JP2004047916A - Compound thin film solar battery and its manufacturing method - Google Patents

Compound thin film solar battery and its manufacturing method Download PDF

Info

Publication number
JP2004047916A
JP2004047916A JP2002237158A JP2002237158A JP2004047916A JP 2004047916 A JP2004047916 A JP 2004047916A JP 2002237158 A JP2002237158 A JP 2002237158A JP 2002237158 A JP2002237158 A JP 2002237158A JP 2004047916 A JP2004047916 A JP 2004047916A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
thin film
absorbing layer
film solar
solar cell
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002237158A
Other languages
Japanese (ja)
Other versions
JP4264801B2 (en )
Inventor
Masashi Aoki
Satoshi Shiozaki
塩崎 諭
青木 誠志
Original Assignee
Honda Motor Co Ltd
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

<P>PROBLEM TO BE SOLVED: To provide an n-type buffer layer for the hetero-junction of an excellent joining property and stable characteristics on a light absorbing layer composed of a p-type compound semiconductor. <P>SOLUTION: In the manufacturing method of a compound thin film solar battery composed by providing the n-type buffer layer for the hetero-junction on the light absorbing layer composed of the p-type compound semiconductor formed on a back surface electrode, at the time of forming the buffer layer by a CBD method using a 3-liquid mixed solution of zinc sulfide ZnSO4, thiourea CS(NH2)2 and ammonia NH4OH, the light absorbing layer is immersed in the 3-liquid mixed solution and the mixing ratio of the solution is changed so as to easily generate a component of ZnO from ZnS as the reaction of film formation advances. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】 [0001]
【産業上の利用分野】 BACKGROUND OF THE INVENTION
本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池およびその製造方法に関する。 The present invention relates to compound thin film solar cell and a manufacturing method thereof n-type comprising a buffer layer provided in for heterojunction on the light-absorbing layer consisting of the formed p-type compound semiconductor on the back electrode.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
図1は、一般的な化合物半導体による薄膜太陽電池の基本構造を示している。 Figure 1 shows the basic structure of a thin-film solar cell according to a general compound semiconductor. それは、SLG(ソーダライムガラス)基板1上に裏面電極(プラス電極)となるMo電極2が成膜され、そのMo電極2上にp型の光吸収層5が成膜され、その光吸収層5上にヘテロ接合のためのn型のバッファ層6を介して透明電極(マイナス電極)7が成膜されている。 It is the Mo electrode 2 is deposited as the SLG back electrode (positive electrode) on (soda lime glass) substrate 1, the light absorbing layer 5 of p-type is deposited thereon Mo electrode 2, the light absorbing layer a transparent electrode (negative electrode) 7 through the n-type buffer layer 6 for the heterojunction is deposited on the 5.
【0003】 [0003]
その化合物半導体による薄膜太陽電池における光吸収層5としては、現在18%を超す高いエネルギー変換効率が得られるものとして、Cu,(In,Ga),SeをベースとしたI−III−VI2族系のCu(In+Ga)Se2によるCIGS薄膜が用いられている。 The light absorbing layer 5 in the thin film solar cell by the compound semiconductor, as a high energy conversion efficiency in excess of the current 18% is obtained, Cu, (In, Ga), I-III-VI2 group systems based on Se CIGS thin film is used by the Cu (in + Ga) Se2.
【0004】 [0004]
従来、この種の化合物薄膜太陽電池におけるバッファ層として、CBD(ケミカルバスデポジション)法によって、溶液から化学的にII−VI族化合物半導体であるCdS膜を成長させることにより、CIS光吸収層と最適なヘテロ接合を得ることができるようにしている(米国特許第4611091号明細書参照)。 Conventionally, as a buffer layer in the compound thin film solar cell of this type, CBD by (chemical bath deposition) method, by growing the CdS film is chemically Group II-VI compound semiconductor from solution, CIS light absorbing layer and the optimal so that it is possible to obtain a heterojunction (see U.S. Pat. No. 4,611,091).
【0005】 [0005]
また、従来、有害物質であるCdを含まない高い変換効率のヘテロ結合を得ることができるバッファ層として、CBD法によってZnS膜を形成させるようにしたものがある(特開平8−330614号公報参照)。 Conventionally, as a buffer layer which can obtain a heterojunction of high conversion efficiency without the detrimental substances Cd, there are those so as to form a ZnS film by CBD method (JP-A-8-330614 JP-reference ).
【0006】 [0006]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
