JP2004047916A - Compound thin film solar battery and its manufacturing method - Google Patents

Compound thin film solar battery and its manufacturing method Download PDF

Info

Publication number
JP2004047916A
JP2004047916A JP2002237158A JP2002237158A JP2004047916A JP 2004047916 A JP2004047916 A JP 2004047916A JP 2002237158 A JP2002237158 A JP 2002237158A JP 2002237158 A JP2002237158 A JP 2002237158A JP 2004047916 A JP2004047916 A JP 2004047916A
Authority
JP
Japan
Prior art keywords
aqueous solution
buffer layer
absorbing layer
film
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002237158A
Other languages
Japanese (ja)
Other versions
JP4264801B2 (en
Inventor
Satoshi Shiozaki
塩崎 諭
Masashi Aoki
青木 誠志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002237158A priority Critical patent/JP4264801B2/en
Publication of JP2004047916A publication Critical patent/JP2004047916A/en
Application granted granted Critical
Publication of JP4264801B2 publication Critical patent/JP4264801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an n-type buffer layer for the hetero-junction of an excellent joining property and stable characteristics on a light absorbing layer composed of a p-type compound semiconductor. <P>SOLUTION: In the manufacturing method of a compound thin film solar battery composed by providing the n-type buffer layer for the hetero-junction on the light absorbing layer composed of the p-type compound semiconductor formed on a back surface electrode, at the time of forming the buffer layer by a CBD method using a 3-liquid mixed solution of zinc sulfide ZnSO4, thiourea CS(NH2)2 and ammonia NH4OH, the light absorbing layer is immersed in the 3-liquid mixed solution and the mixing ratio of the solution is changed so as to easily generate a component of ZnO from ZnS as the reaction of film formation advances. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池およびその製造方法に関する。
【0002】
【従来の技術】
図1は、一般的な化合物半導体による薄膜太陽電池の基本構造を示している。それは、SLG(ソーダライムガラス)基板1上に裏面電極(プラス電極)となるMo電極2が成膜され、そのMo電極2上にp型の光吸収層5が成膜され、その光吸収層5上にヘテロ接合のためのn型のバッファ層6を介して透明電極(マイナス電極)7が成膜されている。
【0003】
その化合物半導体による薄膜太陽電池における光吸収層5としては、現在18%を超す高いエネルギー変換効率が得られるものとして、Cu,(In,Ga),SeをベースとしたI−III−VI2族系のCu(In+Ga)Se2によるCIGS薄膜が用いられている。
【0004】
従来、この種の化合物薄膜太陽電池におけるバッファ層として、CBD(ケミカルバスデポジション)法によって、溶液から化学的にII−VI族化合物半導体であるCdS膜を成長させることにより、CIS光吸収層と最適なヘテロ接合を得ることができるようにしている(米国特許第4611091号明細書参照)。
【0005】
また、従来、有害物質であるCdを含まない高い変換効率のヘテロ結合を得ることができるバッファ層として、CBD法によってZnS膜を形成させるようにしたものがある(特開平8−330614号公報参照)。
【0006】
【発明が解決しようとする課題】
解決しようとする問題点は、従来の化合物薄膜太陽電池では、p型化合物半導体である光吸収層とn型半導体であるバッファ層の組成が全く異なるために、その接合に欠陥が生じやすいものになっていることである。
【0007】
また、CBD法によってバッファ層を成膜させるに際して、溶液に光吸収層を浸すと光吸収層へのZnまたはCd成分の拡散とZnSまたはCdSの成膜とが同時に進行するので、光吸収層の結晶性やその表面状態によって特性のバラツキを生じやすいものになってしまうという問題がある。
【0008】
【課題を解決するための手段】
本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池の製造方法にあって、硫化亜鉛ZnSO4、チオ尿素CS(NH2)2、アンモニアNH4OHの3液混合水溶液を用いてCBD法によりバッファ層を形成するに際して、接合性の良い特性の安定したpn接合を得ることができるようにするべく、その3液混合水溶液に光吸収層を浸して成膜の反応が進むにしたがってZnSからZnOの成分が生じやすくなるように水溶液の混合比を変えていく処理手段をとるようにしている。
【0009】
また、本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池において、下部の光吸収層から上部の透明電極へ向かって成分の割合がZnSからZnOに連続的または段階的に変化するバッファ層を設けるようにしている。
【0010】
【実施例】
図2および図3は、化合物薄膜太陽電池の製造過程を示している。
【0011】
まず、図2に示すように、SLG(ソーダライムガラス)基板1上に裏面電極としてのMo電極2をスパッタリングにより成膜する。次いで、そのMo電極2上にCIGS薄膜による光吸収層5を作製するに際して、先にIn単体ターゲットT1を用いた第1のスパッタ工程SPT−1によってIn層32を成膜したうえで、その上に、Cu−Gaの合金ターゲットT2を用いた第2のスパッタ工程SPT−2によってCu−Ga合金層31を成膜して、In層32およびCu−Ga合金層31からなる積層プリカーサ3を形成する。そして、熱処理工程HEATにおいて、その積層プリカーサ3をSe雰囲気中で熱処理することにより、CIGS薄膜による光吸収層5を作製する。
【0012】
このように、Mo電極2上にIn層32を設けたうえで、その上にCu−Ga合金層31を設けて積層プリカーサ3を形成するようにしているので、Mo電極2との界面における元素の固層拡散による合金化を抑制することができる。そして、その積層プリカーサ3をSe雰囲気中で熱処理してセレン化する際に、Mo電極2側にIn成分を充分に拡散させることができるとともに、拡散速度の遅いGaがMo電極2との界面に偏析して結晶性の悪いCu−Ga−Se層が形成されることがないようにして、均一な結晶による高品質なP型半導体のCu(In+Ga)Se2によるCIGSの光吸収層5を作製することができる。
【0013】
したがって、Mo電極2との界面に、結晶性が悪くて構造的に脆く、かつ導電性を有する異層(Cu−Ga−Se層)が偏析するようなことがなくなり、Mo電極2との密着性が高くて構造的に強固な、しかもセル間でリークをきたして電池特性が劣化することのない品質の良い光吸収層を得ることができるようになる。
【0014】
次に、図3に示すように、p型の光吸収層5とのヘテロ接合をとるためにn型のバッファ層6を形成する。そして、そのバッファ層6上にZnO:Al,TCOなどからなる透明電極7をスパッタリングにより成膜する。
【0015】
図4および図5は、化合物薄膜太陽電池の他の製造過程を示している。
【0016】
この場合には、積層プリカーサ3のセレン化の熱処理時に、Na成分が光吸収層5に拡散して光電変換効率を向上させることができるように、Mo電極2上にNa2Sからなるアルカリ層8を設けるようにしている。
【0017】
