JP2004050077A - Wood-derived fuel and production of the same - Google Patents

Wood-derived fuel and production of the same Download PDF

Info

Publication number
JP2004050077A
JP2004050077A JP2002211961A JP2002211961A JP2004050077A JP 2004050077 A JP2004050077 A JP 2004050077A JP 2002211961 A JP2002211961 A JP 2002211961A JP 2002211961 A JP2002211961 A JP 2002211961A JP 2004050077 A JP2004050077 A JP 2004050077A
Authority
JP
Japan
Prior art keywords
wood
crushed
derived fuel
less
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002211961A
Other languages
Japanese (ja)
Other versions
JP3929371B2 (en
Inventor
Toyoshige Okamoto
岡元 豊重
Toshio Imai
今井 敏夫
Naoki Kondo
近藤 直喜
Tadashi Sueoka
末岡 忠士
Kenji Nozaki
野崎 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2002211961A priority Critical patent/JP3929371B2/en
Publication of JP2004050077A publication Critical patent/JP2004050077A/en
Application granted granted Critical
Publication of JP3929371B2 publication Critical patent/JP3929371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Disintegrating Or Milling (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing wood-derived fuel usable as fuel for a cement kiln by utilizing wood waste. <P>SOLUTION: The wood-derived fuel production method comprises steps of (A) crushing wood by a crusher into crushed wood chips with 100 mm or shorter length, 10 mm or shorter width, and 5 mm or thinner thickness; (B) heating the wood chips for partial thermal decomposition at 200-300°C in a heating furnace so as to achieve 5-25 wt.% of weight decrease ratio; and (C) obtaining, as wood-derived fuel, a fragments of the partially thermally decomposed wood having a grain size of 1.5 mm or smaller by pulverizing the crushed wood after the heating treatment. As the heat source for the heating treatment in the step (B), waste heat of a cement production facility can be utilized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、家屋の解体等によって発生する建材や、間伐材や、街路樹の剪定後の回収枝材等の各種廃木材を処理することによって得られる、セメントキルン用燃料やボイラー用燃料等として用い得る木材由来燃料及びその製造方法に関する。
【0002】
【従来の技術】
従来より、セメントクリンカーを焼成するためのセメントキルン等で用いるための燃料として、微粉炭と共に可燃ゴミ等の廃棄物を用いる技術が提案されている。
例えば、特公昭57−17867号公報には、ポルトランドセメントの原料をロータリーキルンの一端に供給し、焼成用燃料をキルンの他端から焼成帯に向け充分な燃焼空気と共に供給して、適当な条件下で焼成を行い、ポルトランドセメントクリンカーを製造する方法において、焼成用燃料は、砕いた都市廃棄物を所定の割合で含み、砕いた都市廃棄物は空気により燃焼帯に送り込み、原料は燃焼した廃棄物からの灰分を受容するように配合されることを特徴とする、ポルトランドセメントクリンカーの製造方法が、記載されている。
【0003】
【発明が解決しようとする課題】
本発明者は、上記公報に記載の技術において、砕いた都市廃棄物として、適宜の大きさに粉砕した木材を用いたところ、次のような問題があることを見出した。
すなわち、ロータリーキルンの燃料として、粒度の大きな木材の破砕物を用いた場合には、キルン内に投入された木材の破砕物は、キルン内の空間で気中燃焼が完結せずに、キルン内の被焼成物の上に落下した状態で継続的に燃焼した。そのため、木材破砕物が燃焼しながら付着している被焼成物の周囲に、還元性雰囲気が生じ、この還元性雰囲気によってセメントクリンカーの品質に悪影響が及ぶという問題が生じた。
【0004】
一方、キルン内の空間で木材の粉砕物の気中燃焼を完結させるために、木材の粉砕物の粒度が所定の大きさ以下となるように、木材を予め微粉砕した場合には、多大なエネルギーを要し、処理の効率が低下することに加えて、コスト高になり、経済性の面でも実用化が困難である。
また、仮に、木材を微粉砕することができたとしても、得られる木材の粉砕物は、燃料としての発熱量が少ないという問題がある。つまり、木材の発熱量は、通常の廃木材の場合で2,000kcal/kg程度であり、乾燥木材の場合でせいぜい4,500kcal/kg程度である。このように、木材は、単位重量当たりの発熱量が小さいため、高温燃焼が必要なキルン用の燃料として用いることが困難である。この点、木材を原料とし、かつ発熱量の大きい燃料を得ることができれば、好都合である。
したがって、本発明は、セメントキルン等の燃料として用い得る、廃木材等を利用した木材由来燃料及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意検討した結果、木材を適宜の大きさに破砕した後、この木材の破砕物を、部分的に熱分解されるように所定の温度で加熱し、さらに加熱後の木材の破砕物を粉砕して、所定の粒度を有する木材の粉砕物を得るようにすれば、セメントキルンやボイラ等の燃料として好適に用いることができることを見出し、本発明を完成した。
【0006】
すなわち、本発明(請求項1)の木材由来燃料の製造方法は、(A)木材を破砕処理して、該木材の破砕物を得る破砕工程と、(B)該木材の破砕物を、部分的な熱分解が生じ得る温度で加熱処理する加熱工程と、(C)加熱処理後の上記木材の破砕物を、粉砕処理して、部分的に熱分解された木材の粉砕物からなる木材由来燃料を得る粉砕工程とからなることを特徴とする。
このようにして得られた本発明の木材由来燃料は、高温雰囲気中で、高い発熱量を発しながらごく短い時間内に気中燃焼が完結するので、例えば、内熱式セメントキルンのバーナの燃料として用いた場合に、キルン内を高温に保持し得るとともに、被焼成物(セメントクリンカーの原料)の表面に木材由来燃料が付着して、セメントクリンカーの品質を低下させるような不都合を生じることがない。また、本発明の木材由来燃料は、家屋の解体等によって発生する廃木材を利用して製造することができるので、省資源及び省エネルギーを実現することができる。
【0007】
上記破砕工程(A)において、上記木材の破砕物の粒度は、好ましくは、長さ100mm以下、幅10mm以下、および厚さ5mm以下に調整される(請求項2)。
この大きさに粒度を調整することによって、破砕物を構成する各木片に対する均一な加熱が行なわれ、粉砕工程(C)後に安定した品質の燃料を得ることができるとともに、加熱工程(B)における加熱時間の短縮化を図ることができ、処理効率を高めることができる。