解決しようとする問題点は、従来の化合物薄膜太陽電池では、p型化合物半導体である光吸収層とn型半導体であるバッファ層の組成が全く異なるために、その接合に欠陥が生じやすいものになっていることである。 A problem to be solved is, in the conventional compound thin film solar cell, for the composition of the light absorbing layer and the n-type semiconductor in which the buffer layer is a p-type compound semiconductor is completely different, in that defects are likely to occur on the joint it is that you are now in.
【0007】 [0007]
また、CBD法によってバッファ層を成膜させるに際して、溶液に光吸収層を浸すと光吸収層へのZnまたはCd成分の拡散とZnSまたはCdSの成膜とが同時に進行するので、光吸収層の結晶性やその表面状態によって特性のバラツキを生じやすいものになってしまうという問題がある。 Also, when is deposited a buffer layer by CBD method, the dipped light absorbing layer and the deposition of the diffusion and ZnS or CdS of Zn or Cd component into the light-absorbing layer proceed simultaneously to the solution of the light-absorbing layer there is a problem that the crystallinity and the surface condition becomes those prone to variation in characteristics.
【0008】 [0008]
【課題を解決するための手段】 In order to solve the problems]
本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池の製造方法にあって、硫化亜鉛ZnSO4、チオ尿素CS(NH2)2、アンモニアNH4OHの3液混合水溶液を用いてCBD法によりバッファ層を形成するに際して、接合性の良い特性の安定したpn接合を得ることができるようにするべく、その3液混合水溶液に光吸収層を浸して成膜の反応が進むにしたがってZnSからZnOの成分が生じやすくなるように水溶液の混合比を変えていく処理手段をとるようにしている。 The present invention provides a manufacturing method of a compound thin film solar cell formed by providing the n-type buffer layer for the heterojunction on the light-absorbing layer comprising a p-type compound semiconductor formed on the back electrode, zinc sulfide ZnSO4, thiourea CS (NH2) 2, in forming the buffer layer by CBD method using a 3 solution mixed aqueous solution of ammonia NH4 OH, in order to be able to obtain a stable pn junction of the junction having good properties, components ZnO from ZnS is to take go processing means for changing the mixing ratio of the aqueous solution to be liable to occur according to the reaction of the film formation proceeds by immersing the light-absorbing layer in the 3-liquid mixed aqueous solution.
【0009】 [0009]
また、本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池において、下部の光吸収層から上部の透明電極へ向かって成分の割合がZnSからZnOに連続的または段階的に変化するバッファ層を設けるようにしている。 The present invention, in n-type compound thin film solar cell formed by providing a buffer layer for the heterojunction on the light-absorbing layer comprising a p-type compound semiconductor formed on the back electrode, the lower portion of the light absorbing layer proportions of the components towards the top of the transparent electrode is to provide a buffer layer that varies continuously or stepwise ZnO from ZnS from.
【0010】 [0010]
【実施例】 【Example】
図2および図3は、化合物薄膜太陽電池の製造過程を示している。 2 and 3 show a manufacturing process of a compound thin film solar cell.
【0011】 [0011]
まず、図2に示すように、SLG(ソーダライムガラス)基板1上に裏面電極としてのMo電極2をスパッタリングにより成膜する。 First, as shown in FIG. 2, it is formed by sputtering Mo electrode 2 as the back electrode in SLG (soda lime glass) substrate 1. 次いで、そのMo電極2上にCIGS薄膜による光吸収層5を作製するに際して、先にIn単体ターゲットT1を用いた第1のスパッタ工程SPT−1によってIn層32を成膜したうえで、その上に、Cu−Gaの合金ターゲットT2を用いた第2のスパッタ工程SPT−2によってCu−Ga合金層31を成膜して、In層32およびCu−Ga合金層31からなる積層プリカーサ3を形成する。 Then, when making the light absorbing layer 5 by CIGS thin film thereon Mo electrode 2, after depositing an In layer 32 by a first sputtering process SPT-1 using an In single target T1 earlier, on which to, a film of Cu-Ga alloy layer 31 by a second sputtering process SPT-2 using an alloy target T2 of Cu-Ga, forming a laminated precursor 3 made of in layer 32 and Cu-Ga alloy layer 31 to. そして、熱処理工程HEATにおいて、その積層プリカーサ3をSe雰囲気中で熱処理することにより、CIGS薄膜による光吸収層5を作製する。 Then, in the heat treatment step HEAT, by heat treating the layered precursor 3 in Se atmosphere, to prepare a light absorption layer 5 by CIGS thin film.
【0012】 [0012]
このように、Mo電極2上にIn層32を設けたうえで、その上にCu−Ga合金層31を設けて積層プリカーサ3を形成するようにしているので、Mo電極2との界面における元素の固層拡散による合金化を抑制することができる。 Thus, in terms of providing the In layer 32 on the Mo electrode 2, since so as to form a laminate precursor 3 provided Cu-Ga alloy layer 31 thereon, the elements at the interface between the Mo electrode 2 it is possible to suppress the alloying of by solid phase diffusion. そして、その積層プリカーサ3をSe雰囲気中で熱処理してセレン化する際に、Mo電極2側にIn成分を充分に拡散させることができるとともに、拡散速度の遅いGaがMo電極2との界面に偏析して結晶性の悪いCu−Ga−Se層が形成されることがないようにして、均一な結晶による高品質なP型半導体のCu(In+Ga)Se2によるCIGSの光吸収層5を作製することができる。 Then, the laminated precursor 3 when selenide by heat treatment in Se atmosphere, it is possible to sufficiently diffuse the In component in the Mo electrode 2 side, slow diffusion rate Ga is the interface between the Mo electrode 2 as never segregated to poor crystallinity Cu-Ga-Se layer is formed to produce a light-absorbing layer 5 of CIGS by uniform crystal by high quality P-type semiconductor of Cu (in + Ga) Se2 be able to.