そのアルカル層8は、例えばNa2S・9H2O(硫化ナトリウム9水和物)を重量濃度0.1〜5%で純水に溶かした水溶液にMo電極2の成膜基板を浸して、スピンドライ乾燥させたのち、膜中残留水分の調整のために、大気中150℃で60分間のベーク処理を行うことによって形成する。
【0018】
そして、SLG基板1とMo電極2との間に、SLG基板1に含まれるNa成分が光吸収層5に拡散するのを制御するSiO2,Al2O3などからなる拡散制御層9をCVD法によって形成するようにしている。
【0019】
本発明は、このような構成による化合物薄膜太陽電池にあって、特にバッファ層6として、下部の光吸収層5から上部の透明電極7へ向かって成分の割合がZnSからZnOに連続的または段階的に変化する構造のものとしている。
【0020】
また、本発明では、バッファ層6を形成するに際して、硫化亜鉛ZnSO4、チオ尿素CS(NH2)2、アンモニアNH4OHの3液混合水溶液を用いたCBD法を採用して、その3液混合水溶液に光吸収層5の表面を浸して成膜の反応が進むにしたがってZnSからZnOの成分が生じやすくなるように水溶液の混合比を変えていく方法をとるようにしている。
【0021】
その際、チオ尿素の混入量が他の2液よりも少ない3液混合水溶液に光吸収層5の表面を浸して成膜を行わせたうえで、その水溶液における硫化亜鉛の混入量を連続的または段階的に増加させながら成膜を継続して行わせるようにしている。
【0022】
そして、成膜中、水溶液を加熱してアンモニアを蒸発させるようにしている。
【0023】
通常では、0.16M_ZnSO4、0.6M_CS(NH2)2、7.5M_NH4OHの各水溶液を等量ずつ混合し、その3液混合水溶液中にSLG基板1上にMo電極2および光吸収層5が形成された基材を投入したうえで、アンモニアの揮発を抑制するために容器に蓋をして、30〜120分間浸漬してバッファ層6の成膜を行わせるようにしている。
【0024】
それに対して、本発明では、上記の3液混合水溶液中に基材を投入してバッファ層6の成膜を行わせるに際して、当初はチオ尿素の量を減らしてアンモニアを蒸発させながら成膜を行わせ、反応が進むにしたがってZnの供給源を増加させるべくZnSO4を追加していくことにより、3液混合水溶液をZn(OH)2が生じやすい組成になるように連続的または段階的に変えるようにしている。
【0025】
その具体的なCBD法によるバッファ層6の成膜としては、以下のとおりである。
【0026】
第1段階の処理として、0.16M_ZnSO4、0.6M_CS(NH2)2、7.5M_NH4OHの各水溶液を240ml:160ml:240mlの割合で混合して、80℃のウォータバスにて20分間加熱したのちに、その3液混合水溶液中に基材を投入して、15分間の成膜を行わせる。
【0027】
第2段階の処理として、第1段階の3液混合水溶液にZnSO4・7H2Oを3.68g(0.16M換算で80ml)を加えて、15分間の成膜を行わせる。
【0028】
第3段階の処理として、第2段階の3液混合水溶液にさらにZnSO4・7H2Oを1.76gを加えて、15分間の成膜を行わせる。
【0029】
第4段階の処理として、第3段階の3液混合水溶液にさらにZnSO4・7H2Oを1.76gを加えて、15分間の成膜を行わせる。
【0030】
第5段階の処理として、第1段階から第4段階の処理による合計60分間の成膜を行ったのち、Zn(OH)2の脱水を行ってZnOを得るべく、100〜300℃の温度で30〜300分のあいだ加熱するアニール処理を行う。
【0031】
成膜中は、アンモニアを揮発させてよりZn(OH)2が生成しやすいようにするために、3液混合水溶液の容器に蓋をしないで、開放状態で基材の浸漬を行わせる。
【0032】
CBDによる化学反応としては、最初に、
ZnSO4+xNH4OH→〔Zn(NH3)x〕+SO4+xH2O
ZnSO4+2NH4OH→Zn(OH)2↓+2NH4+SO4
の競争反応が起こる。この反応により生じたZnのアンミン錯体がチオ尿素と反応してZnSが生ずるが、アンモニアの濃度(ペーハーを含む)および3液混合水溶液の各成分の比率などによってその反応の起こりやすさを制御することが可能であると考えられる。
【0033】
このように、本発明によれば、バッファ層6の成分の割合が、下部の光吸収層5から上部の透明電極7へ向かってZnSからZnOに徐々に変化することになる。したがって、光吸収層5に対して接合性の良い特性の安定した高品質なpn接合を得ることができるようになる。そして、透明電極7との間の障壁をなくして、再結合による性能劣化を防止することができるようになる。
【0034】
【効果】
以上、本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池の製造方法にあって、硫化亜鉛ZnSO4、チオ尿素CS(NH2)2、アンモニアNH4OHの3液混合水溶液を用いてCBD法によりバッファ層を形成するに際して、その3液混合水溶液に光吸収層を浸して成膜の反応が進むにしたがってZnSからZnOの成分が生じやすくなるように水溶液の混合比を変えていく手段をとるようにしたもので、接合性の良い特性の安定したpn接合を得ることができるとともに、透明電極との間の障壁をなくして再結合による性能劣化を防止することができるという利点を有している。
【0035】
また、本発明は、裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池において、下部の光吸収層から上部の透明電極へ向かって成分の割合がZnSからZnOに連続的または段階的に変化するバッファ層を設けるようにしたもので、接合性の良い特性の安定したpn接合を得ることができるとともに、透明電極との間の障壁をなくして再結合による性能劣化を防止することができるという利点を有している。
【図面の簡単な説明】
【図1】一般的な化合物半導体による薄膜太陽電池の基本的な構造を示す正断面図である。
【図2】本発明によってSLG基板上に裏面電極および光吸収層を形成するまでの製造過程の一例を示す図である。
【図3】本発明によって光吸収層上にバッファ層および透明電極を形成するまでの製造過程を示す図である。
【図4】本発明によってSLG基板上に拡散制御層、裏面電極、アルカリ層および積層プリカーサを形成するまでの製造過程を示す図である。
【図5】本発明によってSLG基板上に拡散制御層を介して光吸収層、バッファ層および透明電極を形成するまでの製造過程を示す図である。
【符号の説明】
1 SLG基板
2 Mo電極
5 光吸収層
6 バッファ層
7 透明電極
[0001]
[Industrial applications]
The present invention relates to a compound thin-film solar cell in which an n-type buffer layer for heterojunction is provided on a light-absorbing layer made of a p-type compound semiconductor formed on a back electrode, and a method of manufacturing the same.
[0002]
[Prior art]
FIG. 1 shows a basic structure of a thin film solar cell using a general compound semiconductor. That is, a Mo electrode 2 serving as a back electrode (positive electrode) is formed on an SLG (soda lime glass) substrate 1, a p-type light absorbing layer 5 is formed on the Mo electrode 2, and the light absorbing layer is formed. A transparent electrode (minus electrode) 7 is formed on 5 via an n-type buffer layer 6 for heterojunction.
[0003]
As the light absorbing layer 5 in the thin film solar cell using the compound semiconductor, a group I-III-VI group II based on Cu, (In, Ga), or Se can be used as a material capable of obtaining a high energy conversion efficiency exceeding 18% at present. A CIGS thin film of Cu (In + Ga) Se2 is used.
[0004]
Conventionally, as a buffer layer in this type of compound thin film solar cell, a CdS film, which is a II-VI compound semiconductor, is chemically grown from a solution by CBD (Chemical Bath Deposition) to optimize the CIS light absorbing layer. (See US Pat. No. 4,610,091).
[0005]