上記加熱工程(B)における加熱処理は、好ましくは、加熱処理前の木材の破砕物の乾燥重量に対する加熱処理後の木材の破砕物の重量減少率が5〜25重量%になるように行なわれる(請求項3)。
該重量減少率をこの数値範囲内に調整することによって、粉砕工程(C)における良好な粉砕性、及び最終的に得られる燃料について十分な収量を確保することができる。
【0008】
上記加熱工程(B)における加熱温度は、200〜300℃に調整することが好ましい(請求項4)。
加熱温度をこの数値範囲内に調整することによって、木材の熱分解の程度、及び加熱時間を適当なものにすることができ、その結果、優れた品質を有しかつ十分な収量の木材由来燃料を効率的に得ることができる。
上記粉砕工程(C)における粉砕処理は、好ましくは、上記部分的に熱分解された木材の粉砕物の粒度が1.5mm以下になるように行なわれる(請求項5)。
このように、木材の粉砕物の粒度を所定の粒度以下に調整することによって、本発明の燃料の使用時に、燃料の気中燃焼をより短時間で完結させることができる。
【0009】
上記加熱工程(B)における加熱処理のための熱源として、例えば、セメント製造設備の排熱を利用することができる(請求項6)。
このように構成すれば、本発明の燃料を製造するに際し、加熱工程(B)において系外から導入すべきエネルギー(例えば、石炭等の化石燃料の燃焼によるもの)の量を削減することができ、省資源を図ることができる。
本発明(請求項7)の木材由来燃料は、部分的に熱分解されており、かつ、1.5mm以下の粒度を有する木材の粉砕物からなることを特徴とする。
該木材由来燃料は、セメントキルンの加熱用燃料として好適に用いることができる(請求項8)。例えば、該木材由来燃料は、クリンカーや軽量骨材等を焼成するための内熱式ロータリーキルンのバーナの燃料として、好適に用いられる。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の木材由来燃料の製造方法は、(A)木材を破砕処理して、木材の破砕物を得る破砕工程と、(B)木材の破砕物を、部分的な熱分解が生じ得る温度で加熱処理する加熱工程と、(C)加熱処理後の木材の破砕物を、粉砕処理して、部分的に熱分解された木材の粉砕物からなる木材由来燃料を得る粉砕工程とからなるものである。
【0011】
[A.破砕工程]
本工程は、木材を破砕処理して、所定の粒度を有する木材の破砕物を得る工程である。
木材としては、可燃性のものであればよく、特に種類が限定されることはない。木材の具体例としては、例えば、木造家屋の解体に伴って発生する廃建材や、廃棄された木製の家具製品や、森林の伐採によって得られる間伐木材や、ダム等に流入した流木材や、街路樹等の剪定時に得られる枝材等が挙げられる。
木材は、破砕装置等の手段によって、好ましくは、長さ100mm以下、幅10mm以下、および厚さ5mm以下、より好ましくは、長さ50mm以下、幅5mm以下、および厚さ5mm以下、特に好ましくは長さ30mm以下、幅3mm以下、および厚さ3mm以下の粒度となるように破砕される。
【0012】
ここで、木材の破砕物に関する「粒度」とは、当該破砕物を構成する木片について、最も大きな寸法を「長さ」とし、「長さ」方向に対して垂直に交わるように切断した任意の面のうち、最大の面積を有する面において、最も大きな寸法を「幅」とし、「幅」方向に垂直な方向の寸法を「厚さ」とした場合の「長さ」、「幅」、「厚さ」で示される木片の大きさをいう。
該粒度が、長さ100mm、幅10mm、厚さ5mmの各寸法のいずれかを超えると、次工程の加熱工程(B)における加熱処理の際に、木材の破砕物を構成する各木片(棒状物、塊状物または粒状物)に、次のような不具合を生じるので、好ましくない。すなわち、木片の長さが100mmを超えると、特にロータリーキルン式の乾燥機で加熱処理する場合、木材破砕物が嵩高くなってしまうため、処理効率が低下する。また、木片の幅が10mmを超えるか、あるいは厚さが5mmを超えると、木材の破砕物の熱容量が大きくなりすぎるため、内部まで均一に加熱されにくくなり、全体として分解の程度が不均一になる。
【0013】
また、本発明においては、木材の破砕物の最大粒度は、所定の寸法以下であることが望ましい。具体的には、木材の破砕物の最大粒度は、好ましくは、幅10mm以下で厚さ5mm以下、より好ましくは、幅5mm以下で厚さ5mm以下、特に好ましくは幅3mm以下で厚さ3mm以下である。
ここで、木材の破砕物に関する「最大粒度」とは、木材の破砕物を構成する全ての木片を対象として、長さ方向に対して垂直に交わるように任意に切断した場合において、最大の面積を有する面の幅及び厚さ寸法で示されるものであり、木片の最大の長さ寸法を意味するものではない。例えば、長さ50mm、幅10mm、厚さ5mmの棒状の木片が含まれている木材の破砕物であって、該棒状の木片以外の木片の中に、該棒状の木片の最大面積(幅10mm×厚さ5mmの面積)よりも大きな面積を有するものが含まれていない場合には、長さ50mmを超える木片が含まれていたとしても、当該木材の破砕物の最大粒度は、「幅10mm、厚さ5mm」である。
【0014】
本発明においては、木材の破砕物の粒度及び最大粒度が小さいものほど、加熱工程(B)における加熱処理時間が短縮され、かつ、設定加熱温度を下げることができるので、好ましい。
一方、破砕工程(A)における木材の破砕物の最大粒度の下限値は、特に限定されないが、過度に小さくすると、破砕に要するエネルギー及び処理時間が増大し、経済性及び処理効率が低下するので、加熱工程(B)及び粉砕工程(C)を含む全工程における全体的効率を考慮した上で、適当な大きさ(例えば、幅5mm以下、厚さ3mm以下)に定めることが望ましい。
【0015】
[B.加熱工程]
本工程は、破砕工程(A)で得られた木材の破砕物を、部分的な熱分解が生じ得る温度で加熱処理する工程である。
木材の破砕物は、加熱処理されることによって、木材構成成分の一部が分解して脆弱化し、被粉砕性が向上する。
加熱温度は、好ましくは200〜300℃、より好ましくは220〜280℃、特に好ましくは235〜265℃である。加熱温度が200℃未満であると、加熱処理に多大の時間を要し、処理効率が低下するほか、被粉砕性に優れた加熱処理済みの木材の破砕物を効率良く得ることが困難になる。加熱温度が300℃を超えると、エネルギーコストの増大を招くのみならず、木材の熱分解の程度が大きくなり過ぎて炭化したり、あるいは、酸素濃度の高い雰囲気中にあっては木材が燃焼してしまい、木材由来燃料の収量が少なくなり、さらには、COガスやダイオキシン等の有害ガスの発生量が多くなるので、好ましくない。
【0016】
加熱時間は、木材の破砕物の粒度や加熱温度等によっても異なるが、通常、5〜60分間程度である。
加熱による木材の破砕物の重量減少率(ただし、重量は全乾燥時のものを基準とする。)は、好ましくは5〜25重量%、より好ましくは8〜20重量%、特に好ましくは10〜15重量%である。該重量減少率が5重量%未満では、粉砕工程(C)において多大のエネルギーが必要になり、また、粉砕手段として特殊な粉砕装置が必要になるため、好ましくない。該重量減少率が25重量%を超えると、粉砕工程(C)によって最終的に得られる木材由来燃料の収量が少なくなるばかりか、加熱処理時の木材の熱分解によって発生する排ガス(具体的には、炭化水素やCO類を含むガス)の量が増大し、排ガス処理の負担が大きくなるので、好ましくない。
加熱処理に際しての被加熱物の周囲の雰囲気は、通常の空気でもよいが、酸化による木片の自己発熱による加熱温度の上昇を防止し、かつ、燃焼を防止するために、酸素濃度を低く抑えることが望ましい。
【0017】
加熱手段としては、400℃程度まで昇温可能な加熱装置であればよく、例えば、固定式の箱型乾燥炉や、ロータリー式の乾燥炉等が挙げられる。中でも、木材の破砕物を可動コンベア等で連続的に通過させて加熱するように構成した多段式トンネル乾燥炉や、一端に木材の破砕物の投入口を有し、他端に加熱済みの木材の破砕物の排出口を有するロータリーキルン型の乾燥装置は、連続的に処理することができ、かつ操作性が良い点で、好ましく用いられる。
加熱処理のための熱源として、例えば、セメント製造設備の排熱(排ガスの余熱等)を利用することができる。具体的には、セメントキルン内でのクリンカーの焼成によって発生する排ガスの廃熱や、クリンカークーラ内でのクリンカーの冷却後に排出される空気の顕熱等を用いることができる。さらには、製造工程で抽出される原料(例えば、余熱サイクロン等から抽出されるセメント原料)の顕熱等も利用することができる。
【0018】
[C.粉砕工程]
本工程は、加熱工程(B)で部分的に熱分解して重量が減少した木材の破砕物を、粉砕処理して、部分的に熱分解された木材の粉砕物からなる木材由来燃料を得る工程である。
粉砕処理は、処理後の木材の粉砕物(すなわち、本発明の木材由来燃料)が、セメントキルンの内部空間の如き高温雰囲気中で、ごく短時間内に気中燃焼を完結し得る程度の小さな粒度になるように、行なわれる。
具体的には、粉砕処理後の木材の粉砕物(木材由来燃料)の粒度は、好ましくは1.5mm以下、より好ましくは1.0mm以下、更に好ましくは0.5mm以下、特に好ましくは0.25mm以下である。
ここで、木材の粉砕物に関する「粒度」とは、特定の目開き寸法を有する篩を、木材の粉砕物が90重量%以上通過し得る場合における当該目開き寸法の最小値をいう。
該粒度が1.5mmを超えると、セメントキルン等における木材由来燃料の使用時に、木材由来燃料を完全に気中燃焼させることが困難になり、例えば、セメントクリンカーの品質の低下を招く等の不具合を生じるおそれがある。
また、木材の粉砕物の最大粒度は、好ましくは1.5mm以下、より好ましくは1.0mm以下、更に好ましくは0.5mm以下、特に好ましくは0.25mm以下である。
ここで、木材の粉砕物に関する「最大粒度」とは、木材の粉砕物を構成する粒子のうち、最も大きな寸法を有する粒子の当該寸法をいう。
該最大粒度を1.5mm以下とすることによって、セメントキルン等における木材由来燃料の使用時に、確実に、木材由来燃料を完全に気中燃焼させることができる。
【0019】
粉砕手段としては、例えば、ローラミル、ボールミル、振動ミル等の粉砕装置が用いられる。
粉砕処理後の木材の粉砕物(木材由来燃料)は、通常の微粉炭と同様に、燃焼バーナ用の燃料として用いることができる。例えば、内熱式セメントキルンのクリンカー焼成用バーナに用いる燃料として、木材由来燃料を用いた場合、木材由来燃料は、被焼成物(クリンカー原料)の上に落下する前にキルン内の空間で気中燃焼が完結するため、被焼成物の周囲を還元性雰囲気にすることがなく、クリンカーの品質に大きな悪影響を及ぼすことがない。
【0020】
次に、図面に基づいて本発明の方法を説明する。図1は、本発明の木材由来燃料を用いたセメントクリンカー製造装置の一例を概念的に示す図である。
図1中、まず、廃建材等の木材を破砕装置1によって所定の粒度(例えば、95重量%以上の粒子が、幅5mm以下、厚さ5mm以下の寸法を有するもの)に破砕した後、加熱装置2に送り、所定の温度(例えば、240℃前後)で所定時間(例えば、30分程度)、加熱する。この加熱処理によって、木材の破砕物は、部分的に熱分解される。次いで、加熱処理後の木材の破砕物を、粉砕装置3に送り、所定の粒度(例えば、0.5mm以下)になるまで粉砕する。得られた木材の粉砕物は、ホッパ内に木材由来燃料4として収容される。
【0021】
一方、クリンカー原料収容槽9内に収容されたセメントクリンカーの原料は、ロータリーキルン10内に供給され、バーナ8によって焼成される。この際、バーナ8の燃料としては、微粉炭5及び木材由来燃料4が用いられる。微粉炭5は、微粉炭用ホッパから燃料供給管(一次燃焼空気供給管)7内に落下した後、送風装置(ブロア)6によってバーナ8に送られる。木材由来燃料は、微粉炭用ホッパよりも下流側に位置する木材由来燃料用ホッパから燃料供給管7内に落下した後、送風装置(ブロア)6によって、微粉炭と共にバーナ8に送られる。なお、微粉炭と木材由来燃料の使用割合は、適宜、定めればよい。
ロータリーキルン10内で焼成されたセメントクリンカーは、ロータリーキルン10から排出され、クリンカークーラ11内で急冷された後、外部に排出される。
ロータリーキルン10から排出される高温の排ガス、及びクリンカークーラ11から排出される高温の空気は、各々、管路12,13を介して加熱装置2に導かれ、木材の破砕物を加熱するための熱源として利用される。
【0022】
【実施例】
次に、本発明の木材由来燃料の製造例を説明する。
[実験例]
廃木材をハンマークラッシャーに通じ、磁力選別機によって釘等の鉄成分含有異物を除去した後、2軸カッタ式の破砕機、および目開き50mmφの篩(トロンメル;回転篩)を用いて、長さ100mm以下、幅20mm以下、厚さ15mm以下の寸法を有する破砕物が95重量%以上を占めるようになるまで、破砕した。
次に、破砕物の残部を更に4軸カッター式破砕機で破砕した後、さらに、目開き25mmφの篩(トロンメル)、目開き15mmφの篩(トロンメル)、目開き8mmφの篩(トロンメル)の順に篩分けし、目開き25mmφの篩を通過しなかったものについては、再度、4軸カッター式破砕機に投入して粉砕し、上述と同様に篩分けを行なった。
【0023】
このようにして、▲1▼全量(100重量%)が長さ50mm以下であって、95重量%以上が、幅10mm以下、かつ厚さ5mm以下であるもの(目開き25mmφの篩のみを通過したもの;「破砕物C」)、▲2▼全量(100重量%)が長さ30mm以下であって、95重量%以上が、幅5mm以下、かつ厚さ5mm以下であるもの(目開き25mmφ及び15mmφの篩を通過したもの;「破砕物B」)、▲3▼全量(100重量%)が長さ20mm以下であって、95重量%以上が、幅3mm以下、かつ厚さ3mm以下であるもの(目開き8mmφの篩を通過したもの;「破砕物A」)の3区分の試料を得た。
また、長さが100mm以下であって、95重量%以上が、幅20mm以下、かつ厚さ10mm以下であるもの(破砕物D)を得た。
得られた各区分の破砕物は、100〜105℃の乾燥機内で重量の減少が認められなくなるまで乾燥した後、重量(加熱前の乾燥重量)を測定した。
【0024】
次に、各区分の破砕物を熱風撹拌型乾燥機内に載置し、表1に示すように、加熱温度350〜180℃、加熱時間5〜720分間の条件下で加熱した。加熱処理後、破砕物を空冷し、重量(加熱後の部分熱分解物の重量)を測定した。この重量と、上述の加熱前の乾燥重量とから、木材の破砕物の重量の減少率を算出した。
また、ディスクミルを用いて、加熱後の破砕物の被粉砕性を評価した。
以上の結果を表1に示す。表1から、長さ50mm以下、幅10mm以下、厚さ5mm以下の粒度を有する木材破砕物(目開き25mmφの篩を通過するもの)は、加熱処理後の重量減少率が5重量%程度以上になるように加熱すると、被粉砕性が良好になることがわかる。
また、表1から、木材破砕物の粒度が小さくなるにつれて、好適な加熱温度が低下することがわかる。例えば、幅10mm以下、厚さ5mm以下の粒度を有する破砕物C(目開き25mmφの篩を通過するもの)では、250℃で30分間程度加熱することによって、良好な木材由来燃料が得られ易いこと、および、幅3mm以下、厚さ3mm以下の粒度を有する破砕物A(目開き8mmφの篩を通過したもの)では、235℃で30分間程度加熱することによって、良好な木材由来燃料が得られ易いことなどが分かった。
一方、長さ100mm以下、幅20mm以下、厚さ10mm以下の粒度を有する破砕物Dでは、加熱温度の好適な範囲が280℃前後の極めて狭い範囲に限られてしまい、しかも、収量が少ないことがわかった。
【0025】
【表1】

Figure 2004050077
【0026】
[応用例1,2]
実験例と同様の手順により、家屋解体時に発生した廃木材を破砕し、15mmφの篩(トロンメル)を最終的に使用して、95重量%以上が幅5mm以下で厚さ5mm以下の木材の破砕物(平均含水率:約13重量%)を得た。
この木材の破砕物に対し、当該木材の破砕物と加熱ガスが反対方向に移動する向流方式の内熱式ロータリーキルン(内径57cmφ×長さ10m)を用いて、220〜260℃の温度領域の通過時間が20〜30分となる条件下で、かつ、木材の破砕物の乾燥重量に対する重量減少率が9〜15重量%の範囲内となるように加熱処理を行なった。
なお、上述の実験例において、木材の破砕物に対し、予め乾燥状態にしてから加熱処理を行なった理由は、本発明の木材由来燃料を得るための好適な乾燥重量基準の重量減少率を求めるためであって、本発明の木材由来燃料の実際の製造方法を説明するためではない。すなわち、本発明の木材由来燃料を得る際には、必ずしも上述の実験例のように木材の破砕物を乾燥させる必要はなく、含水率をある程度把握した上で、乾燥重量基準の重量減少率が目標の値となるように、加熱条件を設定すればよい。
加熱処理後の木材の破砕物を縦型ローラミルによって粉砕した後、1.5mmを超え3mm以下の粒度を有する木材由来燃料と、1.5mm以下の粒度を有する木材由来燃料を得た。これら木材由来燃料の高位発熱量は、4,600kcal/g以上であった。
【0027】
次に、これら2種の木材由来燃料の各々について、図1に示す設備を用いて、セメントクリンカーの焼成実験を行なった。実験の内容は、次のとおりである。
まず、ロータリーキルンとしては、5,300トン/日のセメントクリンカー製造能力を有する径5.5mで全長83mのプレヒータ付きキルンを用いた。
セメントクリンカーの焼成に際し、まず、微粉炭(微粉砕された主燃料の石炭粉)5を、燃料供給管7を介して、ロータリーキルン10の下流端に設置したバーナ8に8.5トン/時間(hr)の割合で供給した。なお、セメントクリンカーの製造量は、3,000〜3,100トン/時間にて実験した。一方、本発明の木材由来燃料4を、微粉炭5の供給と同時に、燃料供給管7を介してバーナ8に0.5〜1.0トン/時間の割合で供給した。
【0028】