【0013】 [0013]
したがって、Mo電極2との界面に、結晶性が悪くて構造的に脆く、かつ導電性を有する異層(Cu−Ga−Se層)が偏析するようなことがなくなり、Mo電極2との密着性が高くて構造的に強固な、しかもセル間でリークをきたして電池特性が劣化することのない品質の良い光吸収層を得ることができるようになる。 Thus, the interface between the Mo electrode 2, crystallinity is poor structurally fragile, and different layers having conductivity (Cu-Ga-Se layer) prevents such segregation, adhesion to the Mo electrode 2 sex structurally robust higher, it is possible to battery characteristics Kitaichi a leak get a good light absorbing layer quality without being deteriorated yet between cells.
【0014】 [0014]
次に、図3に示すように、p型の光吸収層5とのヘテロ接合をとるためにn型のバッファ層6を形成する。 Next, as shown in FIG. 3, to form an n-type buffer layer 6 in order to take the heterojunction between the light absorbing layer 5 of p-type. そして、そのバッファ層6上にZnO:Al,TCOなどからなる透明電極7をスパッタリングにより成膜する。 Then, ZnO on the buffer layer 6: Al, is deposited by sputtering a transparent electrode 7 made of TCO.
【0015】 [0015]
図4および図5は、化合物薄膜太陽電池の他の製造過程を示している。 4 and 5 show another manufacturing process of a compound thin film solar cell.
【0016】 [0016]
この場合には、積層プリカーサ3のセレン化の熱処理時に、Na成分が光吸収層5に拡散して光電変換効率を向上させることができるように、Mo電極2上にNa2Sからなるアルカリ層8を設けるようにしている。 In this case, during the heat treatment of the selenide of the laminated precursor 3, so it is possible to improve the photoelectric conversion efficiency by diffusing the light absorbing layer 5 is Na component, an alkali layer 8 consisting of Na2S on Mo electrode 2 It is to be provided.
【0017】 [0017]
そのアルカル層8は、例えばNa2S・9H2O(硫化ナトリウム9水和物)を重量濃度0.1〜5%で純水に溶かした水溶液にMo電極2の成膜基板を浸して、スピンドライ乾燥させたのち、膜中残留水分の調整のために、大気中150℃で60分間のベーク処理を行うことによって形成する。 Its Arukaru layer 8, for example, Na2 S · 9H2O soak the deposition substrate Mo electrode 2 in an aqueous solution dissolved in deionized water (sodium sulfide nonahydrate) in weight concentration 0.1% to 5%, by spin drying and then, in order to adjust the residual moisture in the film, formed by performing the baking for 60 minutes at 0.99 ° C. in air.
【0018】 [0018]
そして、SLG基板1とMo電極2との間に、SLG基板1に含まれるNa成分が光吸収層5に拡散するのを制御するSiO2,Al2O3などからなる拡散制御層9をCVD法によって形成するようにしている。 Between the SLG substrate 1 and the Mo electrode 2, to form a diffusion control layer 9 Na component contained in the SLG substrate 1 is made of SiO2, Al2O3 which controls the diffusion of the light absorbing layer 5 by CVD It is way.
【0019】 [0019]
本発明は、このような構成による化合物薄膜太陽電池にあって、特にバッファ層6として、下部の光吸収層5から上部の透明電極7へ向かって成分の割合がZnSからZnOに連続的または段階的に変化する構造のものとしている。 The present invention, in the compound thin film solar cell according to this structure, in particular as a buffer layer 6, continuously or gradually in ZnO from proportions of the components towards the bottom of the light absorbing layer 5 to the upper transparent electrode 7 is ZnS it is assumed in varying structures.
【0020】 [0020]
また、本発明では、バッファ層6を形成するに際して、硫化亜鉛ZnSO4、チオ尿素CS(NH2)2、アンモニアNH4OHの3液混合水溶液を用いたCBD法を採用して、その3液混合水溶液に光吸収層5の表面を浸して成膜の反応が進むにしたがってZnSからZnOの成分が生じやすくなるように水溶液の混合比を変えていく方法をとるようにしている。 Further, in the present invention, in forming the buffer layer 6, zinc sulfide ZnSO4, thiourea CS (NH2) 2, employs a CBD method using the 3-liquid mixed aqueous solution of ammonia NH4 OH, light to the third liquid mixed aqueous solution is to take a method of components ZnO from ZnS is going to change the mixing ratio of aqueous solution to be liable to occur in accordance with bathing the surface of the absorbent layer 5 is reaction of the deposition proceeds.
【0021】 [0021]
その際、チオ尿素の混入量が他の2液よりも少ない3液混合水溶液に光吸収層5の表面を浸して成膜を行わせたうえで、その水溶液における硫化亜鉛の混入量を連続的または段階的に増加させながら成膜を継続して行わせるようにしている。 At that time, in terms of mixed amount of thiourea was performed deposition by immersing the surface of the light absorbing layer 5 in the 3-liquid mixed aqueous solution less than the other two-part, continuous mixing amount of the zinc sulfide in the aqueous solution or with stepwise increased so that causes to continue deposition.
【0022】 [0022]
そして、成膜中、水溶液を加熱してアンモニアを蒸発させるようにしている。 Then, during the film formation, so that to evaporate the ammonia by heating the aqueous solution.
【0023】 [0023]
通常では、0.16M_ZnSO4、0.6M_CS(NH2)2、7.5M_NH4OHの各水溶液を等量ずつ混合し、その3液混合水溶液中にSLG基板1上にMo電極2および光吸収層5が形成された基材を投入したうえで、アンモニアの揮発を抑制するために容器に蓋をして、30〜120分間浸漬してバッファ層6の成膜を行わせるようにしている。 Normally, mixing each solution of 0.16M_ZnSO4,0.6M_CS (NH2) 2,7.5M_NH4OH equal amounts, the Mo electrode 2 and the light absorbing layer 5 on the SLG substrate 1 to the 3-liquid mixing in an aqueous solution formed after having put the the substrates, the container in order to suppress volatilization of ammonia with a lid, so that to perform the film formation of the buffer layer 6 by immersing 30 to 120 minutes.
【0024】 [0024]
それに対して、本発明では、上記の3液混合水溶液中に基材を投入してバッファ層6の成膜を行わせるに際して、当初はチオ尿素の量を減らしてアンモニアを蒸発させながら成膜を行わせ、反応が進むにしたがってZnの供給源を増加させるべくZnSO4を追加していくことにより、3液混合水溶液をZn(OH)2が生じやすい組成になるように連続的または段階的に変えるようにしている。 In contrast, in the present invention, when to perform film formation of the buffer layer 6 by introducing the substrate in 3-liquid mixing an aqueous solution of the above, a film while initially evaporating ammonia to reduce the amount of thiourea done so, by going to add a ZnSO4 to increase the Zn source of as the reaction proceeds, change the 3-liquid mixing aqueous Zn (OH) and continuously or stepwise as 2 to obtain the compositions prone It is way.
【0025】 [0025]
その具体的なCBD法によるバッファ層6の成膜としては、以下のとおりである。 As the film formation of the buffer layer 6 due to the specific CBD method is as follows.
【0026】 [0026]
第1段階の処理として、0.16M_ZnSO4、0.6M_CS(NH2)2、7.5M_NH4OHの各水溶液を240ml:160ml:240mlの割合で混合して、80℃のウォータバスにて20分間加熱したのちに、その3液混合水溶液中に基材を投入して、15分間の成膜を行わせる。 As the processing of the first stage, 0.16M_ZnSO4,0.6M_CS (NH2) with aqueous solutions of 2,7.5M_NH4OH 240ml: 160ml: were mixed at a ratio of 240 ml, after heated 20 minutes at a water bath at 80 ° C. in, and put the substrate in the 3-liquid mixing in an aqueous solution, to perform deposition of 15 minutes.
【0027】 [0027]
第2段階の処理として、第1段階の3液混合水溶液にZnSO4・7H2Oを3.68g(0.16M換算で80ml)を加えて、15分間の成膜を行わせる。 As the processing of the second step, a ZnSO4 · 7H2O in 3 solution mixed aqueous solution of the first stage by addition of 3.68 g (80 ml in 0.16M terms), to perform deposition of 15 minutes.
【0028】 [0028]
第3段階の処理として、第2段階の3液混合水溶液にさらにZnSO4・7H2Oを1.76gを加えて、15分間の成膜を行わせる。 As the processing of the third stage, a further ZnSO4 · 7H2O in 3 solution mixed aqueous solution of the second stage by the addition of 1.76 g, causes the formation of 15 minutes.
【0029】 [0029]
第4段階の処理として、第3段階の3液混合水溶液にさらにZnSO4・7H2Oを1.76gを加えて、15分間の成膜を行わせる。 As the processing of the fourth step, a further ZnSO4 · 7H2O in 3 solution mixed aqueous solution of the third step by addition of 1.76 g, causes the formation of 15 minutes.
【0030】 [0030]
第5段階の処理として、第1段階から第4段階の処理による合計60分間の成膜を行ったのち、Zn(OH)2の脱水を行ってZnOを得るべく、100〜300℃の温度で30〜300分のあいだ加熱するアニール処理を行う。 As the process of the fifth step, after the first stage was the deposition of a total of 60 minutes by the processing of the fourth stage, to obtain a ZnO performing dehydration of Zn (OH) 2, at a temperature of 100 to 300 ° C. annealing is performed by heating between 30 and 300 minutes.
【0031】 [0031]
成膜中は、アンモニアを揮発させてよりZn(OH)2が生成しやすいようにするために、3液混合水溶液の容器に蓋をしないで、開放状態で基材の浸漬を行わせる。 During film formation, in order to more Zn (OH) 2 to volatilize the ammonia is so easily formed, without the lid on container 3 solution mixed aqueous solution to perform the immersion of the substrate in an open state.
【0032】 [0032]
CBDによる化学反応としては、最初に、 The chemical reaction by the CBD, the first,
ZnSO4+xNH4OH→〔Zn(NH3)x〕 +SO4 +xH2O ZnSO4 + xNH4OH → [Zn (NH3) x] 2 + SO4 2 + xH2O
ZnSO4+2NH4OH→Zn(OH)2↓+2NH4+SO4 ZnSO4 + 2NH4OH → Zn (OH) 2 ↓ + 2NH4 + SO4 2
の競争反応が起こる。 Occur competition reaction of. この反応により生じたZnのアンミン錯体がチオ尿素と反応してZnSが生ずるが、アンモニアの濃度(ペーハーを含む)および3液混合水溶液の各成分の比率などによってその反応の起こりやすさを制御することが可能であると考えられる。 Although ammine complexes of Zn produced by this reaction ZnS occurs reacted with thiourea, to control the likelihood of the reaction, such as by the ratio of each component of ammonia concentration (including pH) and 3 liquid mixed aqueous solution it is contemplated that possible.
【0033】 [0033]
このように、本発明によれば、バッファ層6の成分の割合が、下部の光吸収層5から上部の透明電極7へ向かってZnSからZnOに徐々に変化することになる。 Thus, according to the present invention, the proportion of the components of the buffer layer 6 will change gradually ZnO from ZnS toward the bottom of the light absorbing layer 5 to the upper transparent electrode 7. したがって、光吸収層5に対して接合性の良い特性の安定した高品質なpn接合を得ることができるようになる。 Therefore, it is possible to obtain a stable and high-quality pn junction with good characteristics bonded to the light absorbing layer 5. そして、透明電極7との間の障壁をなくして、再結合による性能劣化を防止することができるようになる。 Then, by removing the barrier between the transparent electrode 7, it is possible to prevent performance degradation due to recombination.
【0034】 [0034]
【効果】 【effect】
以上、本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池の製造方法にあって、硫化亜鉛ZnSO4、チオ尿素CS(NH2)2、アンモニアNH4OHの3液混合水溶液を用いてCBD法によりバッファ層を形成するに際して、その3液混合水溶液に光吸収層を浸して成膜の反応が進むにしたがってZnSからZnOの成分が生じやすくなるように水溶液の混合比を変えていく手段をとるようにしたもので、接合性の良い特性の安定したpn接合を得ることができるとともに、透明電極との間の障壁をなくして再結合による性能劣化を防止することができるという利点を有している。 While the present invention is the method of manufacturing a compound thin film solar cell formed by providing the n-type buffer layer for the heterojunction on the light-absorbing layer comprising a p-type compound semiconductor formed on the back electrode, zinc sulfide ZnSO4, in forming the buffer layer by thiourea CS (NH2) 2, using 3 solution mixed aqueous solution of ammonia NH4 OH CBD method, the reaction of the film formation proceeds by immersing the light-absorbing layer in the 3-liquid mixed aqueous solution together with those to take unit will change the mixing ratio of the aqueous solution as component of ZnO tends to occur from ZnS, it is possible to obtain a stable pn junction of the junction having good characteristics according to a transparent electrode It has the advantage that the barrier between it is possible to prevent performance degradation due to recombination eliminate.
【0035】 [0035]
また、本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池において、下部の光吸収層から上部の透明電極へ向かって成分の割合がZnSからZnOに連続的または段階的に変化するバッファ層を設けるようにしたもので、接合性の良い特性の安定したpn接合を得ることができるとともに、透明電極との間の障壁をなくして再結合による性能劣化を防止することができるという利点を有している。 The present invention, in n-type compound thin film solar cell formed by providing a buffer layer for the heterojunction on the light-absorbing layer comprising a p-type compound semiconductor formed on the back electrode, the lower portion of the light absorbing layer from those proportions of the components towards the top of the transparent electrode is to provide a buffer layer varies continuously or stepwise in ZnO from ZnS, it is possible to obtain a stable pn junction of the junction having good characteristics has the advantage that it is possible to prevent the barrier performance degradation due to recombination to eliminate the between the transparent electrode.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】一般的な化合物半導体による薄膜太陽電池の基本的な構造を示す正断面図である。 1 is a front sectional view showing a basic structure of a thin-film solar cell according to a general compound semiconductor.
【図2】本発明によってSLG基板上に裏面電極および光吸収層を形成するまでの製造過程の一例を示す図である。 It is a diagram illustrating an example of the manufacturing process up to the formation of the back electrode and the light absorption layer SLG substrate by the present invention; FIG.
【図3】本発明によって光吸収層上にバッファ層および透明電極を形成するまでの製造過程を示す図である。 It is a diagram showing a manufacturing process up to the formation of the buffer layer and the transparent electrode on the light absorbing layer by the invention, FIG.
【図4】本発明によってSLG基板上に拡散制御層、裏面電極、アルカリ層および積層プリカーサを形成するまでの製造過程を示す図である。 [4] the diffusion control layer SLG on a substrate by the present invention, showing the manufacturing process up to the formation of the back electrode, the alkaline layer and laminated precursor.
【図5】本発明によってSLG基板上に拡散制御層を介して光吸収層、バッファ層および透明電極を形成するまでの製造過程を示す図である。 [5] The present invention light absorption layer through the diffusion control layer SLG substrate by a diagram showing the manufacturing process up to the formation of the buffer layer and the transparent electrode.
【符号の説明】 DESCRIPTION OF SYMBOLS
1 SLG基板2 Mo電極5 光吸収層6 バッファ層7 透明電極 1 SLG substrate 2 Mo electrode 5 light absorbing layer 6 buffer layer 7 transparent electrode

Claims (5)

  1. 裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池の製造方法であって、硫化亜鉛ZnSO4、チオ尿素CS(NH2)2、アンモニアNH4OHの3液混合水溶液を用いてCBD法によりバッファ層を形成するに際して、その3液混合水溶液に光吸収層を浸して成膜の反応が進むにしたがってZnSからZnOの成分が生じやすくなるように水溶液の混合比を変えていくようにしたことを特徴とする化合物薄膜太陽電池の製造方法。 A method of manufacturing a compound thin film solar cell n-type comprising a buffer layer provided in for heterojunction on the light-absorbing layer comprising a p-type compound semiconductor formed on the back electrode, zinc sulfide ZnSO4, thiourea CS (NH2) 2, in forming the buffer layer by CBD method using a 3 solution mixed aqueous solution of ammonia NH4 OH, the ZnO from ZnS according to the reaction of the film formation proceeds by immersing the light-absorbing layer in the 3-liquid mixed aqueous solution method for producing a compound thin film solar cell, wherein the component is so will change the mixing ratio of aqueous solution to be likely to occur.
  2. チオ尿素の混入量が他の2液よりも少ない3液混合水溶液に光吸収層を浸して成膜を行わせたうえで、その水溶液における硫化亜鉛の混入量を連続的または段階的に増加させながら成膜を行わせるようにしたことを特徴とする請求項1の記載による化合物薄膜太陽電池の製造方法。 In terms of mixed amount of thiourea was performed deposition by immersing the light-absorbing layer 3 was mixed aqueous solution less than the other two-part, continuously or stepwise increasing the mixed amount of zinc sulfide in the aqueous solution method for producing a compound thin film solar cell according to the description of claim 1, characterized in that so as to perform film formation while.
  3. 成膜中、水溶液を加熱してアンモニアを蒸発させるようにしたことを特徴とする請求項1の記載による化合物薄膜太陽電池の製造方法。 During film formation, method of manufacturing a compound thin film solar cell according to the description of claim 1, characterized in that so as to evaporate the ammonia by heating the aqueous solution.
  4. 成膜終了後に脱水のためのアニール処理を行うようにしたことを特徴とする請求項1の記載による化合物薄膜太陽電池の製造方法。 Method for producing a compound thin film solar cell according to the description of claim 1, characterized in that to perform after completion of film formation annealing treatment for dehydration.
  5. 裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池において、そのバッファ層が下部の光吸収層から上部の透明電極へ向かって成分の割合がZnSからZnOに連続的または段階的に変化するものであることを特徴とする化合物薄膜太陽電池。 In n-type formed by providing a buffer layer compound thin film solar cell for heterojunction on the light-absorbing layer comprising a p-type compound semiconductor formed on the back electrode, the upper the buffer layer from the lower portion of the light absorbing layer compound thin film solar cell ratio of the component toward the transparent electrode is characterized in that to vary continuously or stepwise the ZnO from ZnS.
JP2002237158A 2002-07-12 2002-07-12 Method for producing a compound thin film solar cell Active JP4264801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237158A JP4264801B2 (en) 2002-07-12 2002-07-12 Method for producing a compound thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237158A JP4264801B2 (en) 2002-07-12 2002-07-12 Method for producing a compound thin film solar cell

Publications (2)

Publication Number Publication Date
JP2004047916A true true JP2004047916A (en) 2004-02-12
JP4264801B2 JP4264801B2 (en) 2009-05-20

Family

ID=31712080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237158A Active JP4264801B2 (en) 2002-07-12 2002-07-12 Method for producing a compound thin film solar cell

Country Status (1)

Country Link
JP (1) JP4264801B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510310A (en) * 2004-08-18 2008-04-03 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツングHahn−Meitner−Institut Berlin GmbH A semiconductor substrate, particularly to a method of applying by chemical bath deposition of zinc sulfide buffer layer on the absorption layer of the chalcopyrite thin film solar cell
WO2009069582A1 (en) * 2007-11-30 2009-06-04 Showa Shell Sekiyu K.K. Laminated structure for cis-family solar cell, and integrated structure and manufacturing method for cis-family thin-film solar cell
WO2010147392A3 (en) * 2009-06-16 2011-04-14 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
KR101081300B1 (en) 2009-06-30 2011-11-08 엘지이노텍 주식회사 Solar cell and method of fabricating the same
WO2011158899A1 (en) * 2010-06-16 2011-12-22 昭和シェル石油株式会社 Cis-based thin film solar cell
WO2012014967A1 (en) * 2010-07-28 2012-02-02 京セラ株式会社 Photoelectric conversion device, method for producing same, and photoelectric conversion module
JP2012054261A (en) * 2010-08-31 2012-03-15 Kyocera Corp Photoelectric conversion device, method of manufacturing the same, and photoelectric conversion module
WO2012153641A1 (en) * 2011-05-06 2012-11-15 株式会社 東芝 Photoelectric conversion element and solar cell
US8373062B2 (en) 2009-03-13 2013-02-12 Tdk Corporation Solar cell, and method for producing the solar cell
JP2013539242A (en) * 2010-10-11 2013-10-17 エルジー イノテック カンパニー リミテッド Solar cell and a method of manufacturing the same
US8658890B2 (en) 2009-02-18 2014-02-25 Tdk Corporation Solar cell and method of manufacturing solar cell
WO2014030412A1 (en) * 2012-08-24 2014-02-27 日東電工株式会社 Compound solar cell and method for manufacturing same
JP2014165407A (en) * 2013-02-27 2014-09-08 Kyocera Corp Photoelectric conversion device, manufacturing method thereof and photoelectric conversion module
EP2768030A3 (en) * 2013-02-19 2015-01-14 Samsung SDI Co., Ltd. Solar cell and method of manufacturing the same
EP2804220A3 (en) * 2013-05-16 2015-01-14 Samsung SDI Co., Ltd. Method of manufacturing thin film solar cell, device for manufacturing thin film solar cell, and thin film solar cell including buffer layer manufactured by the method
JP2016012602A (en) * 2014-06-27 2016-01-21 京セラ株式会社 The photoelectric conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151261A (en) 2010-01-22 2011-08-04 Fujifilm Corp Method of manufacturing buffer layer, and photoelectric conversion device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510310A (en) * 2004-08-18 2008-04-03 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツングHahn−Meitner−Institut Berlin GmbH A semiconductor substrate, particularly to a method of applying by chemical bath deposition of zinc sulfide buffer layer on the absorption layer of the chalcopyrite thin film solar cell
WO2009069582A1 (en) * 2007-11-30 2009-06-04 Showa Shell Sekiyu K.K. Laminated structure for cis-family solar cell, and integrated structure and manufacturing method for cis-family thin-film solar cell
US8691619B2 (en) 2007-11-30 2014-04-08 Showa Shell Sekiyu, K.K. Laminated structure for CIS based solar cell, and integrated structure and manufacturing method for CIS based thin-film solar cell
US8658890B2 (en) 2009-02-18 2014-02-25 Tdk Corporation Solar cell and method of manufacturing solar cell
US8373062B2 (en) 2009-03-13 2013-02-12 Tdk Corporation Solar cell, and method for producing the solar cell
WO2010147392A3 (en) * 2009-06-16 2011-04-14 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
CN102460717A (en) * 2009-06-16 2012-05-16 Lg伊诺特有限公司 Solar cell and method of fabricating the same
KR101081194B1 (en) 2009-06-16 2011-11-07 엘지이노텍 주식회사 Fabricating device of solar cell and method of fabricating using the same
KR101081300B1 (en) 2009-06-30 2011-11-08 엘지이노텍 주식회사 Solar cell and method of fabricating the same
WO2011158899A1 (en) * 2010-06-16 2011-12-22 昭和シェル石油株式会社 Cis-based thin film solar cell
JP2012004287A (en) * 2010-06-16 2012-01-05 Showa Shell Sekiyu Kk Cis-based thin film solar cell
WO2012014967A1 (en) * 2010-07-28 2012-02-02 京セラ株式会社 Photoelectric conversion device, method for producing same, and photoelectric conversion module
US20130112235A1 (en) * 2010-07-28 2013-05-09 Kyocera Corporation Photoelectric conversion device, method of manufacturing photoelectric conversion device, and photoelectric conversion module
JPWO2012014967A1 (en) * 2010-07-28 2013-09-12 京セラ株式会社 The photoelectric conversion device and a manufacturing method thereof and a photoelectric conversion module - Le
JP2012054261A (en) * 2010-08-31 2012-03-15 Kyocera Corp Photoelectric conversion device, method of manufacturing the same, and photoelectric conversion module
JP2013539242A (en) * 2010-10-11 2013-10-17 エルジー イノテック カンパニー リミテッド Solar cell and a method of manufacturing the same
JP2012235024A (en) * 2011-05-06 2012-11-29 Toshiba Corp Photoelectric conversion element and solar cell
WO2012153641A1 (en) * 2011-05-06 2012-11-15 株式会社 東芝 Photoelectric conversion element and solar cell
WO2014030412A1 (en) * 2012-08-24 2014-02-27 日東電工株式会社 Compound solar cell and method for manufacturing same
JP2014045000A (en) * 2012-08-24 2014-03-13 Nitto Denko Corp Compound solar cell and method for manufacturing the same
EP2768030A3 (en) * 2013-02-19 2015-01-14 Samsung SDI Co., Ltd. Solar cell and method of manufacturing the same
JP2014165407A (en) * 2013-02-27 2014-09-08 Kyocera Corp Photoelectric conversion device, manufacturing method thereof and photoelectric conversion module
EP2804220A3 (en) * 2013-05-16 2015-01-14 Samsung SDI Co., Ltd. Method of manufacturing thin film solar cell, device for manufacturing thin film solar cell, and thin film solar cell including buffer layer manufactured by the method
JP2016012602A (en) * 2014-06-27 2016-01-21 京セラ株式会社 The photoelectric conversion device

Also Published As

Publication number Publication date Type
JP4264801B2 (en) 2009-05-20 grant

Similar Documents

Publication Publication Date Title
Scheer et al. CuInS2 based thin film solar cell with 10.2% efficiency
Bosio et al. Polycrystalline CdTe thin films for photovoltaic applications
Ferekides et al. CdTe solar cells with efficiencies over 15%
US7297868B2 (en) Preparation of CIGS-based solar cells using a buffered electrodeposition bath
US20060102230A1 (en) Thermal process for creation of an in-situ junction layer in CIGS
US20100267190A1 (en) Laminated structure for cis based solar cell, and integrated structure and manufacturing method for cis based thin-film solar cell
Mitzi et al. The path towards a high-performance solution-processed kesterite solar cell
US6537845B1 (en) Chemical surface deposition of ultra-thin semiconductors
US20070257255A1 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
US7179677B2 (en) ZnO/Cu(InGa)Se2 solar cells prepared by vapor phase Zn doping
US6534704B2 (en) Solar cell
Wang Progress in thin film solar cells based on
Braunger et al. An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer
US20090223556A1 (en) Process of making a thin-film photovoltaic device and thin-film photovoltaic device
US20080283389A1 (en) Method for Manufacturing Chalcopyrite Thin-Film Solar Cell
US20030230338A1 (en) Thin film solar cell configuration and fabrication method
US20100224247A1 (en) Enhancement of Semiconducting Photovoltaic Absorbers by the Addition of Alkali Salts Through Solution Coating Techniques
US20090050208A1 (en) Method and structures for controlling the group iiia material profile through a group ibiiiavia compound layer
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
CN101452969A (en) Copper zincium tin sulfur compound semiconductor thin-film solar cell and manufacturing method
JPH08222750A (en) Method of manufacturing solar cell on substrate, and solar cell with chalcopyrite absorbing layer
WO1997022152A1 (en) PREPARATION OF CuxInyGazSen (x=0-2, y=0-2, z=0-2, n=0-3) PRECURSOR FILMS BY ELECTRODEPOSITION FOR FABRICATING HIGH EFFICIENCY SOLAR CELLS
US7141449B2 (en) Method of fabricating a compound semiconductor thin-layer solar cell
KR20080009346A (en) Process of preparing buffer layer of solar cell
CN101740660A (en) Copper indium gallium selenium (CIGS) solar cell, film of absorbing layer thereof, method and equipment for preparing film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5