Conventionally, a ZnS film is formed by a CBD method as a buffer layer capable of obtaining a high-conversion-efficiency hetero-bond that does not contain harmful substance Cd (see JP-A-8-330614). ).
[0006]
[Problems to be solved by the invention]
The problem to be solved is that, in the conventional compound thin film solar cell, since the composition of the light absorption layer, which is a p-type compound semiconductor, and the buffer layer, which is an n-type semiconductor, are completely different, defects are likely to occur in the junction. It is becoming.
[0007]
Further, when the buffer layer is formed by the CBD method, when the light absorption layer is immersed in the solution, the diffusion of the Zn or Cd component into the light absorption layer and the film formation of ZnS or CdS proceed simultaneously, so that the light absorption layer There is a problem that the characteristics tend to vary depending on the crystallinity and the surface state.
[0008]
[Means for Solving the Problems]
The present invention relates to a method for manufacturing a compound thin-film solar cell in which an n-type buffer layer for heterojunction is provided on a light-absorbing layer made of a p-type compound semiconductor formed on a back electrode, When forming a buffer layer by a CBD method using a three-component mixed aqueous solution of ZnSO4, thiourea CS (NH2) 2, and ammonia NH4OH, in order to obtain a stable pn junction having good junction characteristics, The light absorbing layer is immersed in the three-liquid mixed aqueous solution, and a processing means is employed in which the mixing ratio of the aqueous solution is changed so that the component of ZnO is easily generated from ZnS as the film forming reaction proceeds.
[0009]
The present invention also provides a compound thin film solar cell comprising an n-type buffer layer for heterojunction provided on a p-type compound semiconductor light-absorbing layer formed on a back electrode. A buffer layer is provided in which the ratio of the components changes continuously or stepwise from ZnS to ZnO from to the upper transparent electrode.
[0010]
【Example】
2 and 3 show a manufacturing process of the compound thin film solar cell.
[0011]
First, as shown in FIG. 2, a Mo electrode 2 as a back electrode is formed on an SLG (soda lime glass) substrate 1 by sputtering. Next, when the light absorption layer 5 of the CIGS thin film is formed on the Mo electrode 2, the In layer 32 is first formed by the first sputtering process SPT-1 using the In simple target T1, and then the In layer 32 is formed thereon. Then, a Cu-Ga alloy layer 31 is formed by a second sputtering process SPT-2 using a Cu-Ga alloy target T2 to form a laminated precursor 3 composed of the In layer 32 and the Cu-Ga alloy layer 31. I do. Then, in a heat treatment step HEAT, the laminated precursor 3 is heat-treated in a Se atmosphere to produce the light absorption layer 5 of the CIGS thin film.
[0012]
Thus, since the In layer 32 is provided on the Mo electrode 2 and the Cu—Ga alloy layer 31 is provided thereon to form the laminated precursor 3, the element at the interface with the Mo electrode 2 is formed. Can be suppressed from alloying due to solid layer diffusion. Then, when the laminated precursor 3 is heat-treated in a Se atmosphere to be selenized, the In component can be sufficiently diffused to the Mo electrode 2 side, and Ga having a low diffusion rate is present at the interface with the Mo electrode 2. The light absorption layer 5 of CIGS made of high quality P-type semiconductor Cu (In + Ga) Se2 with uniform crystal is formed without segregation to form a Cu-Ga-Se layer with poor crystallinity. be able to.
[0013]
Therefore, segregation of a different layer (Cu—Ga—Se layer) having poor crystallinity, structural brittleness, and conductivity at the interface with the Mo electrode 2 does not occur, and the adhesion with the Mo electrode 2 does not occur. It is possible to obtain a light absorbing layer of high quality which is structurally strong and has high quality and does not deteriorate the battery characteristics due to leakage between cells.
[0014]