その結果、1.5mm以下の粒度を有する木材由来燃料は、ロータリーキルン10の内部空間において、クリンカー原料と接触する前に気中燃焼を完結した。また、木材由来燃料を用いることによって、微粉炭の使用量を5〜10%削減することができた。得られたクリンカーの品質も問題ないものであった。
一方、1.5mmを超え3mm以下の粒度を有する木材由来燃料は、ロータリーキルン10内の焼成帯を通過するクリンカー表面に落下して、継続的に燃焼した。そのため、クリンカー表面あるいはクリンカーが覆い被さった状態で燃焼したと考えられる部分は、明らかに木材由来燃料によりクリンカーが還元作用による褐色を呈していた。
したがって、気中燃焼が完結しない大きさの粒度を有する木材由来燃料を、セメントキルンの加熱用燃料として使用した場合、セメントの品質に悪影響を及ぼすという問題があることがわかった。
【0029】
【発明の効果】
本発明の木材由来燃料によれば、高温雰囲気中でごく短い時間内に気中燃焼が完結するので、例えば、セメントキルンのバーナの燃料として用いた場合に、被焼成物(セメントクリンカーの原料)の表面に木材由来燃料が付着して、セメントクリンカーの品質を低下させるような不具合を生じることがない。
また、本発明の木材由来燃料は、家屋の解体等によって発生する廃木材を利用して製造することができるので、省資源及び省エネルギーを実現することができる。
【図面の簡単な説明】
【図1】本発明の木材由来燃料を用いたセメントクリンカー製造装置の一例を概念的に示す図である。
【符号の説明】
1 破砕装置
2 加熱装置
3 粉砕装置
4 木材由来燃料
5 微粉炭
6 ブロア
7 燃料供給管(一次燃焼空気供給管)
8 バーナ
9 クリンカー原料収容槽
10 ロータリーキルン
11 クリンカークーラ
12,13 管路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel for cement kilns, a fuel for boilers, etc., obtained by treating various waste woods such as building materials, thinning materials, and recovered branch materials after pruning street trees, which are generated by demolition of houses. The present invention relates to a wood-derived fuel that can be used and a method for producing the fuel.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a technique has been proposed in which waste such as combustible waste is used together with pulverized coal as a fuel for use in a cement kiln or the like for firing cement clinker.
For example, Japanese Patent Publication No. 57-17867 discloses that a raw material for Portland cement is supplied to one end of a rotary kiln, and a fuel for calcination is supplied from the other end of the kiln to a calcination zone together with sufficient combustion air under appropriate conditions. In the method of producing Portland cement clinker, the firing fuel includes crushed municipal waste at a predetermined ratio, the crushed municipal waste is sent to the combustion zone by air, and the raw material is the burned waste. A method for the production of Portland cement clinker, characterized in that it is formulated to accept ash from lime, is described.
[0003]
[Problems to be solved by the invention]
The inventor of the present invention has found that there is the following problem when using wood crushed to an appropriate size as crushed municipal waste in the technology described in the above publication.
In other words, when a crushed piece of wood having a large particle size is used as the fuel for the rotary kiln, the crushed piece of wood put into the kiln does not complete the aerial combustion in the space inside the kiln, and the inside of the kiln does not complete. It burned continuously while falling on the object to be fired. For this reason, there is a problem that a reducing atmosphere is generated around the object to be baked to which the crushed wood adheres while burning, and this reducing atmosphere adversely affects the quality of the cement clinker.
[0004]
On the other hand, in order to complete the aerial combustion of the crushed wood in the space inside the kiln, if the wood is finely crushed in advance so that the particle size of the crushed wood is not more than a predetermined size, a large amount of In addition to requiring energy, the efficiency of treatment is reduced, the cost is increased, and practical application is difficult in terms of economy.
Further, even if the wood can be finely pulverized, the obtained pulverized wood has a problem that the calorific value as a fuel is small. That is, the calorific value of wood is about 2,000 kcal / kg in the case of normal waste wood, and at most about 4,500 kcal / kg in the case of dry wood. As described above, wood has a small calorific value per unit weight, so that it is difficult to use wood as a fuel for kilns requiring high-temperature combustion. In this regard, it would be advantageous if wood could be used as a raw material and a fuel with a large calorific value could be obtained.
Accordingly, an object of the present invention is to provide a wood-derived fuel using waste wood or the like, which can be used as a fuel for a cement kiln or the like, and a method for producing the fuel.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, after crushing wood to an appropriate size, the crushed wood was heated at a predetermined temperature so as to be partially thermally decomposed. Further, it has been found that if the crushed wood material after heating is further crushed to obtain a crushed wood material having a predetermined particle size, the crushed wood material can be suitably used as a fuel for a cement kiln, a boiler, or the like. completed.
[0006]
That is, the method for producing a wood-derived fuel according to the present invention (Claim 1) comprises: (A) a crushing step of crushing wood to obtain a crushed wood; and (B) partially crushing the wood. A heating step of performing a heat treatment at a temperature at which thermal decomposition can occur, and (C) a wood-derived material that is obtained by crushing the crushed wood after the heat treatment and partially crushing the wood. And a pulverizing step of obtaining fuel.
The wood-derived fuel of the present invention obtained in this way, in a high-temperature atmosphere, emits a large amount of heat and completes aerial combustion in a very short time, for example, the fuel of a burner of an internally heated cement kiln When used as a material, the inside of the kiln can be maintained at a high temperature, and wood-derived fuel can adhere to the surface of the material to be fired (raw material for cement clinker), causing inconvenience such as degrading the quality of cement clinker. Absent. Further, the wood-derived fuel of the present invention can be manufactured by using waste wood generated by dismantling a house or the like, so that resource saving and energy saving can be realized.
[0007]
In the crushing step (A), the particle size of the crushed wood is preferably adjusted to a length of 100 mm or less, a width of 10 mm or less, and a thickness of 5 mm or less (claim 2).
By adjusting the particle size to this size, uniform heating of each piece of wood constituting the crushed material can be performed, and a fuel of stable quality can be obtained after the crushing step (C), and the heating step (B) The heating time can be reduced, and the processing efficiency can be increased.
The heat treatment in the heating step (B) is preferably performed such that the weight reduction ratio of the crushed wood after the heat treatment to the dry weight of the crushed wood before the heat treatment is 5 to 25% by weight. (Claim 3).
By adjusting the weight loss rate within this numerical range, good pulverizability in the pulverization step (C) and a sufficient yield of the finally obtained fuel can be secured.
[0008]
The heating temperature in the heating step (B) is preferably adjusted to 200 to 300 ° C (Claim 4).
By adjusting the heating temperature within this numerical range, the degree of thermal decomposition of wood and the heating time can be made appropriate, and as a result, a wood-derived fuel having excellent quality and sufficient yield can be obtained. Can be obtained efficiently.
The pulverization treatment in the pulverization step (C) is preferably performed so that the particle size of the partially thermally decomposed wood pulverized material is 1.5 mm or less (claim 5).
As described above, by adjusting the particle size of the pulverized wood material to a predetermined particle size or less, air combustion of the fuel can be completed in a shorter time when the fuel of the present invention is used.
[0009]
As a heat source for the heat treatment in the heating step (B), for example, waste heat of cement production equipment can be used (claim 6).
With this configuration, in producing the fuel of the present invention, the amount of energy (for example, due to the combustion of fossil fuel such as coal) to be introduced from outside the system in the heating step (B) can be reduced. , Resources can be saved.
The wood-derived fuel of the present invention (claim 7) is characterized in that it is partially pyrolyzed and consists of a crushed wood product having a particle size of 1.5 mm or less.
The wood-derived fuel can be suitably used as a fuel for heating a cement kiln (claim 8). For example, the wood-derived fuel is suitably used as a fuel for a burner of an internally heated rotary kiln for firing clinker, lightweight aggregate, and the like.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The method for producing a wood-derived fuel of the present invention comprises: (A) a crushing step of crushing wood to obtain a crushed wood; and (B) a crushing process of the wood at a temperature at which partial thermal decomposition can occur. A heating step of performing a heat treatment; and (C) a pulverizing step of pulverizing a crushed piece of wood after the heat treatment to obtain a wood-derived fuel composed of a partially pulverized piece of wood. is there.
[0011]
[A. Crushing process]
This step is a step of crushing wood to obtain a crushed wood having a predetermined particle size.
The wood is not particularly limited as long as it is flammable. Specific examples of timber include, for example, waste building materials generated in the demolition of wooden houses, discarded wooden furniture products, thinned timber obtained by cutting down forests, drift wood flowing into dams, etc. Branch materials and the like obtained at the time of pruning of street trees and the like are included.
Wood is preferably 100 mm or less in length, 10 mm or less in width, and 5 mm or less in thickness, more preferably 50 mm or less, 5 mm or less in width, and 5 mm or less in thickness, particularly preferably by means of a crushing device. Crushed to a particle size of 30 mm or less in length, 3 mm or less in width, and 3 mm or less in thickness.
[0012]
Here, the "granularity" of the crushed wood refers to the largest dimension of the piece of wood constituting the crushed material, "length", and any piece cut perpendicular to the "length" direction. Of the faces, the one having the largest area, the largest dimension is "width", and the dimension in the direction perpendicular to the "width" direction is "thickness", "length", "width", " Thickness refers to the size of a piece of wood.
If the particle size exceeds any of the dimensions of length 100 mm, width 10 mm, and thickness 5 mm, each heat treatment in the heating step (B) in the next step involves cutting each piece of wood (rod-like) constituting the crushed wood. Objects, lumps or granules) are not preferred because the following problems occur. That is, when the length of the wood piece exceeds 100 mm, especially when heat treatment is performed by a rotary kiln type dryer, the wood crushed material becomes bulky, and the treatment efficiency is reduced. Further, if the width of the wood piece exceeds 10 mm or the thickness exceeds 5 mm, the heat capacity of the crushed wood becomes too large, so that it is difficult to uniformly heat the inside, and the degree of decomposition as a whole becomes uneven. Become.
[0013]
In the present invention, the maximum particle size of the crushed wood is desirably not more than a predetermined size. Specifically, the maximum particle size of the crushed wood is preferably 10 mm or less and 5 mm or less in thickness, more preferably 5 mm or less in thickness and 5 mm or less, particularly preferably 3 mm or less in width and 3 mm or less in thickness. It is.
Here, the "maximum grain size" of the crushed wood refers to the largest area when all the pieces of wood constituting the crushed wood are cut arbitrarily so as to intersect perpendicularly to the length direction. Is shown by the width and thickness dimensions of the surface having the following, and does not mean the maximum length dimension of the piece of wood. For example, a crushed piece of wood containing a bar-shaped piece of wood having a length of 50 mm, a width of 10 mm, and a thickness of 5 mm, and among the pieces of wood other than the piece of wood, the maximum area of the piece of wood (width 10 mm) X area with a thickness of 5 mm), the maximum particle size of the crushed wood is 10 mm in width, even if a piece of wood having a length of more than 50 mm is included. , Thickness 5 mm ".
[0014]
In the present invention, the smaller the particle size and the maximum particle size of the crushed wood, the shorter the heat treatment time in the heating step (B) and the lower the set heating temperature.
On the other hand, the lower limit of the maximum particle size of the crushed wood in the crushing step (A) is not particularly limited. However, if it is excessively small, the energy required for crushing and the processing time increase, and the economic efficiency and the processing efficiency decrease. In consideration of the overall efficiency in all the steps including the heating step (B) and the pulverizing step (C), it is desirable to set the size to an appropriate size (for example, a width of 5 mm or less and a thickness of 3 mm or less).
[0015]
[B. Heating step]
This step is a step of heat-treating the crushed wood obtained in the crushing step (A) at a temperature at which partial thermal decomposition can occur.
When the wood crushed material is subjected to the heat treatment, a part of the wood constituent components is decomposed and fragile, and the crushability is improved.
The heating temperature is preferably from 200 to 300C, more preferably from 220 to 280C, particularly preferably from 235 to 265C. When the heating temperature is lower than 200 ° C., a long time is required for the heat treatment, the treatment efficiency is reduced, and it is difficult to efficiently obtain a heat-treated wood crushed material having excellent crushability. . When the heating temperature exceeds 300 ° C., not only does the energy cost increase, but also the degree of thermal decomposition of the wood becomes too large and carbonizes, or the wood burns in an atmosphere having a high oxygen concentration. As a result, the yield of wood-derived fuel decreases, and the amount of harmful gases such as CO gas and dioxin increases, which is not preferable.
[0016]
The heating time varies depending on the particle size of the crushed wood, the heating temperature and the like, but is usually about 5 to 60 minutes.
The weight reduction rate of the crushed wood by heating (however, the weight is based on the total dry weight) is preferably 5 to 25% by weight, more preferably 8 to 20% by weight, particularly preferably 10 to 10% by weight. 15% by weight. If the weight reduction rate is less than 5% by weight, a large amount of energy is required in the pulverizing step (C), and a special pulverizing device is required as a pulverizing means, which is not preferable. When the weight loss rate exceeds 25% by weight, not only the yield of wood-derived fuel finally obtained by the pulverization step (C) decreases, but also the exhaust gas generated by the thermal decomposition of wood during heat treatment (specifically, Is not preferable because the amount of gas containing hydrocarbons and COs) increases and the burden of exhaust gas treatment increases.
The atmosphere around the object to be heated during the heat treatment may be ordinary air, but the oxygen concentration should be kept low to prevent the heating temperature from rising due to the self-heating of the wood chips due to oxidation and to prevent combustion. Is desirable.
[0017]
The heating means may be a heating device capable of raising the temperature to about 400 ° C., and examples thereof include a fixed box-type drying oven and a rotary drying oven. Among them, a multi-stage tunnel drying furnace configured to continuously pass crushed wood through a movable conveyor or the like and heat it, or have a crushed wood input port at one end and heated wood at the other end The rotary kiln-type drying device having the crushed material discharge port is preferably used because it can be continuously processed and has good operability.
As a heat source for the heat treatment, for example, waste heat (excess heat of exhaust gas or the like) of a cement manufacturing facility can be used. Specifically, waste heat of exhaust gas generated by baking of clinker in a cement kiln, sensible heat of air discharged after cooling of clinker in a clinker cooler, and the like can be used. Furthermore, sensible heat of a raw material extracted in the manufacturing process (for example, a cement raw material extracted from a preheated cyclone or the like) can also be used.
[0018]
[C. Grinding process]
In this step, a wood-derived fuel composed of a partially pyrolyzed wood pulverized material is obtained by pulverizing the wood pulverized material that has been partially pyrolyzed and reduced in weight in the heating step (B). It is a process.
The pulverization treatment is carried out in such a small size that the pulverized wood (ie, the wood-derived fuel of the present invention) after the treatment can complete in-air combustion within a very short time in a high-temperature atmosphere such as the internal space of a cement kiln. It is performed so as to have a granularity.
Specifically, the particle size of the pulverized wood (wood-derived fuel) after the pulverization treatment is preferably 1.5 mm or less, more preferably 1.0 mm or less, further preferably 0.5 mm or less, and particularly preferably 0.1 mm or less. It is 25 mm or less.
Here, the “grain size” relating to the ground wood refers to the minimum value of the mesh size when the ground wood can pass through a sieve having a specific mesh size of 90% by weight or more.
When the particle size exceeds 1.5 mm, it becomes difficult to completely burn the wood-derived fuel in the air when using the wood-derived fuel in a cement kiln or the like, and for example, the quality of the cement clinker deteriorates. May occur.
The maximum particle size of the ground wood is preferably 1.5 mm or less, more preferably 1.0 mm or less, further preferably 0.5 mm or less, and particularly preferably 0.25 mm or less.
Here, the “maximum particle size” of the ground wood refers to the size of the particles having the largest size among the particles constituting the ground wood.
When the maximum particle size is 1.5 mm or less, the wood-based fuel can be completely and completely burned in the air when the wood-based fuel is used in a cement kiln or the like.
[0019]
As the pulverizing means, for example, a pulverizing device such as a roller mill, a ball mill, a vibration mill or the like is used.
The pulverized wood (pulverized wood-derived fuel) after the pulverization treatment can be used as a fuel for a combustion burner, like ordinary pulverized coal. For example, when a wood-derived fuel is used as a fuel for a clinker firing burner of an internally heated cement kiln, the wood-derived fuel is vaporized in a space inside the kiln before dropping onto a material to be fired (clinker raw material). Since the middle combustion is completed, the periphery of the object to be fired does not have a reducing atmosphere, and the quality of the clinker is not significantly affected.
[0020]
Next, the method of the present invention will be described with reference to the drawings. FIG. 1 is a diagram conceptually showing an example of a cement clinker manufacturing apparatus using a wood-derived fuel according to the present invention.
In FIG. 1, first, wood such as waste building material is crushed by a crushing device 1 to a predetermined particle size (for example, particles having 95% by weight or more and having a size of 5 mm or less and a thickness of 5 mm or less), and then heated. It is sent to the apparatus 2 and heated at a predetermined temperature (for example, about 240 ° C.) for a predetermined time (for example, about 30 minutes). By this heat treatment, the crushed wood is partially thermally decomposed. Next, the wood crushed material after the heat treatment is sent to the crushing device 3 and crushed to a predetermined particle size (for example, 0.5 mm or less). The obtained crushed wood is stored as a wood-derived fuel 4 in the hopper.
[0021]
On the other hand, the raw material for cement clinker stored in the clinker raw material storage tank 9 is supplied into the rotary kiln 10 and fired by the burner 8. At this time, pulverized coal 5 and wood-derived fuel 4 are used as fuel for burner 8. The pulverized coal 5 falls from a pulverized coal hopper into a fuel supply pipe (primary combustion air supply pipe) 7 and is sent to a burner 8 by a blower 6. The wood-derived fuel falls from the wood-derived fuel hopper located downstream of the pulverized coal hopper into the fuel supply pipe 7 and is sent to the burner 8 together with the pulverized coal by the blower (blower) 6. In addition, the usage ratio of the pulverized coal and the wood-derived fuel may be determined as appropriate.
The cement clinker calcined in the rotary kiln 10 is discharged from the rotary kiln 10, quenched in the clinker cooler 11, and then discharged to the outside.
The high-temperature exhaust gas discharged from the rotary kiln 10 and the high-temperature air discharged from the clinker cooler 11 are guided to the heating device 2 via the pipes 12 and 13, respectively, and are used as heat sources for heating the crushed wood. Used as
[0022]
【Example】
Next, a production example of the wood-derived fuel of the present invention will be described.
[Example of experiment]
After passing the waste wood through a hammer crusher and removing iron-containing foreign substances such as nails by a magnetic separator, the length is determined using a twin-screw crusher and a sieve (a trommel; rotary sieve) having an opening of 50 mmφ. The crushed material having a size of 100 mm or less, a width of 20 mm or less, and a thickness of 15 mm or less crushed until 95% by weight or more was occupied.
Next, after the remaining portion of the crushed material is further crushed by a four-shaft cutter crusher, a sieve having a mesh size of 25 mmφ (Trommel), a sieve having a mesh size of 15 mmφ (Trommel), and a sieve having a mesh size of 8 mmφ (Trommel) are arranged in this order. Those which did not pass through a sieve having a mesh size of 25 mmφ were again put into a 4-shaft cutter type crusher and pulverized, and sieved as described above.
[0023]
In this manner, (1) the total amount (100% by weight) is 50 mm or less in length and 95% by weight or more is 10 mm or less in width and 5 mm or less (pass only through a sieve having an aperture of 25 mmφ). (Crushed material C)) (2) The total amount (100% by weight) is 30 mm or less in length, and 95% by weight or more is 5 mm or less in width and 5 mm or less in thickness (mesh size 25 mmφ). (3) The total amount (100% by weight) is 20 mm or less in length, 95% or more is 3 mm or less in width and 3 mm or less in thickness. Samples in three categories of a certain product (a product having passed through a sieve having an aperture of 8 mmφ; “crushed product A”) were obtained.
Further, a product (crushed material D) having a length of 100 mm or less, 95% by weight or more, a width of 20 mm or less, and a thickness of 10 mm or less was obtained.
The obtained crushed material in each section was dried in a dryer at 100 to 105 ° C until no decrease in weight was observed, and then the weight (dry weight before heating) was measured.
[0024]
Next, the crushed material of each section was placed in a hot-air stirring type drier and heated as shown in Table 1 at a heating temperature of 350 to 180 ° C and a heating time of 5 to 720 minutes. After the heat treatment, the crushed material was air-cooled, and the weight (the weight of the partially thermally decomposed product after heating) was measured. From this weight and the above-mentioned dry weight before heating, the weight reduction rate of the crushed wood was calculated.
The crushability of the crushed material after heating was evaluated using a disk mill.
Table 1 shows the above results. From Table 1, the crushed wood having a particle size of not more than 50 mm in length, not more than 10 mm in width, and not more than 5 mm in thickness (that passes through a sieve having an aperture of 25 mmφ) has a weight loss rate of about 5% by weight or more after heat treatment. It can be seen that the crushability is improved by heating so that
Also, from Table 1, it can be seen that the suitable heating temperature decreases as the particle size of the crushed wood decreases. For example, in the case of a crushed material C having a particle size of not more than 10 mm in width and not more than 5 mm in thickness (that passes through a sieve having an opening of 25 mmφ), a good wood-derived fuel is easily obtained by heating at 250 ° C. for about 30 minutes. In addition, in the case of the crushed material A having a particle size of 3 mm or less in width and 3 mm or less in thickness (which has passed through a sieve having an aperture of 8 mmφ), a good wood-derived fuel can be obtained by heating at 235 ° C. for about 30 minutes. It turned out that it was easy to be done.
On the other hand, in the crushed material D having a particle size of 100 mm or less in length, 20 mm or less in width, and 10 mm or less in thickness, the preferable range of the heating temperature is limited to an extremely narrow range of about 280 ° C., and the yield is small. I understood.
[0025]
[Table 1]
Figure 2004050077
[0026]
[Application Examples 1 and 2]
By the same procedure as in the experimental example, waste wood generated at the time of house demolition is crushed, and finally, a 15 mmφ sieve (trommel) is used to crush wood having a width of 95 mm or more and a width of 5 mm or less and a thickness of 5 mm or less. (Average moisture content: about 13% by weight) was obtained.
For the crushed wood, a countercurrent internal heat rotary kiln (inner diameter 57 cmφ × length 10 m) in which the crushed wood and the heating gas move in the opposite direction is used to obtain a temperature in the range of 220 to 260 ° C. The heat treatment was performed under the conditions that the passage time was 20 to 30 minutes, and the weight reduction ratio based on the dry weight of the crushed wood was within the range of 9 to 15% by weight.
In addition, in the above-mentioned experimental example, the reason why the heat treatment was performed after the crushed wood was dried beforehand is to determine the suitable weight loss rate on a dry weight basis to obtain the wood-derived fuel of the present invention. This is for the purpose of explaining the actual method for producing the wood-derived fuel of the present invention. That is, when obtaining the wood-derived fuel of the present invention, it is not always necessary to dry the crushed wood as in the experimental example described above, and after grasping the water content to some extent, the weight loss rate on a dry weight basis is reduced. What is necessary is just to set a heating condition so that it may become a target value.
After the heat-treated wood was pulverized by a vertical roller mill, a wood-derived fuel having a particle size of more than 1.5 mm and 3 mm or less and a wood-derived fuel having a particle size of 1.5 mm or less were obtained. The high calorific value of these wood-derived fuels was 4,600 kcal / g or more.
[0027]
Next, for each of these two wood-derived fuels, a cement clinker firing experiment was performed using the equipment shown in FIG. The contents of the experiment are as follows.
First, as the rotary kiln, a kiln with a preheater having a diameter of 5.5 m and a total length of 83 m having a cement clinker production capacity of 5,300 tons / day was used.
When firing the cement clinker, first, pulverized coal (pulverized coal powder of the main fuel) 5 is supplied to the burner 8 installed at the downstream end of the rotary kiln 10 via the fuel supply pipe 7 at 8.5 tons / hour ( hr). The experiment was performed at a cement clinker production amount of 3,000 to 3,100 tons / hour. On the other hand, the wood-derived fuel 4 of the present invention was supplied to the burner 8 via the fuel supply pipe 7 at a rate of 0.5 to 1.0 ton / hour simultaneously with the supply of the pulverized coal 5.
[0028]
As a result, the wood-derived fuel having a particle size of 1.5 mm or less completed in-air combustion in the internal space of the rotary kiln 10 before coming into contact with the clinker raw material. Also, by using wood-derived fuel, the amount of pulverized coal used could be reduced by 5 to 10%. The quality of the obtained clinker was also satisfactory.
On the other hand, the wood-derived fuel having a particle size of more than 1.5 mm and not more than 3 mm dropped on the surface of the clinker passing through the firing zone in the rotary kiln 10 and was continuously burned. For this reason, the clinker surface or a portion considered to have burned in a state covered with the clinker clearly showed a brown color due to the reduction action of the clinker due to the wood-derived fuel.
Therefore, it has been found that when a wood-derived fuel having a particle size that does not completely complete aerial combustion is used as a fuel for heating a cement kiln, there is a problem that the quality of cement is adversely affected.
[0029]
【The invention's effect】
According to the wood-derived fuel of the present invention, aerial combustion is completed within a very short time in a high-temperature atmosphere. Therefore, when used as a fuel for a burner of a cement kiln, for example, a material to be fired (a raw material of a cement clinker) There is no problem that the fuel derived from wood adheres to the surface of the cement clinker and deteriorates the quality of cement clinker.
Further, the wood-derived fuel of the present invention can be manufactured by using waste wood generated by dismantling a house or the like, so that resource saving and energy saving can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram conceptually illustrating an example of a cement clinker manufacturing apparatus using a wood-derived fuel according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crushing apparatus 2 Heating apparatus 3 Crushing apparatus 4 Wood-derived fuel 5 Pulverized coal 6 Blower 7 Fuel supply pipe (Primary combustion air supply pipe)
8 Burner 9 Clinker raw material storage tank 10 Rotary kiln 11 Clinker coolers 12, 13 Pipe line

Claims (8)

(A)木材を破砕処理して、該木材の破砕物を得る破砕工程と、
(B)該木材の破砕物を、部分的な熱分解が生じ得る温度で加熱処理する加熱工程と、
(C)加熱処理後の上記木材の破砕物を、粉砕処理して、部分的に熱分解された木材の粉砕物からなる木材由来燃料を得る粉砕工程と
からなることを特徴とする木材由来燃料の製造方法。
(A) a crushing step of crushing wood to obtain a crushed product of the wood;
(B) a heating step of heating the crushed wood at a temperature at which partial thermal decomposition can occur;
(C) a pulverizing step of pulverizing the crushed wood obtained after the heat treatment to obtain a wood-derived fuel comprising a partially pyrolyzed crushed wood. Manufacturing method.
上記破砕工程(A)において、上記木材の破砕物の粒度を長さ100mm以下、幅10mm以下、および厚さ5mm以下に調整する請求項1に記載の木材由来燃料の製造方法。The method for producing a wood-derived fuel according to claim 1, wherein in the crushing step (A), the particle size of the crushed wood is adjusted to a length of 100 mm or less, a width of 10 mm or less, and a thickness of 5 mm or less. 上記加熱工程(B)において、加熱処理前の木材の破砕物の乾燥重量に対する加熱処理後の木材の破砕物の重量減少率が5〜25重量%になるように、加熱処理を行なう請求項1又は2に記載の木材由来燃料の製造方法。The heat treatment is performed in the heating step (B) such that the weight reduction rate of the crushed wood after heat treatment with respect to the dry weight of the crushed wood before heat treatment is 5 to 25% by weight. Or the method for producing a wood-derived fuel according to 2. 上記加熱工程(B)における加熱温度を200〜300℃に調整する請求項1〜3のいずれか1項に記載の木材由来燃料の製造方法。The method for producing a wood-derived fuel according to any one of claims 1 to 3, wherein the heating temperature in the heating step (B) is adjusted to 200 to 300 ° C. 上記粉砕工程(C)において、上記部分的に熱分解された木材の粉砕物の粒度が1.5mm以下になるように、粉砕処理を行なう請求項1〜4のいずれか1項に記載の木材由来燃料の製造方法。The wood according to any one of claims 1 to 4, wherein, in the grinding step (C), the partially thermally decomposed wood is pulverized so that a particle size of the pulverized wood is 1.5 mm or less. Production method of derived fuel. 上記加熱工程(B)における加熱処理のための熱源として、セメント製造設備の排熱を利用する請求項1〜5のいずれか1項に記載の木材由来燃料の製造方法。The method for producing a wood-derived fuel according to any one of claims 1 to 5, wherein waste heat of a cement production facility is used as a heat source for the heat treatment in the heating step (B). 部分的に熱分解されており、かつ、1.5mm以下の粒度を有する木材の粉砕物からなることを特徴とする木材由来燃料。A wood-derived fuel which is partially pyrolyzed and comprises a crushed wood having a particle size of 1.5 mm or less. 上記木材由来燃料が、セメントキルンの加熱用燃料として用いるための燃料である請求項7に記載の木材由来燃料。The wood-derived fuel according to claim 7, wherein the wood-derived fuel is a fuel to be used as a fuel for heating a cement kiln.
JP2002211961A 2002-07-22 2002-07-22 Wood-derived fuel and method for producing the same Expired - Fee Related JP3929371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211961A JP3929371B2 (en) 2002-07-22 2002-07-22 Wood-derived fuel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211961A JP3929371B2 (en) 2002-07-22 2002-07-22 Wood-derived fuel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004050077A true JP2004050077A (en) 2004-02-19
JP3929371B2 JP3929371B2 (en) 2007-06-13

Family

ID=31935018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211961A Expired - Fee Related JP3929371B2 (en) 2002-07-22 2002-07-22 Wood-derived fuel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3929371B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238871A (en) * 2006-03-10 2007-09-20 Taiheiyo Cement Corp Method for producing woody fuel
JP2010043269A (en) * 2009-09-24 2010-02-25 Sumitomo Osaka Cement Co Ltd Method for treating biomass
JP2010060265A (en) * 2008-08-02 2010-03-18 Narita:Kk Heater
JP2013209602A (en) * 2012-03-30 2013-10-10 Nippon Paper Industries Co Ltd Method for producing solid fuel, and solid fuel
CN106281541A (en) * 2015-06-05 2017-01-04 许成荫 A kind of production technology of boiler oil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238871A (en) * 2006-03-10 2007-09-20 Taiheiyo Cement Corp Method for producing woody fuel
JP2010060265A (en) * 2008-08-02 2010-03-18 Narita:Kk Heater
JP2010043269A (en) * 2009-09-24 2010-02-25 Sumitomo Osaka Cement Co Ltd Method for treating biomass
JP2013209602A (en) * 2012-03-30 2013-10-10 Nippon Paper Industries Co Ltd Method for producing solid fuel, and solid fuel
CN106281541A (en) * 2015-06-05 2017-01-04 许成荫 A kind of production technology of boiler oil

Also Published As

Publication number Publication date
JP3929371B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
CN101234762B (en) Physical method energy-saving cleaning technique for manufacturing active carbon
JP2648803B2 (en) Method for treating fly ash and sewage sludge, method for producing lightweight aggregate using fly ash and sewage sludge, and lightweight aggregate
AU2014337792B2 (en) A method and a system for producing a lightweight ceramic aggregate, particularly from coal ash
CN102206091B (en) Method for making ceramsite by using sludge
US4022630A (en) Portland cement-making and municipal refuse conversion
CN109336553A (en) A kind of method and system preparing haydite using municipal sludge
TWI722316B (en) Sludge treatment method and cement manufacturing system
WO2021024386A1 (en) Method and apparatus for treating combustible substance
JP4855644B2 (en) Organic waste disposal methods
JP4136772B2 (en) Fuel containing wood and coal and method for producing the same
CN113860302A (en) Process and system for preparing activated carbon by self-heating pyrolysis-activation of large garbage waste wood
JP3929371B2 (en) Wood-derived fuel and method for producing the same
CN110106005A (en) A kind of preparation method of biomass fuel
JP3580896B2 (en) Method and apparatus for producing cement admixture and mixed cement
US8636840B2 (en) Process for utilizing organic waste materials
JP2006273970A (en) Method for producing biomass-containing coal powder fuel, use thereof and system of producing biomass-containing coal powder fuel
WO2014150695A1 (en) Using kiln waste heat to reduce moisture content of class a biosolids and other biomass fuels
RU2024809C1 (en) Set for producing cement clinker
RU2732834C1 (en) Plant for processing vegetal raw materials into coal briquettes
JP7203890B2 (en) Method for drying and dehydrating treated wood and method for producing wood pellets
JP2007106781A (en) Method for producing wood fuel, method for using the same and apparatus for producing the same
SU1694514A1 (en) Method of producing porous fillers
JPH0733486A (en) Cement firing method and device therefor
JP2003026458A (en) Treatment method of converting sawdust into fuel and treatment equipment for the same
CN103553391B (en) Joint production method for fluidization, calcination and decarburization-steam generation-drying of coal ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

R150 Certificate of patent or registration of utility model

Ref document number: 3929371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees