連続状物が取付け易さ及び原水流入口を安定して形成できる点で好適である。また、メッシュの目の形状としては、特に制限されず、ひし形、四角形、六角形、円形、楕円形、波形などが挙げられ、その線材同士の交差形態としては、特に制限されず、線材同士を織らずに接合した形態、平織りによる交差形態及びあや織りによる交差形態などが挙げられる。また、原水スペーサー11aの幅、すなわち、透過水集水管12に対する長手方向における長さは、前述した分離膜13の原水流入側端部15の長さと同じで、分離膜の透過水集水管12に対する長手方向の長さLの1〜10%である。また、原水スペーサー11の厚さは、0.4〜3.0mmの範囲である。厚さが0.4mm未満では、通水差圧の上昇を招くと共に、濁質の蓄積が生じ易くなる。一方、厚さが3.0mmを越えると、スパイラル状にした場合、1エレメント当たりの膜面積が小さくなり過ぎてしまい、実用的でない。また、原水スペーサーの材質としては、特に制限されないが、ポリプロピレンやポリエチレンが、成形性やコスト面から好ましい。また、原水スペーサーの製造方法は、特に制限されず、公知の方法を適用できるが、金型による成型品が、コスト面及び精度面からも好ましい。
【0019】
原水スペーサー11の固設方法としては、特に制限されないが、接着剤及び両面テープなどの接着手段で固定する方法が挙げられる。従来例にあるように原水スペーサーを固設することなく単に分離膜間に置く方法は、製作することが困難であると共に、原水流入側に配置した原水スペーサーは流れにのって中央部へ移動してしまい、また原水流出側に配置した原水スペーサーは脱落してしまう可能性があり、原水流路の確保が困難であるが、本例のように原水スペーサーを固定すれば、このような問題は解消される。
【0020】
スパイラル型膜エレメント10は、図1に示すような原水スペーサーを原水流入側端部15と濃縮水流出側端部16に併設するものの他、濃縮水流出側端部16に固設される原水スペーサー11bを省略し、原水流入側端部15のみの設置としたものであってもよい。このような実施の形態においても、原水流入側端部18には原水スペーサー11aが存在するため、原水流入口が形成され、原水の供給は可能となり、通水が開始した後は通水圧により分離膜13間に所定厚みの原水流路が確保される。
【0021】
更に、スパイラル型膜エレメント10は、上記実施の形態例の他、分離膜13の原水流入側端部15、又は原水流入側端部16と濃縮水流出側端部16への原水スペーサー11の固設方法が、二つ折りされた原水スペーサーを当該端部に対して両側から膜を挟持するようにして固定する方法で得られたものであってもよい(不図示)。これにより、製作が容易で、特に原水流入側端部15に固設された原水スペーサーは別途の接着手段を使用しなくとも、長期間運転において移動することがなく、原水流路を確実に形成することができる。この二つ折りされた原水スペーサーは二つ折りする前の形状として透過水集水管に対する長手方向における長さがほぼ2倍のものを使用し、且つ前記固設方法で設置する以外、図1に示す原水スペーサーと同様のものである。すなわち、二つ折り原水スペーサーは、短冊状のメッシュ状物を使用することができ、連続状物又は不連続状物であり、メッシュの目の形状やその線材同士の交差形態としても、特に制限されない。また、二つ折り原水スペーサーの材質及び厚みも図1の原水スペーサー11と同様である。原水流入側の端18から透過水集水管12に対する長手方向における長さ、すなわち、袋状分離膜13の一方の膜面に表れる原水スペーサーの当該長さも、同様に分離膜13の透過水集水管12に対する長手方向の長さLの1〜10%である。また、図1の原水スペーサー11の変形例と同様に、二つ折り原水スペーサーも濃縮水流出側端部16に固設される原水スペーサーを省略し、原水流入側端部15のみの設置としたものであってもよい。
【0022】
二つ折りされた原水スペーサーの固設方法は、前述の如く、該原水スペーサーを分離膜13の原水流入側端部15、又は濃縮水流出側端部16に対して両側から挟持するだけでよい。但し、濃縮水流出側端部16に固設する原水スペーサーは、接着剤又は両面テープなどで接着することが、分離膜から原水スペーサーが脱落することを確実に防止することができる点で好ましい。原水流入側端部15に固設された原水スペーサーは、挟み込みで固定できるが、接着剤や両面テープを使用すれば、一層確実に固定できる。
【0023】
二つ折りされた原水スペーサーは、複数枚の分離膜を使用する場合、全ての分離膜に固設してもよく、また、一枚置きの分離膜に固設してもよい。一枚置きの固設形態は、分離膜間の全てに原水スペーサーの設置が確保されると共に、原水スペーサーの設置数及び設置工程を省略することができる。また、分離膜の枚数が偶数毎であると、均一な巻回しができる点で好適である。二つ折りされた原水スペーサーを巻回しする場合、外側にくる原水スペーサーと内側にくる原水スペーサーでは、その長さに違いができ、均一な巻回しができないように思えるが、原水スペーサーは網目構造であることから、伸縮性に富み、外側が伸び内側が縮むことで、支障なく巻くことができる。この場合、外側にくる原水スペーサーに、透過水集水管の長手方向に切り込みを入れてもよい。これにより、原水スペーサーの伸縮性が加わって、更に円滑で支障なく巻くことができる。この切り込みは透過水集水管の長手方向の直角方向において、例えば10〜20cmの間隔で複数箇所設けてもよい。
【0024】
また、本例のスパイラル型膜エレメント10には、原水スペーサー11が固設された側の分離膜端面、本例では分離膜13の両端面に、網目状部材17a、17bを付設することが、後述するモジュールを構成した際、分離膜の該両端面に設置されるテレスコープ止めの数本の放射状のリブ間を原水スペーサーがすり抜けて脱落することを防止できる点で好ましい。網目状部材17a、17bは例えば中心が透過水集水管12が貫通する孔を有する円板状物であり、その材質は、特に制限されないが、ステンレス、鋳鉄、青銅などの金属、ポリエチレン、ポリプロピレンなどが挙げられる。網目の形状及び大きさとしては、原水スペーサー11のすり抜けを防止できるものであれば特に制限されない。網目状部材17a、17bの付設方法としては、分離膜の該両端面とテレスコープ止めとで挟持するだけでよく、接着剤は用いても、用いなくともよい。
【0025】
本発明のスパイラル型膜エレメントにおいて、透過水集水管の外周面に袋状の分離膜を原水スペーサーと共に巻回する形態としては、1枚の袋状の分離膜を巻回したものであっても、複数の袋状の分離膜を巻回したもののいずれであってもよい。本発明のスパイラル型膜エレメントは精密濾過装置、限外濾過装置及び逆浸透膜分離装置などの膜分離装置に使用することができる。逆浸透膜としては、食塩水中の塩化ナトリウムに対する90%以上の高い除去率を有する通常の逆浸透膜、及び低脱塩率のナノ濾過膜やルーズ逆浸透膜が挙げられる。ナノ濾過膜やルーズ逆浸透膜は脱塩性能を有するものの、通常の逆浸透膜よりも脱塩性能が低いもので、特にCa、Mg等の硬度成分の分離性能を有するものである。なお、ナノ濾過膜とルーズ逆浸透膜はNF膜と称されることがある。
【0026】
本例のスパイラル型膜エレメント10によれば、原水流入側端部15には原水スペーサー11aが存在するため、原水流入口が形成され、原水の供給は可能となり、通水が開始した後は通水圧により分離膜間に所定厚みの原水流路が確保される。また、原水流路中、原水スペーサー11が存在しない部分11cが大部分を占めることとなり、ここには原水の流れを妨げるものは存在しないため、濁質の蓄積は起こらない。また、本例のスパイラル型膜エレメントを備えたモジュールを構成した際、分離膜の該両端面に当接するように設置されるテレスコープ止めの数本の放射状のリブ間の隙間を抜けて原水スペーサーが脱落することを防止できる。
【0027】
本発明の逆浸透膜モジュールは、前記スパイラル型膜エレメントを備えるものであれば特に制限されず、例えば図2に示す構造を有する逆浸透膜モジュールが挙げられる。図2に示したように、透過水集水管12の外周面に袋状の逆浸透膜21を逆浸透膜21の両端部の所定位置に固設された原水スペーサーと共にスパイラル状に巻きつけ、その上部を外装体22で被覆する。そしてスパイラル状に巻きつけた逆浸透膜21がせり出すのを防止するために、数本の放射状のリブ23を有するテレスコープ止め24が両端に取り付けられている。なお、逆浸透膜21の両端面とテレスコープ止め24の間には原水スペーサーの脱落を防止する網目状部材17が取り付けられている。これらの透過水集水管12、逆浸透膜21、外装体22、網目状部材17、テレスコープ止め24でひとつのスパイラル型膜エレメント10を形成し、夫々の透過水集水管12をコネクタ(図示せず)で連通して、ハウジング26内にスパイラル型膜エレメント10を複数個装填する。なお、スパイラル型膜エレメント10の外周とハンジング26の内周の間に隙間27が形成されるが、この隙間27をブラインシール28で閉塞してある。なおハウジング26の一端には原水をハウジング内部に流入するための原水流入管(図示せず)、また他端には透過水集水管12に連通する処理水管(図示せず)および非透過水管(図示せず)が付設され、ハウジング26、その内部部品および配管(ノズル)等で逆浸透膜モジュール29が構成される。
【0028】
このような構造の逆浸透膜モジュール29で原水を処理する場合は、ハウジング26の一端からポンプを用いて原水を圧入するが、図2において矢線で示したように原水はテレスコープ止め24の各放射状のリブ23の間を通って最初のスパイラル型膜エレメント10内に侵入し、一部の原水はスパイラル型膜エレメント10の膜間の原水スペーサーで区画される原水流路を通り抜けて次のスパイラル型膜エレメント10に達し、他部の原水は逆浸透膜21を透過して透過水となり当該透過水は透過水集水管12に集水される。このようにしてスパイラル型膜エレメント10に次々に原水が通り抜けて、逆浸透膜を透過しなかった原水は濁質及びイオン性不純物を高濃度で含む濃縮水としてハウジング26の他端から取り出され、また逆浸透膜を透過した透過水は透過水として透過水集水管12を介してハウジング26外に取り出される。なお、本発明の逆浸透膜モジュールは図2のように複数のスパイラル型膜エレメントを装着するものの他、例えばスパイラル型膜エレメント1個装着するものであってもよい。
【0029】
本発明の逆浸透膜装置としては、特に制限されないが、例えば前記逆浸透膜モジュールの1又は2以上、ポンプ等の原水供給手段、原水流入配管、濃縮水流出配管及び透過水流出配管を少なくとも備えるものである。本発明の逆浸透膜装置に直接供給される原水としては、工業用水、水道水及び回収水が挙げられる。原水の濁度としては、特に制限されないが、濁度2度程度の高い濁度のものであっても濁質の閉塞による通水差圧の上昇などを生じることがない。また、原水には原水中に砂粒などの粗大粒子を含む場合、予め目の粗いフィルターを通した処理水や、スケールやファウリングを防止するための分散剤を添加したものも含まれる。分散剤の添加により、原水スペーサーや膜面への濁質の蓄積を一層抑制することができる。分散剤としては、例えば市販品の「hypersperse MSI300」、「hypersperse MDC200」(共に、ARGO SCIENTIFIC社製)が挙げられる。本発明の逆浸透膜装置によれば、従来、原水中の濁質を除去する目的で用いられていた凝集沈殿処理、濾過処理及び膜処理などの前処理装置の設置を省略することができる。このため、システムの簡略化、設置面積の低減、低コスト化が図れる点で画期的な効果を奏する。
【0030】
本発明の実施の形態における逆浸透膜装置の一例を図3を参照して説明する。図3において、逆浸透膜装置30は、原水供給装置31、前段逆浸透膜モジュール30A及び後段逆浸透膜モジュール30Bをこの順序で配置したものであり、原水供給装置31と前段逆浸透膜モジュール30Aは原水供給配管32で連結され、前段逆浸透膜モジュール30Aと後段逆浸透膜モジュール30Bは前段逆浸透膜モジュール30Aの透過水を後段の装置の被処理水として供給する一次透過水流出配管33で連結され、後段逆浸透膜モジュール30Bには透過水を排出する透過水流出配管34及び濃縮水を原水供給配管32に戻す戻り配管35を備える。また、前段逆浸透膜モジュール30Aには濃縮水流出配管36を備えている。前段逆浸透膜モジュール30Aは本発明に係る濁質の蓄積を起こさない逆浸透膜装置であり、後段逆浸透膜モジュール30Bは従来の逆浸透膜装置である。
【0031】
次に、本実施の形態例の逆浸透膜装置30を用いて原水を処理する方法を説明する。先ず、原水は原水供給手段31により前段逆浸透膜モジュール30Aに供給される。原水は前段逆浸透膜モジュール30Aで処理され、一次濃縮水を濃縮水流出配管36から得ると共に一次透過水流出配管33から一次透過水を得る。次いで、この一次透過水は後段逆浸透膜モジュール30Bで処理され、透過水流出配管34から二次透過水を得ると共に、二次濃縮水は戻り配管35から原水供給配管32に戻される。この二次濃縮水は既に前段逆浸透膜モジュール30Aで脱塩された透過水を後段逆浸透膜モジュール30Bで濃縮されたものであり、原水に比べて導電率が低い。このため、二次濃縮水の全量を循環させることが可能となり、水回収率を向上させることができる。また、逆浸透膜装置30は、従来型の装置で使用されている濁質除去のみを目的とした前処理装置の代わりに、本発明における濁質の蓄積が大幅に抑制できる逆浸透膜モジュールを前段に使用しているので、実質的に逆浸透膜を2段使用することになる。従来型の装置における前処理装置は当然脱塩機能がないので、逆浸透膜装置30は従来型の逆浸透膜装置と比較して透過水の水質も格段に優れる。
【0032】
【実施例】
実施例1
濁度2度、導電率20mS/mの工業用水を下記仕様の逆浸透膜モジュールAに通水し、下記運転条件下において、2000時間の耐久運転を行った。逆浸透膜モジュールAの性能評価は運転初期及び2000時間における通水差圧(MPa)、透過水量(l/分)及び透過水の導電率(mS/m)を測定することで行った。また、2000時間後、逆浸透膜モジュールを解体して原水流路内の濁質の付着状況を観察した。測定値の結果を表1に、原水流路の目視観察結果を表2に示す。
【0033】
(逆浸透膜モジュールA)
先ず、透過水集水管の長手方向における長さが100mm、厚さが1.0mmのメッシュ状の原水スペーサーAを作製した。次いで、この原水スペーサーAを用いて図1に示す構造のスパイラル型膜エレメントAを作製し、更に図2に示すような構造の逆浸透膜モジュールAを作製した。但し、分離膜の集水管の長手方向の長さLが1000mm、原水スペーサーの固設方法は二つ折りされた原水スペーサーにて膜を挟み込む形で設置し(原水流入側端部、濃縮水流出側端部共に50mmの幅で原水スペーサーAが取り付けられることとなる)、かつ脱落防止用のステンレス製金網を設けた。原水スペーサー、金網ともに接着はしなかった。また、該逆浸透膜モジュールAは1個のスパイラル型膜エレメントを収納した1個のモジュールとした。
(運転条件)
操作圧力が0.75MPa、濃縮水流量が2700m/時間、水温が25℃で行った。また透過処理8時間毎に、透過処理を中断し、濃縮水流出管に付設されている弁を全開して透過処理における原水供給流量の3倍の流量で、60秒間原水を逆浸透膜モジュール内に流入し、洗浄排水を濃縮水流出管から流出させる、いわゆるフラッシングを行った。
【0034】
実施例2
濃縮水流出側の原水スペーサーを省略した以外、実施例1と同様の方法で逆浸透膜モジュールBを作製し、実施例1と同様の運転条件で2000時間の耐久運転を行った。逆浸透膜モジュールBの性能評価結果を表1及び表2に示す。
【0035】
実施例3
濁度2度、導電率20mS/mの工業用水を下記仕様で且つ前述の図3に示すフローの逆浸透膜装置に通水し、下記運転条件下において2000時間の耐久運転を行った。逆浸透膜装置の性能評価結果を表1及び表2に示す。なお、表1における結果は、後段逆浸透膜モジュールの結果である。
(逆浸透膜装置)
前段逆浸透膜モジュールとして、実施例1で使用した逆浸透膜モジュールAを用い、後段逆浸透膜モジュールとして、8インチエレメントES−10(日東電工社製)1個を装着したモジュール1個を用いた。このES−10に用いられている原水スペーサーは格子の網目状のものである。
(運転条件)
前段逆浸透膜モジュール及び後段逆浸透膜モジュール共に、操作圧力が0.75MPa、濃縮水流量が2700m/時間、水温が25℃で行う。なお、前段逆浸透膜モジュールのみ、実施例1と同様なフラッシングを行った。
【0036】
比較例1
凝集沈殿処理、濾過処理及び膜処理からなる公知の前処理装置を前段に配置したこと、スパイラル型膜エレメントAの代わりに、8インチエレメントES−10(日東電工社製)を用いたこと以外、実施例1と同様の方法で行った。すなわち、濁度2度、導電率20mS/mの工業用水を、前処理装置で処理し、その処理水を従来の市販の逆浸透膜モジュールで更に処理した。その結果を表1及び表2に示す。
【0037】
比較例2
スパイラル型膜エレメントAの代わりに、8インチエレメントES−10(日東電工社製)を用いた以外、実施例1と同様の方法で行った。すなわち、濁度2度、導電率20mS/mの工業用水を、前処理装置で処理することなく直接従来の市販の逆浸透膜モジュールで処理した。その結果を表1及び表2に示す。なお、この比較例2では800時間頃に、通水差圧が極端に上昇し、透過水が得られなくなったため、この時点で運転を停止した。なお、表2の結果は、800時間経過後の運転停止時のものである。
【0038】
【表1】

Figure 2004050081
【0039】
【表2】
Figure 2004050081
【0040】
実施例1〜3において、2000時間後、通水差圧の上昇はほとんどなく、透過水量の低下もなく、透過水の水質も高いものであった。比較例1は2000時間後の性能評価において、実施例と遜色ない結果を示しているが、これは前処理装置を設置しており、設置場所や設置コストなどが余分に必要となる。従って、実施例1〜3の比較対象は比較例2であるが、比較例2は約800時間で透過水量がゼロになるまで濁質の付着が激しいものである。
【0041】
【発明の効果】
本発明のスパイラル型膜エレメントによれば、少なくとも原水流入側端部には原水スペーサーが存在するため、原水流路への原水の供給は可能となり、通水が開始した後は通水圧により分離膜間に所定厚みの原水流路が確保される。また、原水流路中、原水スペーサーが存在しない部分が大部分を占めることとなり、ここには原水の流れを妨げるものは存在しないため、濁質の蓄積は起こらない。また、網目状部材を分離膜の両端面に設置すれば、本例のスパイラル型膜エレメントを備えたモジュールを構成した際、原水スペーサーの脱落を防止することができる。本発明の逆浸透膜モジュール及び逆浸透膜装置によれば、従来、原水中の除濁目的で用いられていた前処理装置の設置を省略することができる。このため、システムの簡略化、設置面積の低減、低コスト化が図れる点で顕著な効果を奏する。更に工業用水など濁度の高い原水を前処理なしで供給しても、濁質が蓄積し難く、長期間に亘り安定な通水処理が可能となる。
【図面の簡単な説明】
【図1】本実施の形態例におけるスパイラル型膜エレメントの概略図である。
【図2】本実施の形態例における逆浸透膜モジュールの構造の一例を示す図である。
【図3】本発明の実施の形態における逆浸透膜装置の一例を示す図である。
【図4】従来の逆浸透膜モジュールの概略図である。
【符号の説明】
11、11a、11b   原水スペーサー
12     透過水集水管
13     分離膜
14     透過水スペーサー
15     原水流入側端部
16     濃縮水流出側端部
17a、17b   網目状部材
10     スパイラル型膜エレメント
29     逆浸透膜モジュール
30     逆浸透膜装置
X      原水流入側
Y      原水流出側[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spiral-wound membrane element, a reverse osmosis membrane module, and a reverse osmosis membrane device capable of performing a stable water flow treatment for a long period of time without pretreatment even for raw water having high turbidity such as industrial water. Things.
[0002]
[Prior art]
Conventionally, as a method for obtaining seawater desalination, ultrapure water, and water for various manufacturing processes, a raw water is formed by using a spiral membrane element having a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane) as a permeable membrane. There is known a method for separating ionic components and low-molecular components from water. As illustrated in FIG. 4, a spiral membrane element generally used in the past has a bag-like membrane 43 by superposing a reverse osmosis membrane 41 on both sides of a permeated water spacer 42 and bonding three sides thereof. Is formed, and the opening of the bag-shaped membrane 43 is attached to the permeated water collecting pipe 44, and is spirally wound around the outer peripheral surface of the permeated water collecting pipe 44 together with the mesh-shaped raw water spacer 45. The raw water 46 is supplied from one end face 4a of the spiral membrane element 40, flows along the raw water spacer 45, and is discharged as concentrated water 48 from the other end face 4b of the spiral membrane element 40. In the process of flowing along the raw water spacer 45, the raw water 46 passes through the reverse osmosis membrane 41 to become permeated water 47. The permeated water 47 flows into the permeated water collecting pipe 44 along the permeated water spacer 42, and It is discharged from the end of the water collecting pipe 44. In this manner, the raw water path is formed by the raw water spacer 45 disposed between the wound bag-like membranes 43.
[0003]
When desalination of seawater, ultrapure water, and water for various production processes are obtained using such a spiral membrane element, pretreatment is usually performed for the purpose of removing turbidity of raw water. The reason for performing this pretreatment is that the thickness of the raw water spacer of the spiral type membrane element is usually as thin as 1 mm or less in order to make the contact area between the raw water and the reverse osmosis membrane as large as possible while securing the raw water flow path. It is accumulated in the raw water spacer in the raw water flow path, and has a structure that easily blocks the raw water flow path. For this reason, the turbidity in the raw water is removed in advance to avoid an increase in the differential pressure of water flow and a decrease in the amount of permeated water and the quality of permeated water due to accumulation of the turbid water, and to perform stable operation for a long period of time. Pretreatment devices used for such a purpose of clarification include, for example, devices such as coagulation sedimentation treatment, filtration treatment and membrane treatment, and these devices increase installation costs and operation costs, There was a problem that a large installation area was required. Therefore, if a raw water flow path can be secured with a thin raw water spacer as in the conventional example, a desalination rate comparable to the conventional one can be maintained, and a spiral membrane element having a structure that does not accumulate turbidity is developed, Water and tap water can be supplied without pretreatment, and the system can be simplified, the installation area can be reduced, the cost can be reduced, and the industrial utility value is extremely high.
[0004]
On the other hand, various proposals have been made to improve the structure of the conventional grid-like raw water spacer in order to prevent the raw water flow path from being blocked by the turbidity of the spiral membrane element. JP-A-64-47404 discloses a spiral-type membrane element using a raw water spacer having a corrugated shape and a meandering waveform. This raw water spacer having a meandering waveform shape is difficult to mold and, when wound in a spiral shape, has a high possibility of collapsing the flow path, and is not practical.
[0005]
Japanese Patent Application Laid-Open No. 9-299770 discloses that a first wire and a second wire are formed in a lattice shape so as to intersect each other, and the first wire or the second wire is disposed in a longitudinal direction of the permeated water collecting pipe. A structure in which a raw water spacer is arranged so as to be parallel to the above is disclosed. According to the raw water spacer having this structure, the raw water flows almost linearly in a direction parallel to the longitudinal direction of the permeated water collecting pipe, so that the pressure loss is low, and the linear velocity of the raw water increases, and the turbidity in the raw water is reduced. On the other hand, the wire is difficult to accumulate, but the wire present in a direction perpendicular to the longitudinal direction of the water collecting pipe blocks the flow path of the raw water, so that turbidity accumulates in the wire and also causes the blockage of the raw water flow path.
[0006]
Japanese Utility Model Laid-Open No. 59-44506 describes a spiral membrane element in which raw water spacers are provided between adjacent membrane envelopes at both ends. According to the spiral membrane element, even if the high-temperature fluid is subjected to membrane separation, the raw water spacer can be prevented from being pressed against the membrane surface by expansion as much as possible, and damage to the membrane surface can be prevented. Although it is unknown in this publication whether or not the raw water spacer between the membrane envelopes is adhered to the membrane envelope, it is described in relation to FIG. 1 showing a conventional example. It can be seen that it is being turned. In this case, it is difficult to arrange a plurality of strip-shaped raw water spacers at positions adjacent to both ends between the membranes, and the raw water spacers arranged on the raw water inflow side during a long-term operation follow the flow. Therefore, the raw water spacer disposed on the raw water outflow side may fall off, and it is difficult to secure a raw water flow path.
[0007]
JP-A-56-129006 discloses a method in which a raw water spacer is omitted, a material having elastic deformation is used for the permeated water spacer, and the permeated water spacer is crushed by operating pressure on the raw water side to form a raw water flow path. Is described. However, in this method, the raw water inlet is not formed, and at the start of operation, it is difficult to supply the raw water to the raw water flow path, and even if the flow can be started, a single flow of the raw water occurs. .
[0008]
[Problems to be solved by the invention]
As described above, in the raw water spacers conventionally proposed, there is a portion where raw water stagnation easily occurs in the raw water flow path, and accumulation of turbidity occurs in this portion, or a part of the raw water spacer. In addition, in the case where the whole installation is omitted, there is a problem that the raw water flow path cannot be secured stably, and the current situation is that the conventional pretreatment of the raw water has not been omitted. From the viewpoint of forming a flow path without a stagnant portion of the raw water while securing the raw water flow path, a structure formed of only a wire extending linearly or substantially linearly from the inflow side to the outflow side of the raw water. Is the most suitable, but it is difficult to manufacture industrially because it is not a structure for connecting wires.
[0009]
Accordingly, an object of the present invention is to provide a spiral-type membrane element which is capable of providing stable turbidity for a long period of time even when raw water having a high turbidity such as industrial water is supplied without pretreatment. A reverse osmosis membrane module and a reverse osmosis membrane device are provided.
[0010]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted intensive studies and found that turbidity in raw water is accumulated in a spiral membrane element formed by winding a bag-shaped separation membrane on the outer peripheral surface of a permeated water collecting pipe together with a raw water spacer. What is done is mainly the intersections where the wires of the raw water spacer intersect, if the raw water spacer in the raw water flow path can be omitted, the raw water flow path will not be blocked by turbidity, and the strip-shaped raw water spacer will be separated. If the membrane can be fixed to at least the inflow-side end, the problem of falling off does not occur, the raw water flow path can be secured, and accumulation of turbidity does not occur. Thus, the present invention has been completed.
[0011]
That is, the present invention (1) is a spiral-wound membrane element in which a bag-shaped separation membrane is wound around an outer peripheral surface of a permeated water collecting pipe together with a raw water spacer, and the raw water spacer is provided on the raw water inflow side of the separation membrane. An object of the present invention is to provide a spiral-type membrane element fixed to an end or an end of raw water inflow and an end of concentrated water outflow. According to the present invention, at least the raw water spacer is present at the raw water inflow side end, so that the raw water can be supplied to the raw water flow path, and after the start of the flow of water, a predetermined thickness is provided between the separation membranes by the flow pressure. Raw water flow path is secured. In addition, most of the raw water flow path has no raw water spacer, and no accumulation of turbidity occurs.
[0012]
In the present invention (2), the method of fixing the raw water spacer to the raw water inflow side end of the separation membrane or the raw water inflow side end and the concentrated water outflow side end may be such that the raw water spacer is folded in half. The spiral-type membrane element according to the above (1), which is a method of being fixed so as to be sandwiched from both sides with respect to an end portion. According to the present invention, in addition to having the same effects as those of the above-described invention, the fixing can be performed by a simple method without using an adhesive.
[0013]
Further, the present invention (3) provides the spiral membrane element, wherein the means for fixing the raw water spacer is by adhesion. According to the present invention, the same effects as those of the above-described invention can be obtained, and further, the fixing can be reliably performed.
[0014]
Further, in the present invention (4), the length in the longitudinal direction of the raw water inflow end or the concentrated water outflow end of the separation membrane with respect to the permeated water collecting pipe is, respectively, the raw water inflow end of the separation membrane, Alternatively, the present invention provides the spiral membrane element, wherein the length of the separation membrane in the longitudinal direction with respect to the permeated water collecting pipe is 1 to 10% from the concentrated water outflow side end to the inside. ADVANTAGE OF THE INVENTION According to this invention, it can manufacture by selecting suitable suitable numerical value according to the characteristic of a spiral-type membrane element, or a use condition, and can form the raw water flow path which does not have a raw water spacer substantially.
[0015]
Also, the present invention (5) is characterized in that a mesh member for preventing the raw water spacer from falling off is provided on an end face of the separation membrane on the side where the raw water spacer is fixed, wherein the spiral membrane element is provided. Is provided. According to the present invention, without disturbing the flow of raw water, in particular, in the case of a method in which the folded raw water spacer is fixed so as to be sandwiched from both sides with respect to the end without using an adhesive, It is possible to effectively prevent the raw water spacer from dropping from the separation membrane.
[0016]
In addition, the present invention (6) provides a reverse osmosis membrane module including the spiral membrane element. According to the present invention, besides having the same effects as the above-mentioned invention, the present invention can be easily carried into a water treatment facility, and can be mounted on a treatment line as it is. The present invention (7) provides a reverse osmosis membrane device including the reverse osmosis membrane module. According to the reverse osmosis membrane device of the present invention, when desalinating seawater, ultrapure water, or water for various production processes, raw water having high turbidity such as industrial water or tap water can be supplied without pretreatment, and the system Simplification, reduction of installation area, and cost reduction are possible, and the industrial utility value is extremely high.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A spiral type membrane element according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of a spiral-type membrane element of this example. In FIG. 1, a spiral type membrane element 10 is formed by winding a bag-shaped separation membrane 13 around an outer peripheral surface of a permeated water collecting pipe 12 together with a raw water spacer 11. It comprises a raw water spacer 11a fixed to the side end 15 and a raw water spacer 11b fixed to the concentrated water outflow side end 16. The raw water inflow side end 15 is a region from the end 18 of the raw water inflow side X of the separation membrane 13 to a predetermined length in the longitudinal direction with respect to the permeated water collecting pipe 12 (the length from the end to the broken line in the figure). The concentrated water outflow end 16 is a region extending from the concentrated water outflow side Y end 19 of the separation membrane 13 to a predetermined length in the longitudinal direction with respect to the permeated water collecting pipe 12. Each of the predetermined lengths is one of the longitudinal length L of the separation membrane 13 with respect to the permeated water collection pipe 12 from the end 18 of the raw water inflow side X or the end 19 of the concentrated water outflow side Y of the separation membrane 13 to the inside. 〜1010%. If the predetermined length in the longitudinal direction with respect to the permeated water collecting pipe 12 is less than 1% of L, it is difficult to install the separation membrane 13, and if it exceeds 10%, the accumulation of turbidity in the raw water spacer 11 will occur. Problems arise.
[0018]
Since the raw water spacers 11a and 11b of this example are the same except for the installation location, the raw water spacer 11a will be described. A strip-shaped mesh-like material can be used as the raw water spacer 11a. The strip-shaped material was continuous from the position where the permeated water collecting pipe 12 was attached to the end of the separation membrane 13 in a direction perpendicular to the longitudinal direction of the permeated water collecting pipe 12 (corresponding to the side length of the separation membrane on the raw water inflow side X of the separation membrane). It may be either a continuous one or a discontinuous one, but a continuous one is preferred in that it can be easily attached and the raw water inlet can be formed stably. In addition, the shape of the mesh eyes is not particularly limited, and includes a diamond shape, a square shape, a hexagonal shape, a circular shape, an elliptical shape, a waveform, and the like. Examples include a form joined without weaving, a crossed form by plain weave, and a crossed form by twill weave. The width of the raw water spacer 11a, that is, the length of the raw water spacer 11a in the longitudinal direction with respect to the permeated water collecting pipe 12 is the same as the length of the raw water inflow-side end 15 of the separation membrane 13 described above. It is 1 to 10% of the length L in the longitudinal direction. The thickness of the raw water spacer 11 is in the range of 0.4 to 3.0 mm. When the thickness is less than 0.4 mm, the pressure difference in water passage is increased, and turbidity is easily accumulated. On the other hand, if the thickness exceeds 3.0 mm, the film area per element becomes too small when formed into a spiral shape, which is not practical. Further, the material of the raw water spacer is not particularly limited, but polypropylene and polyethylene are preferable in terms of moldability and cost. In addition, the method for producing the raw water spacer is not particularly limited, and a known method can be applied. However, a molded product using a mold is preferable in terms of cost and accuracy.
[0019]
The method for fixing the raw water spacer 11 is not particularly limited, and examples thereof include a method of fixing the raw water spacer 11 by an adhesive such as an adhesive or a double-sided tape. It is difficult to fabricate the method of simply placing the raw water spacer between the separation membranes without fixing it as in the conventional example, and the raw water spacer placed on the raw water inflow side moves to the center along the flow Also, the raw water spacer placed on the raw water outflow side may fall off, making it difficult to secure the raw water flow path, but if the raw water spacer is fixed as in this example, such a problem will occur. Is eliminated.
[0020]
The spiral type membrane element 10 has a raw water spacer as shown in FIG. 1 provided alongside a raw water inflow end 15 and a concentrated water outflow end 16, and a raw water spacer fixed to the concentrated water outflow end 16. 11b may be omitted and only the raw water inflow side end 15 may be installed. In such an embodiment as well, since the raw water spacer 11a exists at the raw water inflow side end 18, a raw water inflow port is formed, and the raw water can be supplied. A raw water flow path having a predetermined thickness is secured between the membranes 13.
[0021]
Further, in addition to the above-described embodiment, the spiral type membrane element 10 is configured to fix the raw water spacer 11 to the raw water inflow end 15 or the raw water inflow end 16 and the concentrated water outflow end 16 of the separation membrane 13. The installation method may be a method obtained by fixing the raw water spacer that has been folded in half by sandwiching the membrane from both sides to the end (not shown). This makes it easy to manufacture, and in particular, the raw water spacer fixed to the raw water inflow side end 15 does not move during long-term operation without using a separate bonding means, and the raw water flow path is reliably formed. can do. The two-folded raw water spacer has a shape that is almost twice as long as the permeated water collecting pipe in the longitudinal direction as a shape before being folded in two, and is installed in the above-mentioned fixed method. It is the same as the spacer. In other words, the two-fold raw water spacer can use a strip-shaped mesh-like material, which is a continuous or discontinuous material, and is not particularly limited as well as the shape of the mesh eyes or the crossing form of the wires. . The material and thickness of the two-fold raw water spacer are also the same as those of the raw water spacer 11 in FIG. The length in the longitudinal direction from the raw water inflow side end 18 to the permeated water collecting pipe 12, that is, the length of the raw water spacer appearing on one membrane surface of the bag-shaped separation membrane 13, is also the permeated water collecting pipe of the separation membrane 13. 12 is 1 to 10% of the length L in the longitudinal direction. Also, as in the modified example of the raw water spacer 11 in FIG. 1, the two-fold raw water spacer is also such that the raw water spacer fixed to the concentrated water outflow end 16 is omitted and only the raw water inflow end 15 is installed. It may be.
[0022]
As described above, the method of fixing the raw water spacer folded in half only requires that the raw water spacer is sandwiched between the raw water inflow end 15 or the concentrated water outflow end 16 of the separation membrane 13 from both sides. However, it is preferable that the raw water spacer fixed to the concentrated water outflow side end 16 be adhered with an adhesive or a double-sided tape in that the raw water spacer can be reliably prevented from falling off the separation membrane. The raw water spacer fixed to the raw water inflow side end portion 15 can be fixed by being sandwiched. However, if an adhesive or a double-sided tape is used, the raw water spacer can be more reliably fixed.
[0023]
When a plurality of separation membranes are used, the folded water spacer may be fixed to all the separation membranes or may be fixed to every other separation membrane. In the case of the fixed arrangement of every other sheet, the installation of the raw water spacers is ensured between all the separation membranes, and the number of the raw water spacers and the installation process can be omitted. In addition, it is preferable that the number of separation membranes is even, since uniform winding can be performed. When winding the folded raw water spacer, it seems that the length of the raw water spacer on the outside and the raw water spacer on the inside can differ, and it seems that uniform winding can not be done, but the raw water spacer has a mesh structure. Because of this, it is rich in elasticity and can be wound without hindrance because the outside expands and the inside contracts. In this case, a cut may be made in the raw water spacer on the outside in the longitudinal direction of the permeated water collecting pipe. Thereby, the elasticity of the raw water spacer is added, and the raw water spacer can be wound smoothly and without trouble. The cuts may be provided at a plurality of locations at an interval of, for example, 10 to 20 cm in a direction perpendicular to the longitudinal direction of the permeated water collecting pipe.
[0024]
In the spiral membrane element 10 of the present embodiment, mesh members 17a and 17b may be provided on the end face of the separation membrane on the side where the raw water spacer 11 is fixed, in this embodiment, on both end faces of the separation membrane 13. When a module to be described later is constructed, it is preferable in that the raw water spacer can be prevented from slipping off and falling off between several radial ribs of the telescope stop installed on the both end surfaces of the separation membrane. The mesh members 17a and 17b are, for example, discs having a hole at the center thereof through which the permeated water collecting pipe 12 penetrates, and the material thereof is not particularly limited, but metals such as stainless steel, cast iron and bronze, polyethylene, and polypropylene Is mentioned. The shape and size of the mesh are not particularly limited as long as they can prevent the raw water spacer 11 from slipping through. As a method of attaching the mesh members 17a and 17b, it is only necessary to hold the separation membrane between the both end faces and the telescope stop, and the adhesive may or may not be used.
[0025]
In the spiral membrane element of the present invention, the bag-shaped separation membrane may be wound on the outer peripheral surface of the permeated water collecting pipe together with the raw water spacer, even if one bag-shaped separation membrane is wound. Any of a plurality of bag-shaped separation membranes wound may be used. The spiral type membrane element of the present invention can be used for a membrane separation device such as a microfiltration device, an ultrafiltration device and a reverse osmosis membrane separation device. Examples of the reverse osmosis membrane include a normal reverse osmosis membrane having a high removal rate of 90% or more with respect to sodium chloride in saline, and a nanofiltration membrane or a loose reverse osmosis membrane having a low desalination rate. Although the nanofiltration membrane and the loose reverse osmosis membrane have desalination performance, they have lower desalination performance than ordinary reverse osmosis membranes, and particularly have a performance of separating hard components such as Ca and Mg. Note that the nanofiltration membrane and the loose reverse osmosis membrane are sometimes referred to as NF membranes.
[0026]
According to the spiral-type membrane element 10 of this example, since the raw water spacer 11a is present at the raw water inflow side end 15, a raw water inflow port is formed, and the raw water can be supplied. A raw water flow path having a predetermined thickness is secured between the separation membranes by the water pressure. In the raw water flow path, the portion 11c where the raw water spacer 11 is not present occupies most of the flow, and there is no obstacle that obstructs the flow of the raw water, so that accumulation of turbidity does not occur. Further, when a module having the spiral type membrane element of this example is configured, the raw water spacer passes through a gap between several radial ribs of a telescope stop installed so as to abut on the both end surfaces of the separation membrane. Can be prevented from falling off.
[0027]
The reverse osmosis membrane module of the present invention is not particularly limited as long as it has the spiral type membrane element. For example, a reverse osmosis membrane module having a structure shown in FIG. 2 can be mentioned. As shown in FIG. 2, a bag-shaped reverse osmosis membrane 21 is spirally wound around the outer peripheral surface of the permeated water collecting pipe 12 together with raw water spacers fixed at predetermined positions at both ends of the reverse osmosis membrane 21. The upper part is covered with the exterior body 22. Then, in order to prevent the reverse osmosis membrane 21 wound in a spiral shape from protruding, a telescope stop 24 having several radial ribs 23 is attached to both ends. A mesh member 17 for preventing the raw water spacer from falling off is attached between both end surfaces of the reverse osmosis membrane 21 and the telescope stopper 24. One spiral type membrane element 10 is formed by the permeated water collecting pipe 12, the reverse osmosis membrane 21, the outer casing 22, the mesh member 17, and the telescope stop 24, and each permeated water collecting pipe 12 is connected to a connector (not shown). And a plurality of spiral-type membrane elements 10 are loaded in the housing 26. A gap 27 is formed between the outer periphery of the spiral membrane element 10 and the inner periphery of the housing 26, and the gap 27 is closed by a brine seal 28. At one end of the housing 26, a raw water inflow pipe (not shown) for flowing raw water into the housing, and at the other end, a treated water pipe (not shown) and a non-permeated water pipe (not shown) communicating with the permeated water collecting pipe 12. (Not shown), and a reverse osmosis membrane module 29 is constituted by the housing 26, its internal components, pipes (nozzles), and the like.
[0028]
When treating the raw water with the reverse osmosis membrane module 29 having such a structure, the raw water is press-fitted from one end of the housing 26 using a pump, but as shown by the arrow in FIG. The raw water penetrates into the first spiral membrane element 10 between the radial ribs 23, and a part of the raw water passes through the raw water flow path defined by the raw water spacer between the membranes of the spiral membrane element 10 and the next raw water flows. The raw water of the other part reaches the spiral membrane element 10 and passes through the reverse osmosis membrane 21 to become permeated water, which is collected in the permeated water collecting pipe 12. In this way, raw water passes through the spiral membrane element 10 one after another, and raw water that has not passed through the reverse osmosis membrane is taken out from the other end of the housing 26 as concentrated water containing a high concentration of turbid and ionic impurities, The permeated water that has passed through the reverse osmosis membrane is taken out of the housing 26 through the permeated water collecting pipe 12 as permeated water. In addition, the reverse osmosis membrane module of the present invention may be one in which a plurality of spiral type membrane elements are mounted as shown in FIG. 2, or one in which one spiral type membrane element is mounted, for example.
[0029]
Although not particularly limited, the reverse osmosis membrane device of the present invention includes, for example, at least one or more of the reverse osmosis membrane modules, a raw water supply unit such as a pump, a raw water inflow pipe, a concentrated water outflow pipe, and a permeated water outflow pipe. Things. Raw water directly supplied to the reverse osmosis membrane device of the present invention includes industrial water, tap water and recovered water. The turbidity of the raw water is not particularly limited, but even if the turbidity is as high as about 2 degrees, the turbidity does not cause an increase in the differential pressure of water flow due to the turbidity. In addition, when the raw water contains coarse particles such as sand particles in the raw water, treated water which has been passed through a coarse filter in advance, and water to which a dispersant for preventing scale and fouling has been added are also included. By adding the dispersant, accumulation of turbidity on the raw water spacer and the membrane surface can be further suppressed. Examples of the dispersant include commercially available “hypersperse MSI300” and “hypersperse MDC200” (both manufactured by ARGO SCIENTIFIC). According to the reverse osmosis membrane device of the present invention, it is possible to omit the installation of a pretreatment device such as a coagulation sedimentation process, a filtration process and a membrane process, which has been conventionally used for removing suspended matter in raw water. For this reason, there is an epoch-making effect in that the system can be simplified, the installation area can be reduced, and the cost can be reduced.
[0030]
An example of a reverse osmosis membrane device according to an embodiment of the present invention will be described with reference to FIG. In FIG. 3, the reverse osmosis membrane device 30 includes a raw water supply device 31, a first reverse osmosis membrane module 30A and a second reverse osmosis membrane module 30B arranged in this order, and the raw water supply device 31 and the first reverse osmosis membrane module 30A. Are connected by a raw water supply pipe 32, and a first reverse osmosis membrane module 30A and a second reverse osmosis membrane module 30B are connected by a primary permeate discharge pipe 33 for supplying permeated water of the first reverse osmosis membrane module 30A as water to be treated in a second apparatus. The connected reverse osmosis membrane module 30B includes a permeated water outflow pipe 34 for discharging permeated water and a return pipe 35 for returning concentrated water to the raw water supply pipe 32. The upstream reverse osmosis membrane module 30A includes a concentrated water outflow pipe 36. The first reverse osmosis membrane module 30A according to the present invention is a reverse osmosis membrane device that does not cause accumulation of turbidity, and the second reverse osmosis membrane module 30B is a conventional reverse osmosis membrane device.
[0031]
Next, a method for treating raw water using the reverse osmosis membrane device 30 of the present embodiment will be described. First, raw water is supplied to the pre-stage reverse osmosis membrane module 30A by the raw water supply means 31. Raw water is treated in the reverse osmosis membrane module 30A, and primary concentrated water is obtained from the concentrated water outflow pipe 36 and primary permeated water is obtained from the primary permeated water outflow pipe 33. Next, the primary permeated water is treated in the reverse osmosis membrane module 30 </ b> B to obtain secondary permeated water from the permeated water outlet pipe 34, and the secondary concentrated water is returned to the raw water supply pipe 32 from the return pipe 35. This secondary concentrated water is obtained by concentrating permeated water that has already been desalted in the first-stage reverse osmosis membrane module 30A in the second-stage reverse osmosis membrane module 30B, and has lower conductivity than raw water. For this reason, it becomes possible to circulate the whole amount of the secondary concentrated water, and it is possible to improve the water recovery rate. In addition, the reverse osmosis membrane device 30 is a reverse osmosis membrane module that can significantly suppress accumulation of turbidity in the present invention, instead of the pretreatment device used only for turbidity removal used in the conventional type device. Since it is used in the first stage, the reverse osmosis membrane is substantially used in two stages. Since the pretreatment apparatus of the conventional apparatus does not have a desalination function, the reverse osmosis membrane apparatus 30 has much better permeated water quality than the conventional reverse osmosis membrane apparatus.
[0032]
【Example】
Example 1
Industrial water having a turbidity of 2 degrees and a conductivity of 20 mS / m was passed through a reverse osmosis membrane module A having the following specifications, and a 2,000-hour endurance operation was performed under the following operating conditions. The performance evaluation of the reverse osmosis membrane module A was performed by measuring the differential pressure of water permeation (MPa), the amount of permeated water (l / min), and the conductivity of permeated water (mS / m) at the beginning of operation and at 2,000 hours. After 2000 hours, the reverse osmosis membrane module was disassembled, and the state of adhesion of suspended matter in the raw water flow path was observed. Table 1 shows the results of the measured values, and Table 2 shows the results of visual observation of the raw water flow path.
[0033]
(Reverse osmosis membrane module A)
First, a mesh-shaped raw water spacer A having a length of 100 mm and a thickness of 1.0 mm in the longitudinal direction of the permeated water collecting pipe was prepared. Next, using this raw water spacer A, a spiral membrane element A having the structure shown in FIG. 1 was produced, and a reverse osmosis membrane module A having a structure shown in FIG. 2 was produced. However, the length L of the water collecting pipe in the longitudinal direction of the separation membrane is 1000 mm, and the raw water spacer is fixed with the membrane sandwiched between the two folded raw water spacers (the raw water inflow side end, the concentrated water outflow side). The raw water spacer A is to be attached with a width of 50 mm at both ends), and a stainless steel mesh for preventing falling off is provided. Neither the raw water spacer nor the wire net adhered. The reverse osmosis membrane module A was one module containing one spiral type membrane element.
(Operating conditions)
The operation was performed at an operating pressure of 0.75 MPa, a concentrated water flow rate of 2700 m 3 / hour, and a water temperature of 25 ° C. Also, every 8 hours of the permeation treatment, the permeation treatment was interrupted, and the valve attached to the concentrated water outflow pipe was fully opened to supply the raw water in the reverse osmosis membrane module for 60 seconds at a flow rate three times the raw water supply flow rate in the permeation treatment. So-called flushing in which the washing wastewater flows out from the concentrated water outflow pipe.
[0034]
Example 2
A reverse osmosis membrane module B was manufactured in the same manner as in Example 1 except that the raw water spacer on the concentrated water outflow side was omitted, and a 2,000-hour endurance operation was performed under the same operating conditions as in Example 1. Tables 1 and 2 show the performance evaluation results of the reverse osmosis membrane module B.
[0035]
Example 3
Industrial water having a turbidity of 2 degrees and a conductivity of 20 mS / m was passed through the reverse osmosis membrane device having the following specifications and the flow shown in FIG. 3 described above, and was subjected to endurance operation for 2,000 hours under the following operating conditions. Tables 1 and 2 show the performance evaluation results of the reverse osmosis membrane device. In addition, the result in Table 1 is a result of a latter-stage reverse osmosis membrane module.
(Reverse osmosis membrane device)
A reverse osmosis membrane module A used in Example 1 was used as the first-stage reverse osmosis membrane module, and one module equipped with one 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was used as the second-stage reverse osmosis membrane module. Was. The raw water spacer used in this ES-10 is a mesh network.
(Operating conditions)
Both the first reverse osmosis membrane module and the second reverse osmosis membrane module are operated at an operating pressure of 0.75 MPa, a concentrated water flow rate of 2700 m 3 / hour, and a water temperature of 25 ° C. In addition, the same flushing as in Example 1 was performed only in the first-stage reverse osmosis membrane module.
[0036]
Comparative Example 1
Except that a known pretreatment device consisting of a coagulation sedimentation treatment, a filtration treatment and a membrane treatment was arranged at the front stage, and an 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was used instead of the spiral type membrane element A. The procedure was performed in the same manner as in Example 1. That is, industrial water having a turbidity of 2 degrees and a conductivity of 20 mS / m was treated with a pretreatment device, and the treated water was further treated with a conventional commercially available reverse osmosis membrane module. The results are shown in Tables 1 and 2.
[0037]
Comparative Example 2
The procedure was performed in the same manner as in Example 1 except that an 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was used instead of the spiral membrane element A. That is, industrial water having a turbidity of 2 degrees and a conductivity of 20 mS / m was directly treated with a conventional commercially available reverse osmosis membrane module without treating with a pretreatment device. The results are shown in Tables 1 and 2. In Comparative Example 2, the water pressure difference increased extremely around 800 hours, and permeated water could not be obtained. Therefore, the operation was stopped at this point. In addition, the result of Table 2 is a thing at the time of operation stop after a lapse of 800 hours.
[0038]
[Table 1]
Figure 2004050081
[0039]
[Table 2]
Figure 2004050081
[0040]
In Examples 1 to 3, after 2,000 hours, there was almost no increase in the differential pressure of water flow, there was no decrease in the amount of permeated water, and the quality of permeated water was high. Comparative Example 1 shows a result comparable to that of the example in the performance evaluation after 2,000 hours. However, this example requires a pretreatment device, and requires extra locations and costs. Therefore, the comparative object of Examples 1 to 3 is Comparative Example 2, but Comparative Example 2 is one in which the adhesion of turbid matter is severe until the amount of permeated water becomes zero in about 800 hours.
[0041]
【The invention's effect】
According to the spiral type membrane element of the present invention, since the raw water spacer is present at least at the raw water inflow side end, the raw water can be supplied to the raw water flow path, and after the start of water flow, the separation membrane is formed by the water pressure. A raw water flow path having a predetermined thickness is secured therebetween. In the raw water flow channel, a portion where the raw water spacer is not present occupies most. Since there is no obstacle that prevents the flow of the raw water, turbidity does not accumulate. In addition, if the mesh member is provided on both end surfaces of the separation membrane, it is possible to prevent the raw water spacer from falling off when the module including the spiral membrane element of the present example is configured. ADVANTAGE OF THE INVENTION According to the reverse osmosis membrane module and the reverse osmosis membrane device of this invention, installation of the pre-processing apparatus conventionally used for the purpose of clarification in raw water can be omitted. For this reason, there is a remarkable effect in that the system can be simplified, the installation area can be reduced, and the cost can be reduced. Furthermore, even if raw water having high turbidity such as industrial water is supplied without pre-treatment, turbidity hardly accumulates, and stable water passing treatment can be performed for a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic view of a spiral-type membrane element according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of a structure of a reverse osmosis membrane module according to the present embodiment.
FIG. 3 is a diagram showing an example of a reverse osmosis membrane device according to an embodiment of the present invention.
FIG. 4 is a schematic view of a conventional reverse osmosis membrane module.
[Explanation of symbols]
11, 11a, 11b Raw water spacer 12 Permeated water collecting pipe 13 Separation membrane 14 Permeated water spacer 15 Raw water inflow side end 16 Concentrated water outflow side end 17a, 17b Mesh member 10 Spiral membrane element 29 Reverse osmosis membrane module 30 Reverse Osmosis membrane device X Raw water inflow side Y Raw water outflow side

Claims (7)

透過水集水管の外周面に袋状の分離膜を原水スペーサーと共に巻回してなるスパイラル型膜エレメントであって、該原水スペーサーは、該分離膜の原水流入側端部、又は原水流入側端部と濃縮水流出側端部に固設されてなることを特徴とするスパイラル型膜エレメント。A spiral-type membrane element in which a bag-shaped separation membrane is wound around an outer peripheral surface of a permeated water collecting pipe together with a raw water spacer, wherein the raw water spacer is a raw water inflow end or a raw water inflow end of the separation membrane. And a spiral membrane element fixed to an end of the concentrated water outflow side. 前記分離膜の原水流入側端部、又は原水流入側端部と濃縮水流出側端部への原水スペーサーの固設方法が、二つ折りされた原水スペーサーを当該端部に対して両側から挟持するようにして固定する方法であることを特徴とする請求項1記載のスパイラル型膜エレメント。The method of fixing the raw water spacer to the raw water inflow side end of the separation membrane, or the raw water inflow side end and the concentrated water outflow side end, sandwiches the folded raw water spacer from both sides with respect to the end. The spiral membrane element according to claim 1, wherein the spiral membrane element is fixed in such a manner. 前記原水スペーサーの固設手段が、接着によるものであることを特徴とする請求項1又は2のスパイラル型膜エレメント。The spiral membrane element according to claim 1 or 2, wherein the means for fixing the raw water spacer is by adhesion. 前記分離膜の原水流入側端部、又は濃縮水流出側端部の前記透過水集水管に対する長手方向における長さは、それぞれ該分離膜の原水流入側端、又は濃縮水流出側端から内側へ、該分離膜の透過水集水管に対する長手方向長さの1〜10%であることを特徴とする請求項1〜3のいずれか1項記載のスパイラル型膜エレメント。The length in the longitudinal direction of the raw water inflow end of the separation membrane or the concentrated water outflow end with respect to the permeated water collecting pipe is inward from the raw water inflow end or the concentrated water outflow end of the separation membrane, respectively. The spiral membrane element according to any one of claims 1 to 3, wherein the length of the separation membrane in the longitudinal direction with respect to the permeated water collecting pipe is 1 to 10%. 該原水スペーサーが固設された側の分離膜端面に、該原水スペーサーの脱落を防止するための網目状部材を付設したことを特徴とする請求項1〜4のいずれか1項記載のスパイラル型膜エレメント。The spiral mold according to any one of claims 1 to 4, wherein a mesh member for preventing the raw water spacer from falling off is provided on an end face of the separation membrane on the side where the raw water spacer is fixed. Membrane element. 請求項1〜5のいずれか1項記載のスパイラル型膜エレメントを備える逆浸透膜モジュール。A reverse osmosis membrane module comprising the spiral-wound membrane element according to claim 1. 請求項6記載の逆浸透膜モジュールを備える逆浸透膜装置。A reverse osmosis membrane device comprising the reverse osmosis membrane module according to claim 6.
JP2002212167A 2002-07-22 2002-07-22 Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus Pending JP2004050081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212167A JP2004050081A (en) 2002-07-22 2002-07-22 Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212167A JP2004050081A (en) 2002-07-22 2002-07-22 Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus

Publications (1)

Publication Number Publication Date
JP2004050081A true JP2004050081A (en) 2004-02-19

Family

ID=31935176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212167A Pending JP2004050081A (en) 2002-07-22 2002-07-22 Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus

Country Status (1)

Country Link
JP (1) JP2004050081A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080391A1 (en) 2011-12-02 2013-06-06 東レ株式会社 Separation membrane element and production method for same
WO2014051117A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Separation module, method for producing separation module, tube body, and winding misalignment prevention member
JP2015029959A (en) * 2013-08-02 2015-02-16 富士フイルム株式会社 Acidic gas separation module
WO2015041263A1 (en) * 2013-09-17 2015-03-26 東レ株式会社 Separation membrane module, method for driving same, separation membrane element, thrust load maintaining member, and thrust load adjustment maintaining member
KR20150142678A (en) * 2013-02-28 2015-12-22 아쿠아 멤브레인스 엘엘씨 Improved spiral wound element construction
JP6056478B2 (en) * 2010-12-28 2017-01-11 東レ株式会社 Separation membrane element
CN107998894A (en) * 2016-12-27 2018-05-08 佛山市顺德区美的饮水机制造有限公司 Spiral wound reverse-osmosis membrane element and water purifier
CN108421416A (en) * 2017-02-14 2018-08-21 佛山市顺德区美的饮水机制造有限公司 Spiral wound reverse-osmosis membrane element and water purifier
CN108525517A (en) * 2017-03-06 2018-09-14 佛山市顺德区美的饮水机制造有限公司 Reverse-osmosis membrane element and water purifier
CN109701391A (en) * 2019-03-01 2019-05-03 宁波斯蒂罗科技有限公司 A kind of combination type low voltage putamina
CN114713045A (en) * 2022-03-30 2022-07-08 佛山市美的清湖净水设备有限公司 Diaphragm structure, water purifying element and manufacturing method thereof, and water purifying equipment
CN115738729A (en) * 2022-11-28 2023-03-07 珠海格力电器股份有限公司 Roll type reverse osmosis membrane element and water purifier with same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056478B2 (en) * 2010-12-28 2017-01-11 東レ株式会社 Separation membrane element
KR20140107214A (en) 2011-12-02 2014-09-04 도레이 카부시키가이샤 Separation membrane element and production method for same
WO2013080391A1 (en) 2011-12-02 2013-06-06 東レ株式会社 Separation membrane element and production method for same
KR101870307B1 (en) * 2011-12-02 2018-06-22 도레이 카부시키가이샤 Separation membrane element and production method for same
JPWO2013080391A1 (en) * 2011-12-02 2015-04-27 東レ株式会社 Separation membrane element and method for producing separation membrane element
US9597640B2 (en) 2011-12-02 2017-03-21 Toray Industries, Inc. Separation membrane element and production method for same
WO2014051117A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Separation module, method for producing separation module, tube body, and winding misalignment prevention member
JP2019076899A (en) * 2013-02-28 2019-05-23 アクア メンブレンズ リミテッド ライアビリティー カンパニーAqua Membranes LLC Improved spiral-wound element construction
KR102196776B1 (en) * 2013-02-28 2020-12-31 아쿠아 멤브레인스 엘엘씨 Improved spiral wound element construction
JP2016508446A (en) * 2013-02-28 2016-03-22 アクア メンブレンズ リミテッド ライアビリティー カンパニーAqua Membranes LLC Improved spiral element configuration
KR20150142678A (en) * 2013-02-28 2015-12-22 아쿠아 멤브레인스 엘엘씨 Improved spiral wound element construction
JP2015029959A (en) * 2013-08-02 2015-02-16 富士フイルム株式会社 Acidic gas separation module
JPWO2015041263A1 (en) * 2013-09-17 2017-03-02 東レ株式会社 Separation membrane module and operation method, separation membrane element, thrust load holding member, thrust load adjustment holding member
US9993776B2 (en) 2013-09-17 2018-06-12 Toray Industries, Inc. Separation membrane module, method for driving same, separation membrane element, thrust load maintaining member, and thrust load adjustment maintaining member
WO2015041263A1 (en) * 2013-09-17 2015-03-26 東レ株式会社 Separation membrane module, method for driving same, separation membrane element, thrust load maintaining member, and thrust load adjustment maintaining member
CN105531019A (en) * 2013-09-17 2016-04-27 东丽株式会社 Separation membrane module, method for driving same, separation membrane element, thrust load maintaining member, and thrust load adjustment maintaining member
CN107998894A (en) * 2016-12-27 2018-05-08 佛山市顺德区美的饮水机制造有限公司 Spiral wound reverse-osmosis membrane element and water purifier
CN107998894B (en) * 2016-12-27 2023-09-01 佛山市顺德区美的饮水机制造有限公司 Spiral wound reverse osmosis membrane element and water purifier
CN108421416A (en) * 2017-02-14 2018-08-21 佛山市顺德区美的饮水机制造有限公司 Spiral wound reverse-osmosis membrane element and water purifier
CN108525517A (en) * 2017-03-06 2018-09-14 佛山市顺德区美的饮水机制造有限公司 Reverse-osmosis membrane element and water purifier
CN109701391A (en) * 2019-03-01 2019-05-03 宁波斯蒂罗科技有限公司 A kind of combination type low voltage putamina
CN109701391B (en) * 2019-03-01 2024-01-05 宁波斯蒂罗科技有限公司 Combined low-pressure membrane shell
CN114713045A (en) * 2022-03-30 2022-07-08 佛山市美的清湖净水设备有限公司 Diaphragm structure, water purifying element and manufacturing method thereof, and water purifying equipment
CN114713045B (en) * 2022-03-30 2024-03-08 佛山市美的清湖净水设备有限公司 Diaphragm structure, water purifying element, manufacturing method of water purifying element and water purifying equipment
CN115738729A (en) * 2022-11-28 2023-03-07 珠海格力电器股份有限公司 Roll type reverse osmosis membrane element and water purifier with same

Similar Documents

Publication Publication Date Title
JP4251879B2 (en) Operation method of separation membrane module
TWI239262B (en) Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus
KR20150118951A (en) Multi-stage reverse osmosis membrane device, and operation method therefor
JP4225471B2 (en) Operation method of multistage separation membrane module
JP2004050081A (en) Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus
JP6399896B2 (en) Reverse osmosis processing equipment
Kurth et al. Design considerations for implementing ceramics in new and existing polymeric UF systems
JP2004089763A (en) Spiral membrane element, separation membrane module, separation membrane apparatus, and water treatment method using the same
JP3859151B2 (en) Separation membrane module, separation membrane device, and operation method of separation membrane device
KR20050033547A (en) Separation membrane module and method of operating separation membrane module
JPH10230145A (en) Spiral membrane element
JP7426478B2 (en) Filter structure with selective water collection function at both ends and filtration method using the same
JP5244672B2 (en) Water treatment system and water treatment method
JPH11207155A (en) Desalination device for sea water cr the like
JPH10230140A (en) Spiral membrane element
JP2004089761A (en) Spiral membrane element, reverse osmosis membrane module and reverse osmosis membrane apparatus
JP2005046762A (en) Water treatment method and water treatment apparatus
JP2006130496A (en) Water treatment device and its operating method
JP4765874B2 (en) Membrane module cleaning method
JP2004130211A (en) Filtration unit, filter, and method for controlling the filter
JP2004089764A (en) Spiral membrane element, separation membrane module and separation membrane apparatus
JP7158254B2 (en) How to purify tap water
JPH10180053A (en) Spiral type membrane element
JPH11137974A (en) Spiral membrane element
JP3632648B2 (en) Water treatment facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060614

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060616

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061018