Next, as shown in FIG. 3, an n-type buffer layer 6 is formed to form a heterojunction with the p-type light absorbing layer 5. Then, a transparent electrode 7 made of ZnO: Al, TCO or the like is formed on the buffer layer 6 by sputtering.
[0015]
4 and 5 show another manufacturing process of the compound thin film solar cell.
[0016]
In this case, at the time of heat treatment for selenization of the laminated precursor 3, the alkali layer 8 made of Na 2 S is formed on the Mo electrode 2 so that the Na component can be diffused into the light absorbing layer 5 to improve the photoelectric conversion efficiency. It is provided.
[0017]
The alkali layer 8 is formed by immersing the film-forming substrate of the Mo electrode 2 in an aqueous solution in which Na2S.9H2O (sodium sulfide nonahydrate) is dissolved in pure water at a weight concentration of 0.1 to 5% and spin-dried. After that, the film is formed by performing a baking process at 150 ° C. in the air for 60 minutes in order to adjust moisture remaining in the film.
[0018]
Then, between the SLG substrate 1 and the Mo electrode 2, a diffusion control layer 9 made of SiO2, Al2O3, or the like for controlling the diffusion of the Na component contained in the SLG substrate 1 into the light absorption layer 5 is formed by a CVD method. Like that.
[0019]
The present invention relates to a compound thin film solar cell having such a configuration, and particularly as a buffer layer 6, a component ratio is continuously or stepwise from ZnS to ZnO from a lower light absorbing layer 5 to an upper transparent electrode 7. The structure changes dynamically.
[0020]
In the present invention, when the buffer layer 6 is formed, a CBD method using a three-liquid mixed aqueous solution of zinc sulfide ZnSO 4, thiourea CS (NH 2) 2, and ammonia NH 4 OH is adopted, and the three-liquid mixed aqueous solution is mixed with light. A method is employed in which the mixing ratio of the aqueous solution is changed so that the surface of the absorption layer 5 is immersed and the components of ZnO are easily generated from ZnS as the film formation reaction proceeds.
[0021]
At this time, after the surface of the light absorbing layer 5 is immersed in a three-liquid mixed aqueous solution in which the amount of thiourea mixed is smaller than that of the other two liquids to form a film, the amount of zinc sulfide mixed in the aqueous solution is continuously adjusted. Alternatively, the film formation is continuously performed while increasing stepwise.
[0022]
During the film formation, the aqueous solution is heated to evaporate the ammonia.
[0023]
Normally, aqueous solutions of 0.16M_ZnSO4, 0.6M_CS (NH2) 2, and 7.5M_NH4OH are mixed in equal amounts, and the Mo electrode 2 and the light absorbing layer 5 are formed on the SLG substrate 1 in the three-liquid mixed aqueous solution. After charging the base material, the container is covered with a lid in order to suppress the volatilization of ammonia, and immersed for 30 to 120 minutes to form the buffer layer 6.
[0024]
On the other hand, in the present invention, when the substrate is put into the above-mentioned three-liquid mixed aqueous solution to form the buffer layer 6, the amount of thiourea is initially reduced and the film is formed while evaporating the ammonia. The three-solution mixed aqueous solution is changed continuously or stepwise so that Zn (OH) 2 is easily generated by adding ZnSO 4 to increase the supply source of Zn as the reaction proceeds. Like that.
[0025]
The specific formation of the buffer layer 6 by the CBD method is as follows.
[0026]
As a first stage treatment, aqueous solutions of 0.16M_ZnSO4, 0.6M_CS (NH2) 2, and 7.5M_NH4OH are mixed at a ratio of 240ml: 160ml: 240ml, and heated in a water bath at 80 ° C for 20 minutes. Then, the substrate is put into the three-liquid mixed aqueous solution, and a film is formed for 15 minutes.
[0027]
As the second-stage treatment, 3.68 g (80 ml in terms of 0.16 M) of ZnSO4.7H2O is added to the first-stage three-liquid mixed aqueous solution, and a film is formed for 15 minutes.
[0028]
As the third-stage treatment, 1.76 g of ZnSO4.7H2O is further added to the three-liquid mixed aqueous solution of the second stage, and a film is formed for 15 minutes.
[0029]
As the fourth stage treatment, 1.76 g of ZnSO4.7H2O is further added to the three-stage mixed aqueous solution of the third stage, and a film is formed for 15 minutes.
[0030]
As a fifth stage process, after performing film formation for a total of 60 minutes by the first to fourth stage processes, Zn (OH) 2 is dehydrated to obtain ZnO at a temperature of 100 to 300 ° C. in order to obtain ZnO. An annealing process for heating is performed for 30 to 300 minutes.
[0031]
During the film formation, the base is immersed in an open state without covering the container of the three-part mixed aqueous solution in order to volatilize the ammonia so that Zn (OH) 2 is more easily generated.
[0032]
First, as a chemical reaction by CBD,
ZnSO4 + xNH4OH → [Zn (NH3) x] 2 + SO4 2 + xH2O
ZnSO4 + 2NH4OH → Zn (OH) 2 ↓ + 2NH4 + SO4 2
A competitive reaction occurs. The ammine complex of Zn produced by this reaction reacts with thiourea to form ZnS, and the likelihood of the reaction is controlled by the concentration of ammonia (including pH) and the ratio of each component of the three-component aqueous solution. It is thought that it is possible.
[0033]
As described above, according to the present invention, the ratio of the components of the buffer layer 6 gradually changes from ZnS to ZnO from the lower light absorbing layer 5 to the upper transparent electrode 7. Therefore, it is possible to obtain a stable and high-quality pn junction with good bonding properties to the light absorbing layer 5. Then, the barrier between the transparent electrode 7 is eliminated, and the performance degradation due to the recombination can be prevented.
[0034]
【effect】
As described above, the present invention relates to a method for manufacturing a compound thin-film solar cell comprising an n-type buffer layer for heterojunction provided on a light-absorbing layer made of a p-type compound semiconductor formed on a back electrode. When a buffer layer is formed by a CBD method using a three-liquid mixed aqueous solution of zinc sulfide ZnSO4, thiourea CS (NH2) 2, and ammonia NH4OH, the light absorbing layer is immersed in the three-liquid mixed aqueous solution, and the film forming reaction proceeds. Means to change the mixing ratio of the aqueous solution so that the component of ZnO is easily generated from ZnS in accordance with the formula (1). A stable pn junction with good bonding properties can be obtained, and There is an advantage that the barrier between them can be eliminated and performance degradation due to recombination can be prevented.
[0035]
The present invention also provides a compound thin-film solar cell comprising an n-type buffer layer for heterojunction provided on a p-type compound semiconductor light-absorbing layer formed on a back electrode. A buffer layer in which the proportion of components changes continuously or stepwise from ZnS to ZnO from the top to the upper transparent electrode is provided, so that a stable pn junction with good junction characteristics can be obtained. In addition, there is an advantage that performance degradation due to recombination can be prevented by eliminating a barrier between the transparent electrode.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a basic structure of a thin film solar cell using a general compound semiconductor.
FIG. 2 is a diagram showing an example of a manufacturing process up to forming a back electrode and a light absorbing layer on an SLG substrate according to the present invention.
FIG. 3 is a view showing a manufacturing process until a buffer layer and a transparent electrode are formed on a light absorbing layer according to the present invention.
FIG. 4 is a diagram showing a manufacturing process up to the formation of a diffusion control layer, a back electrode, an alkali layer, and a laminated precursor on an SLG substrate according to the present invention.
FIG. 5 is a view showing a manufacturing process until a light absorption layer, a buffer layer, and a transparent electrode are formed on a SLG substrate via a diffusion control layer according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 SLG substrate 2 Mo electrode 5 Light absorption layer 6 Buffer layer 7 Transparent electrode

Claims (5)

裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池の製造方法であって、硫化亜鉛ZnSO4、チオ尿素CS(NH2)2、アンモニアNH4OHの3液混合水溶液を用いてCBD法によりバッファ層を形成するに際して、その3液混合水溶液に光吸収層を浸して成膜の反応が進むにしたがってZnSからZnOの成分が生じやすくなるように水溶液の混合比を変えていくようにしたことを特徴とする化合物薄膜太陽電池の製造方法。A method for manufacturing a compound thin-film solar cell in which an n-type buffer layer for heterojunction is provided on a light-absorbing layer made of a p-type compound semiconductor formed on a back electrode, comprising: zinc sulfide ZnSO4; When a buffer layer is formed by a CBD method using a three-component aqueous solution of CS (NH 2) 2 and ammonia NH 4 OH, a light absorbing layer is immersed in the three-component aqueous solution and ZnS is converted to ZnO as the film forming reaction proceeds. A method for producing a compound thin-film solar cell, wherein the mixing ratio of an aqueous solution is changed so that components are easily generated. チオ尿素の混入量が他の2液よりも少ない3液混合水溶液に光吸収層を浸して成膜を行わせたうえで、その水溶液における硫化亜鉛の混入量を連続的または段階的に増加させながら成膜を行わせるようにしたことを特徴とする請求項1の記載による化合物薄膜太陽電池の製造方法。The film is formed by immersing the light absorbing layer in a three-component mixed aqueous solution in which the amount of thiourea mixed is smaller than the other two solutions, and then the amount of zinc sulfide mixed in the aqueous solution is increased continuously or stepwise. 2. The method for manufacturing a compound thin film solar cell according to claim 1, wherein the film is formed while the film is formed. 成膜中、水溶液を加熱してアンモニアを蒸発させるようにしたことを特徴とする請求項1の記載による化合物薄膜太陽電池の製造方法。2. The method according to claim 1, wherein the aqueous solution is heated to evaporate the ammonia during the film formation. 成膜終了後に脱水のためのアニール処理を行うようにしたことを特徴とする請求項1の記載による化合物薄膜太陽電池の製造方法。2. The method according to claim 1, wherein an annealing process for dehydration is performed after the film formation is completed. 裏面電極上に形成されたp型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池において、そのバッファ層が下部の光吸収層から上部の透明電極へ向かって成分の割合がZnSからZnOに連続的または段階的に変化するものであることを特徴とする化合物薄膜太陽電池。In a compound thin-film solar cell in which an n-type buffer layer for heterojunction is provided on a light-absorbing layer made of a p-type compound semiconductor formed on a back electrode, the buffer layer extends from a lower light-absorbing layer to an upper part. Wherein the proportion of the component changes continuously or stepwise from ZnS to ZnO toward the transparent electrode of (1).
JP2002237158A 2002-07-12 2002-07-12 Method for producing compound thin film solar cell Expired - Fee Related JP4264801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237158A JP4264801B2 (en) 2002-07-12 2002-07-12 Method for producing compound thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237158A JP4264801B2 (en) 2002-07-12 2002-07-12 Method for producing compound thin film solar cell

Publications (2)

Publication Number Publication Date
JP2004047916A true JP2004047916A (en) 2004-02-12
JP4264801B2 JP4264801B2 (en) 2009-05-20

Family

ID=31712080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237158A Expired - Fee Related JP4264801B2 (en) 2002-07-12 2002-07-12 Method for producing compound thin film solar cell

Country Status (1)

Country Link
JP (1) JP4264801B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510310A (en) * 2004-08-18 2008-04-03 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of applying a zinc sulfide buffer layer by chemical bath deposition on an absorption layer of a semiconductor substrate, in particular a chalcopyrite thin film solar cell
WO2009069582A1 (en) * 2007-11-30 2009-06-04 Showa Shell Sekiyu K.K. Laminated structure for cis-family solar cell, and integrated structure and manufacturing method for cis-family thin-film solar cell
WO2010147392A3 (en) * 2009-06-16 2011-04-14 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
KR101081300B1 (en) 2009-06-30 2011-11-08 엘지이노텍 주식회사 Solar cell and method of fabricating the same
WO2011158899A1 (en) * 2010-06-16 2011-12-22 昭和シェル石油株式会社 Cis-based thin film solar cell
WO2012014967A1 (en) * 2010-07-28 2012-02-02 京セラ株式会社 Photoelectric conversion device, method for producing same, and photoelectric conversion module
JP2012054261A (en) * 2010-08-31 2012-03-15 Kyocera Corp Photoelectric conversion device, method of manufacturing the same, and photoelectric conversion module
WO2012153641A1 (en) * 2011-05-06 2012-11-15 株式会社 東芝 Photoelectric conversion element and solar cell
US8373062B2 (en) 2009-03-13 2013-02-12 Tdk Corporation Solar cell, and method for producing the solar cell
JP2013539242A (en) * 2010-10-11 2013-10-17 エルジー イノテック カンパニー リミテッド Solar cell and manufacturing method thereof
US8658890B2 (en) 2009-02-18 2014-02-25 Tdk Corporation Solar cell and method of manufacturing solar cell
WO2014030412A1 (en) * 2012-08-24 2014-02-27 日東電工株式会社 Compound solar cell and method for manufacturing same
JP2014165407A (en) * 2013-02-27 2014-09-08 Kyocera Corp Photoelectric conversion device, manufacturing method thereof and photoelectric conversion module
EP2804220A3 (en) * 2013-05-16 2015-01-14 Samsung SDI Co., Ltd. Method of manufacturing thin film solar cell, device for manufacturing thin film solar cell, and thin film solar cell including buffer layer manufactured by the method
EP2768030A3 (en) * 2013-02-19 2015-01-14 Samsung SDI Co., Ltd. Solar cell and method of manufacturing the same
JP2016012602A (en) * 2014-06-27 2016-01-21 京セラ株式会社 Photoelectric conversion device
KR101916212B1 (en) 2012-12-14 2018-11-07 엘지이노텍 주식회사 Solar cell and method of fabricating the same
CN108922927A (en) * 2018-06-21 2018-11-30 华南师范大学 A kind of stable compound semiconductor sun photodegradation aquatic products hydrogen electronic device, electrode system and preparation method thereof
DE102012204676B4 (en) 2012-03-23 2019-02-21 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Chalcopyrite thin film solar cell with Zn (S, O) buffer layer and associated manufacturing process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151261A (en) 2010-01-22 2011-08-04 Fujifilm Corp Method of manufacturing buffer layer, and photoelectric conversion device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510310A (en) * 2004-08-18 2008-04-03 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of applying a zinc sulfide buffer layer by chemical bath deposition on an absorption layer of a semiconductor substrate, in particular a chalcopyrite thin film solar cell
WO2009069582A1 (en) * 2007-11-30 2009-06-04 Showa Shell Sekiyu K.K. Laminated structure for cis-family solar cell, and integrated structure and manufacturing method for cis-family thin-film solar cell
US8691619B2 (en) 2007-11-30 2014-04-08 Showa Shell Sekiyu, K.K. Laminated structure for CIS based solar cell, and integrated structure and manufacturing method for CIS based thin-film solar cell
US8658890B2 (en) 2009-02-18 2014-02-25 Tdk Corporation Solar cell and method of manufacturing solar cell
US8373062B2 (en) 2009-03-13 2013-02-12 Tdk Corporation Solar cell, and method for producing the solar cell
WO2010147392A3 (en) * 2009-06-16 2011-04-14 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
KR101081194B1 (en) 2009-06-16 2011-11-07 엘지이노텍 주식회사 Fabricating device of solar cell and method of fabricating using the same
CN102460717A (en) * 2009-06-16 2012-05-16 Lg伊诺特有限公司 Solar cell and method of fabricating the same
KR101081300B1 (en) 2009-06-30 2011-11-08 엘지이노텍 주식회사 Solar cell and method of fabricating the same
WO2011158899A1 (en) * 2010-06-16 2011-12-22 昭和シェル石油株式会社 Cis-based thin film solar cell
JP2012004287A (en) * 2010-06-16 2012-01-05 Showa Shell Sekiyu Kk Cis-based thin film solar cell
JPWO2012014967A1 (en) * 2010-07-28 2013-09-12 京セラ株式会社 PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION MODULE
US20130112235A1 (en) * 2010-07-28 2013-05-09 Kyocera Corporation Photoelectric conversion device, method of manufacturing photoelectric conversion device, and photoelectric conversion module
WO2012014967A1 (en) * 2010-07-28 2012-02-02 京セラ株式会社 Photoelectric conversion device, method for producing same, and photoelectric conversion module
JP2012054261A (en) * 2010-08-31 2012-03-15 Kyocera Corp Photoelectric conversion device, method of manufacturing the same, and photoelectric conversion module
JP2013539242A (en) * 2010-10-11 2013-10-17 エルジー イノテック カンパニー リミテッド Solar cell and manufacturing method thereof
JP2012235024A (en) * 2011-05-06 2012-11-29 Toshiba Corp Photoelectric conversion element and solar cell
WO2012153641A1 (en) * 2011-05-06 2012-11-15 株式会社 東芝 Photoelectric conversion element and solar cell
DE102012204676B4 (en) 2012-03-23 2019-02-21 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Chalcopyrite thin film solar cell with Zn (S, O) buffer layer and associated manufacturing process
WO2014030412A1 (en) * 2012-08-24 2014-02-27 日東電工株式会社 Compound solar cell and method for manufacturing same
JP2014045000A (en) * 2012-08-24 2014-03-13 Nitto Denko Corp Compound solar cell and method for manufacturing the same
US10304978B2 (en) 2012-08-24 2019-05-28 Nitto Denko Corporation Compound solar cell and production method therefor
KR101916212B1 (en) 2012-12-14 2018-11-07 엘지이노텍 주식회사 Solar cell and method of fabricating the same
EP2768030A3 (en) * 2013-02-19 2015-01-14 Samsung SDI Co., Ltd. Solar cell and method of manufacturing the same
JP2014165407A (en) * 2013-02-27 2014-09-08 Kyocera Corp Photoelectric conversion device, manufacturing method thereof and photoelectric conversion module
EP2804220A3 (en) * 2013-05-16 2015-01-14 Samsung SDI Co., Ltd. Method of manufacturing thin film solar cell, device for manufacturing thin film solar cell, and thin film solar cell including buffer layer manufactured by the method
JP2016012602A (en) * 2014-06-27 2016-01-21 京セラ株式会社 Photoelectric conversion device
CN108922927A (en) * 2018-06-21 2018-11-30 华南师范大学 A kind of stable compound semiconductor sun photodegradation aquatic products hydrogen electronic device, electrode system and preparation method thereof
CN108922927B (en) * 2018-06-21 2020-07-14 华南师范大学 Stable compound semiconductor sunlight decomposition water hydrogen production electronic device, electrode system and preparation method thereof

Also Published As

Publication number Publication date
JP4264801B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4264801B2 (en) Method for producing compound thin film solar cell
US7018858B2 (en) Light absorbing layer producing method
JP4012957B2 (en) Method for producing compound thin film solar cell
Wang Progress in thin film solar cells based on Cu2ZnSnS4
US5112410A (en) Cadmium zinc sulfide by solution growth
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
KR20090106513A (en) Doping techniques for group ?????? compound layers
JP2003282909A (en) Compound thin solar cell and manufacturing method therefor
JP2003318424A (en) Thin film solar battery and method of manufacturing same
CN107623046B (en) Post-processing method of copper-indium-gallium-selenium absorption layer and solar cell preparation method based on post-processing method
JP4320529B2 (en) Compound thin film solar cell and manufacturing method thereof
TW201108425A (en) Solar cell and fabrication method thereof
WO2011158899A1 (en) Cis-based thin film solar cell
Baid et al. A comprehensive review on Cu 2 ZnSnS 4 (CZTS) thin film for solar cell: forecast issues and future anticipation
JP2015508239A (en) Compound semiconductor solar cell
Saha A Status Review on Cu2ZnSn (S, Se) 4‐Based Thin‐Film Solar Cells
JP4055064B2 (en) Method for manufacturing thin film solar cell
CN110611002A (en) Preparation method of solar cell with P-doped Mo electrode
CN109638096A (en) A kind of compound semiconductor thin film solar cell preparation method
JP2000332273A (en) Solar battery and manufacture thereof
CN103469170B (en) A kind of sputtering target for thin-film solar cells
CN109671803A (en) A kind of thin-film solar cells preparation method
CN104600144A (en) High-efficiency copper indium gallium selenium thin-film photocell based on bulk heterojunction structure light absorption layer
TW201427054A (en) Photoelectric conversion element and method of producing the same, manufacturing method for buffer layer of photoelectric conversion element, and solar cell
KR20230032213A (en) Flexible thin film solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

R150 Certificate of patent or registration of utility model

Ref document number: 4264801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees