JP2004047753A - Solar cell with condensing element - Google Patents

Solar cell with condensing element Download PDF

Info

Publication number
JP2004047753A
JP2004047753A JP2002203487A JP2002203487A JP2004047753A JP 2004047753 A JP2004047753 A JP 2004047753A JP 2002203487 A JP2002203487 A JP 2002203487A JP 2002203487 A JP2002203487 A JP 2002203487A JP 2004047753 A JP2004047753 A JP 2004047753A
Authority
JP
Japan
Prior art keywords
light
solar cell
transmitting member
collecting element
parabolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002203487A
Other languages
Japanese (ja)
Inventor
Masahito Yoshikawa
吉川 雅人
Harutsura Tazawa
田沢 晴列
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002203487A priority Critical patent/JP2004047753A/en
Publication of JP2004047753A publication Critical patent/JP2004047753A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell provided with a built-in condensing element that is inexpensive and simple in structure, and is capable of guiding most of the sunlight incident on the plane of incidence to the solar cell. <P>SOLUTION: The solar cell 2 is fitted to the one end face of the condensing element 1. The condensing element 1 is formed of a light-transmitting member 3, having a profile shape nearly corresponding to a solid composed of a parabola rotating on its center axis n, and the large-diameter end face of the light-transmitting member 3 is made to serve as the plane of incidence 4 for the sunlight s, and a small-diameter end face of the light-transmitting member 3 is made to serve as the mounting end face 5, where the solar cell 2 is mounted. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は集光素子付き太陽電池に関し、とくに簡単かつ安価な構造にして、集光効率を高める技術を提案するものである。
【0002】
【従来の技術】
太陽電池のための集光装置としては、樋型平面鏡、樋型複合放物面鏡等の反射鏡を用いたものの他、凸レンズ、フレネルレンズ等のレンズを用いたものが従来から広く使用されている。
【0003】
【発明が解決しようとする課題】
しかるに、このような従来装置によってなお、太陽光線を、十分に満足できるほどに高い効率で太陽電池に集光することは困難であった。
そこでこの発明は、入射面に入射された太陽光線のほとんどを、太陽電池に効率良く導くことを可能とした、簡単かつ安価な構造の集光素子を組付けた、集光素子付き太陽電池を提供する。
【0004】
【課題を解決するための手段】
この発明に係る集光素子付き太陽電池は、集光素子の一端面に太陽電池を取付けたものであり、その集光素子を、中心軸線の周りの放物線回転体とほぼ対応する外輪郭形状を有するパラボラ状の透光部材、好ましくは無色透明部材により構成し、この透光部材の大径端を太陽光線の入射面とし、小径端を太陽電池の取付面としたものである。
【0005】
ここで透光部材は、たとえば、ポリスチレン、スチレン・メチルメタクリレート共重合体、アクリル樹脂、ポリメチルペンテン、アリルグリコールカーボネート樹脂、スピラン樹脂、アモルファスポリオレフィン、ポリカーボネート、ポリアミド、ポリアリレート、ポリサルホン、ポリアリルサルホン、ポリエーテルサルホン、ポリエーテルイミド、ポリイミド、ジアリルフタレート、フッ素樹脂、ポリエステルカーボネート、ノルボルネン系樹脂、脂環式アクリル樹脂、シリコーン樹脂、アクリルゴム、シリコーンゴム等のポリマー材料の一種類または、二種類以上の組合わせをもって構成することができる他、ガラス等によって構成することもできる。
【0006】
このような太陽電池では、透光部材の入射面に入射した太陽光線を、それの外輪郭面で効率良く反射させて小径端に取付けた太陽電池に集光させることにより、簡単にして安価な集光素子構造の下で、太陽光線を、起電力の発生のために、従来技術に比してはるかに有効に利用することができる。
【0007】
また、中心軸線に直交する横断面輪郭が円形をなすこの太陽電池では、それの複数個を同一平面内で整列配置させた場合の、集光素子間を通る洩れ光線を採光のために利用することができる。
【0008】
ここで、太陽電池としては、単結晶シリコン太陽電池、アモルファスシリコン太陽電池、化合物半導体太陽電池、有機半導体太陽電池等を用いることができ、なかでも低コスト化のためには有機半導体太陽電池を用いることが好ましく、とりわけ、高い変換効率のためには色素増感形太陽電池を用いることが好ましい。
【0009】
この発明に係る他の集光素子付き太陽電池は、これも集光素子の一端面に太陽電池を取付けたものであり、その集光素子を、パラボラ状の透光部材と楔状の透光部材との連結構造体によって構成し、パラボラ状の透光部材を、中心軸線の周りの放物線回転体とほぼ対応する外輪郭形状を有するものとし、この透光部材の大径端を、楔状の透光部材との連結面とするとともに、小径端を太陽電池の取付面とする一方で、楔状の透光部材を、側面形状がほぼ直角三角形をなすものとして、この透光部材の、相互に直交する一方の面を太陽光線の入射面とするとともに、他方の面を、パラボラ状の透光部材との連結面とし、残りの傾斜面を、入射した太陽光線の反射面としたものである。
【0010】
ここで、パラボラ状の透光部材と楔状の透光部材とはいずれも、無色透明部材とすることが好ましく、それら両者は、事後的に接合することにより、または一体構成によって連続構造体とすることができる。ところで、両透光部材を事後的に接合する場合には、接合界面での光の屈折等によって光が外部に洩出するのを防止するべく、アクリル系、エポキシ系、ウレタン系その他の、光硬化型樹脂または熱硬化型樹脂のような無色透明の接着剤を用いることが好ましい。なお、両者を一体構成する後者にあっては、上述した太陽電池において、それぞれの透光部材の相互の連結面は仮想線として存在することになる。
【0011】
この集光素子付き太陽電池では、これもまた、集光素子の、簡単にして安価な構造の下で、楔状の透光部材の入射面に入射された太陽光線を十分に集光するとともに、それをさらにパラボラ状透光部材で集光して太陽電池に入射させることにより、そこへの供給エネルギを増大させて、電池の起電力を大きく高めることができる。
【0012】
ところで、楔状の透光部材の反射面に、それの幅方向に延びる複数本のV字状溝を全体的に設けた場合には、入射面に対する反射面の傾き角度を所要に応じて選択して、いいかえれば、十分広い入射面面積を確保してなお、入射した太陽光線の反射効率、ひいては、集光効率を大きく向上させることができる。
【0013】
また、反射面としての傾斜面に、シースルー型の太陽電池を取付けた場合には、反射面にV字状溝を設けると否とにかかわらず、その反射面からの洩出光線をもまた起電力の発生のために有効に利用して、太陽光線の利用効率を一層高めることができる。しかもここでは、太陽電池をシースルー型とすることにより、反射面からの洩出光線を採光のためにも利用することができる。
【0014】
なお、反射面としての傾斜面に太陽電池を取付けることに代えて、その傾斜面に、塗膜層、貼着層、蒸着層等とすることができる反射層を設けた場合には、太陽光線の、その反射面からの洩出を効果的に防止して集光効率をより一層高めることができる。
【0015】
【発明の実施の形態】
以下にこの発明の実施の形態を図面に示すところに基づいて説明する。
図1はこの発明の実施形態を示す斜視図であり、図中1は集光素子を、2はその一端面に取付けた太陽電池をそれぞれ示す。
【0016】
ここで、集光素子1は、中心軸線nの周りの放物線回転体とほぼ対応する外輪郭形状を有するパラボラ状の中実透光部材3、好ましくは無色の中実透明部材によって構成してなり、それの大径端を太陽光線の入射面4として、そして小径端を、太陽電池2の取付面5として機能させるものである。
【0017】
ここにおけるこの透光部材3は、前述したようなポリマー材料、ガラス等によって構成することができ、また、太陽電池2は、先に述べた単結晶シリコン太陽電池、アモルファスシリコン太陽電池、化合物半導体太陽電池、有機半導体太陽電池等のいずれかとすることができる。
【0018】
そして、このような太陽電池2の、前記取付面5への取付けは、これも前述したように、アクリル系、エポキシ系、ウレタン系等の無色透明の接着剤を用い、接合界面で光の屈折が生じないように行うことが、太陽電池2への光線の入射ロス、その光線の、外部への屈折洩出等を防ぐ上で好ましい。
【0019】
このように構成してなる集光素子付き太陽電池6によれば、集光素子1の入射面4から入射した太陽光線sを、集光素子1のパラボラ状の外輪郭面で反射させて、それの多くの部分を太陽電池2に効率よく集光させることにより、太陽光線sの利用効率を大きく高めることができる。
【0020】
図2は、以上のような集光素子付き太陽電池6の複数個を、入射面4を面一にして、図の前後左右方向に整列させて配置してなるモジュール7の一例を示す。
このようなモジュール7を単位として製造、組立て等を行う場合には、各種のコストを有利に低減させることができる。
加えてこのモジュール7では、横断面輪郭形状が円形をなすパラボラ状の集光素子1のそれぞれが、相互の隣接面間に隙間を画成するので、それらの隙間から下方へ洩れる太陽光線を採光のために有効に利用することができる。
【0021】
図3は他の実施形態を示す底面斜視図であり、これは、先に述べた集光素子と同様のパラボラ状の透光部材を集光素子の一部とするものである。
すなわち、ここにおける集光素子11は、相互に接合されたまたは一体構成された、パラボラ状の透光部材12と、楔状の透光部材13との連結構造体により構成してなる。
【0022】
ここで、パラボラ状の透光部材12、好ましくは無色の透明部材は、前述した中実透光部材3と同様、中心軸線nの周りの放物線回転体とほぼ対応する外輪郭形状を有するものであり、それの大径端を、楔状の透光部材13との連結面14とし、小径端を、太陽電池15の取付面16として機能させるものであって、連結面14の、楔状透光部材13への連結および、取付面16への太陽電池15の取付けはいずれも、前述したような、アクリル系、エポキシ系、ウレタン系等の無色透明の接着剤を用いて行うことができる。
【0023】
また、楔状の透光部材13、これも好ましくは、無色の透明部材は,前述したパラボラ状透光部材3と同様の材料によって構成することができ、ほぼ直角三角形状の側面形状を有する。ここでは、かかる透光部材13の、相互に直交する一方の面を、太陽光線sの入射面17とするとともに、他方の面を、パラボラ状透光部材12、直接的にはそれの連結面14のための連結面18とし、残りの傾斜面を、入射した太陽光線sの反射面19とする。なおここにおけるそれぞれの連結面14,18は、図示のように、楔状透光部材13の連結面18を、パラボラ状透光部材12のそれよりも相当大きくすることも可能であるが、楔状透光部材13で集光した太陽光線sの利用効率をより高めるためには、連結面18の方形輪郭形状を、円形の連結面14に外接する方形形状とすることが好ましい。
【0024】
このように構成してなる集光素子付き太陽電池20では、入射面17から入射した太陽光線sを反射面19で反射して第1段階の集光を行い、次いで、その集光光線をパラボラ状の透光部材12に入射させ、そこで、パラボラ状の外輪郭面に反射させて第2段階の集光を行うことにより、太陽電池15への供給エネルギを大きく増大させることができる。
【0025】
図4は、このように構成してなる太陽電池20の複数個を、楔状透光部材13の幅方向および前後方向に整列させて配設してなるモジュール21を例示する。
なおこの場合、太陽電池20の整列個数は適宜に選択することができる。
【0026】
図5は、図3に示す太陽電池の変更例を示す側面図であり、これは、透光部材13の反射面19に、透光部材13の幅方向に延びる、断面形状がほぼV字状をなすV字状溝22の複数本を、その全体にわたって、たとえば均等に設けたものである。
これによれば、各V字状溝22の、パラボラ状透光部材12側に向く溝壁の延長線と、入射面17に立てた法線の延長線との交角を、30〜50°の範囲、たとえばほぼ45°とすることで、その入射面17に垂直に入射される太陽光線を、すぐれた反射効率をもって透光部材12に入射させることができる。
【0027】
従ってここでは、V字状溝22の配設密度を高めることで、太陽電池15への入射光量を所要に応じて高めることができ、また、溝壁面による、入射光線の所期した通りの反射をもたらし得る限りにおいて、入射面17に対する反射面19の傾き角を所要に応じて選択することができるので、透光部材12の太陽電池取付面16、ひいては、太陽電池それ自体の表面積に対する、太陽光線の入射面表面積を十分大きくして、その太陽電池15への供給エネルギをより一層増大させることができる。
【0028】
以上、パラボラ状の透光部材12だけに太陽電池15を設ける場合について説明したが、図6に例示するように、楔状透光部材13の反射面19に他の太陽電池23、好ましくはシースルー型の太陽電池を取付けることもでき、これによれば、反射面19にV字状溝22を設けると否とにかかわらず、その反射面19からの洩出光線をもまた、太陽電池23の起電力の発生に有効に利用することができるので、太陽光線sの利用効率をより一層高めることができ、また、その太陽電池23をシースルー型とした場合には、それを透過した太陽光線sを採光の目的に利用することができる。
なお、図6(a)は単一の集光素子付き太陽電池20を示し、図6(b)はそれの所要の複数個を合体させてなるモジュールを示す。
【0029】
ところで、このような太陽電池23に代えて、反射面19に、塗膜層、貼着層、蒸着層等にて形成することができる反射層を設けた場合には、V字状溝22の有無にかかわらず、太陽光線sをパラボラ状透光部材側へ一層効率よく反射させることができるので、反射面19に、シースルー型の太陽電池等を取付けるまでもなく、太陽光線sをより有効に利用することができる。
【0030】
【発明の効果】
かくしてこの発明によれば、太陽電池を取付けられるパラボラ状の透光部材によって、または、パラボラ状の透光部材と、側面形状がほぼ直角三角形状をなす楔状の透光部材との連結構造体によって集光素子を構成して、それぞれの透光部材をともに集光レンズの如くに機能させることにより、簡単にして安価な構造の下で、太陽光線の集光効率を、従来技術に比して大きく向上させることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す斜視図である。
【図2】太陽電池モジュールを示す斜視図である。
【図3】他の実施形態を示す斜視図である。
【図4】他の太陽電池モジュールを示す斜視図である。
【図5】他の実施形態を示す側面図である。
【図6】反射面への太陽電池の、取付け例を示す図である。
【符号の説明】
1,11 集光素子
2,15,23 太陽電池
3,12 パラボラ状の透光部材
4,17 入射面
5,16 取付面
6,20 集光素子付き太陽電池
7,21 モジュール
13 楔状の透光部材
14,18 連結面
19 反射面
22 V字状溝
n 中心軸線
s 太陽光線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell with a light-collecting element, and proposes a technique for improving the light-collecting efficiency with a particularly simple and inexpensive structure.
[0002]
[Prior art]
As condensing devices for solar cells, those using reflecting mirrors such as trough-shaped plane mirrors and trough-shaped compound parabolic mirrors, as well as those using lenses such as convex lenses and Fresnel lenses have been widely used. I have.
[0003]
[Problems to be solved by the invention]
However, it was still difficult to concentrate sunlight on the solar cell with a sufficiently high efficiency by such a conventional device.
Therefore, the present invention provides a solar cell with a light-collecting element, in which a light-collecting element having a simple and inexpensive structure is installed, which can efficiently guide most of the solar rays incident on the incident surface to the solar cell. provide.
[0004]
[Means for Solving the Problems]
The solar cell with a light-collecting element according to the present invention has a solar cell attached to one end face of the light-collecting element, and the light-collecting element has an outer contour substantially corresponding to a parabolic rotator around a central axis. The light-transmitting member is formed of a parabolic light-transmitting member, preferably a colorless and transparent member. The light-transmitting member has a large-diameter end used as a solar light incident surface and a small-diameter end used as a solar cell mounting surface.
[0005]
Here, the light transmitting member is, for example, polystyrene, styrene / methyl methacrylate copolymer, acrylic resin, polymethylpentene, allyl glycol carbonate resin, spirane resin, amorphous polyolefin, polycarbonate, polyamide, polyarylate, polysulfone, polyallylsulfone. , Polyethersulfone, polyetherimide, polyimide, diallyl phthalate, fluorocarbon resin, polyester carbonate, norbornene resin, alicyclic acrylic resin, silicone resin, acrylic rubber, silicone rubber, etc. In addition to being configured with the above combinations, it can also be configured with glass or the like.
[0006]
In such a solar cell, the solar light incident on the incident surface of the light transmitting member is efficiently reflected by the outer contour surface thereof and condensed on the solar cell attached to the small-diameter end, thereby making it simple and inexpensive. Under the light-collecting element structure, solar rays can be used much more efficiently for generating electromotive force than the prior art.
[0007]
Also, in this solar cell having a circular cross-sectional profile orthogonal to the central axis, a plurality of the solar cells are arranged for alignment in the same plane, and the leaked light passing between the light-collecting elements is used for lighting. be able to.
[0008]
Here, as the solar cell, a single crystal silicon solar cell, an amorphous silicon solar cell, a compound semiconductor solar cell, an organic semiconductor solar cell, or the like can be used. Among them, an organic semiconductor solar cell is used for cost reduction. It is particularly preferable to use a dye-sensitized solar cell for high conversion efficiency.
[0009]
Another solar cell with a light-collecting element according to the present invention is also one in which a solar cell is attached to one end surface of the light-collecting element, and the light-collecting element is formed of a parabolic light-transmitting member and a wedge-shaped light transmitting member. The parabolic light-transmitting member has an outer contour substantially corresponding to the parabolic rotator around the central axis, and the large-diameter end of the light-transmitting member is formed in a wedge-shaped light-transmitting member. The wedge-shaped light-transmitting member has a substantially right-angled triangular shape, while the small-diameter end is used as a mounting surface for the solar cell. One surface is used as a solar light incident surface, the other surface is used as a connection surface with a parabolic light-transmitting member, and the remaining inclined surface is used as a reflection surface for the incident solar light.
[0010]
Here, it is preferable that both the parabolic light-transmitting member and the wedge-shaped light transmitting member are colorless and transparent members, and both of them are joined together afterwards or formed into a continuous structure by an integral structure. be able to. By the way, when the two translucent members are joined afterwards, in order to prevent light from leaking outside due to refraction of light at the joint interface, etc., an acrylic, epoxy, urethane or other light It is preferable to use a colorless and transparent adhesive such as a curable resin or a thermosetting resin. In the latter case in which the two are integrally formed, in the above-described solar cell, the interconnecting surfaces of the respective light-transmitting members exist as virtual lines.
[0011]
In this solar cell with a light-collecting element, this also sufficiently condenses the solar light incident on the incident surface of the wedge-shaped light-transmitting member under a simple and inexpensive structure of the light-collecting element, The light is further condensed by the parabolic light-transmitting member and incident on the solar cell, whereby the energy supplied thereto can be increased, and the electromotive force of the cell can be greatly increased.
[0012]
When a plurality of V-shaped grooves extending in the width direction of the reflecting surface of the wedge-shaped light-transmitting member are provided as a whole, the inclination angle of the reflecting surface with respect to the incident surface is selected as required. In other words, it is possible to significantly improve the reflection efficiency of the incident solar rays, and consequently the light collection efficiency, while securing a sufficiently large incident surface area.
[0013]
Further, when a see-through type solar cell is mounted on the inclined surface serving as the reflecting surface, light leaked from the reflecting surface also occurs regardless of whether or not a V-shaped groove is provided on the reflecting surface. It can be used effectively for generating electric power, and the utilization efficiency of sunlight can be further enhanced. Moreover, in this case, by making the solar cell a see-through type, light leaked from the reflecting surface can be used for lighting.
[0014]
When a solar cell is mounted on an inclined surface as a reflecting surface, and a reflecting layer that can be a coating layer, an adhesive layer, a vapor deposition layer, or the like is provided on the inclined surface, the However, it is possible to effectively prevent the light from leaking from the reflection surface, and to further improve the light collection efficiency.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of the present invention, in which 1 denotes a light-collecting element, and 2 denotes a solar cell mounted on one end surface thereof.
[0016]
Here, the light-condensing element 1 is constituted by a parabolic solid translucent member 3 having an outer contour substantially corresponding to a parabolic rotator about the central axis n, preferably a colorless solid transparent member. The large-diameter end functions as the sunlight incident surface 4 and the small-diameter end functions as the mounting surface 5 of the solar cell 2.
[0017]
The translucent member 3 here can be made of the above-described polymer material, glass, or the like, and the solar cell 2 is a single-crystal silicon solar cell, an amorphous silicon solar cell, or a compound semiconductor solar cell. It can be any of a battery, an organic semiconductor solar cell, and the like.
[0018]
As described above, the attachment of the solar cell 2 to the attachment surface 5 is performed by using a colorless and transparent adhesive such as acrylic, epoxy, or urethane, and refracting light at the joint interface. Is preferably performed in order to prevent the incident loss of the light beam into the solar cell 2 and the leakage of the light beam to the outside.
[0019]
According to the solar cell 6 with the light-collecting element configured as described above, the sunlight rays s incident from the incident surface 4 of the light-collecting element 1 are reflected by the parabolic outer contour surface of the light-collecting element 1, By efficiently concentrating a large part of the light on the solar cell 2, the utilization efficiency of the solar rays s can be greatly increased.
[0020]
FIG. 2 shows an example of a module 7 in which a plurality of the above-described solar cells 6 with light-collecting elements are arranged in the front-rear and left-right directions in the drawing with the incident surface 4 being flush.
When manufacturing, assembling, and the like are performed using such a module 7 as a unit, various costs can be advantageously reduced.
In addition, in this module 7, since each of the parabolic condensing elements 1 having a circular cross-sectional profile defines a gap between mutually adjacent surfaces, sunlight is leaked downward from the gap. Can be used effectively for
[0021]
FIG. 3 is a bottom perspective view showing another embodiment in which a parabolic light-transmitting member similar to the above-described light-collecting element is used as a part of the light-collecting element.
That is, the light-collecting element 11 here is constituted by a connection structure of a parabolic light-transmitting member 12 and a wedge-shaped light-transmitting member 13 that are joined or integrally formed.
[0022]
Here, the parabolic light-transmitting member 12, preferably a colorless transparent member, has an outer contour substantially corresponding to a parabolic rotator around the central axis n, like the solid light-transmitting member 3 described above. The large-diameter end serves as a connecting surface 14 with the wedge-shaped light-transmitting member 13, and the small-diameter end functions as a mounting surface 16 for the solar cell 15. The connecting surface 14 has a wedge-shaped light-transmitting member. The connection to the mounting member 13 and the attachment of the solar cell 15 to the attachment surface 16 can be performed by using a colorless and transparent adhesive such as acrylic, epoxy, or urethane as described above.
[0023]
Further, the wedge-shaped light-transmitting member 13, preferably also the colorless transparent member, can be made of the same material as the above-mentioned parabolic light-transmitting member 3, and has a substantially right-angled triangular side shape. Here, one surface of the light-transmitting member 13 that is orthogonal to the other is set as the incident surface 17 of the sun rays s, and the other surface is set as the parabolic light-transmitting member 12, directly connecting surface thereof. 14 and the remaining inclined surface is a reflecting surface 19 for the incident sunlight s. As shown in the figure, the connecting surfaces 14 and 18 of the wedge-shaped light-transmitting member 13 can be considerably larger than those of the parabolic light-transmitting member 12 as shown in the figure. In order to further improve the utilization efficiency of the sunlight s collected by the optical member 13, it is preferable that the rectangular contour of the connecting surface 18 be a rectangular shape circumscribing the circular connecting surface 14.
[0024]
In the solar cell 20 with the light-collecting element configured as described above, the sunlight rays s incident from the incident surface 17 are reflected by the reflection surface 19 to perform the first-stage condensing, and then the condensed light is parabolized. By making the light incident on the light-transmitting member 12 and reflecting the light on the parabolic outer contour surface and performing the second-stage light collection, the energy supplied to the solar cell 15 can be greatly increased.
[0025]
FIG. 4 illustrates a module 21 in which a plurality of the solar cells 20 configured as described above are arranged in the width direction and the front-rear direction of the wedge-shaped light transmitting member 13.
In this case, the number of solar cells 20 arranged can be appropriately selected.
[0026]
FIG. 5 is a side view showing a modified example of the solar cell shown in FIG. 3, which is formed on a reflecting surface 19 of the light transmitting member 13 so as to extend in the width direction of the light transmitting member 13 and has a substantially V-shaped cross section. Are formed, for example, uniformly over the whole of the V-shaped groove 22.
According to this, the intersection angle between the extension of the groove wall of each V-shaped groove 22 facing the parabolic light-transmitting member 12 side and the extension of the normal drawn on the incident surface 17 is 30 to 50 °. By setting the angle to a range, for example, approximately 45 °, the sunlight rays perpendicularly incident on the incident surface 17 can be incident on the light transmitting member 12 with excellent reflection efficiency.
[0027]
Therefore, here, by increasing the arrangement density of the V-shaped grooves 22, the amount of light incident on the solar cell 15 can be increased as required, and the expected reflection of the incident light by the groove wall surface is achieved. Can be selected as needed as long as the angle of incidence can be obtained, so that the solar cell mounting surface 16 of the translucent member 12, and thus the surface area of the solar cell itself with respect to the surface area of the solar cell itself, can be selected. By sufficiently increasing the light incident surface area, the energy supplied to the solar cell 15 can be further increased.
[0028]
The case where the solar cell 15 is provided only in the parabolic light-transmitting member 12 has been described above. However, as illustrated in FIG. 6, another solar cell 23, preferably a see-through type, is provided on the reflection surface 19 of the wedge-shaped light-transmitting member 13. According to this, regardless of whether or not the reflecting surface 19 is provided with the V-shaped groove 22, the light rays leaking from the reflecting surface 19 can also be mounted on the solar cell 23. Since it can be effectively used to generate electric power, the utilization efficiency of the solar rays s can be further enhanced. When the solar cell 23 is of a see-through type, the solar rays s transmitted therethrough can be used. It can be used for lighting purposes.
FIG. 6A shows a single solar cell 20 with a light-collecting element, and FIG. 6B shows a module obtained by combining a plurality of required solar cells.
[0029]
By the way, in the case where a reflection layer which can be formed by a coating layer, a sticking layer, a vapor deposition layer, or the like is provided on the reflection surface 19 instead of the solar cell 23, the V-shaped groove 22 is formed. Irrespective of the presence or absence, since the solar rays s can be more efficiently reflected toward the parabolic light-transmitting member side, the solar rays s can be more effectively reflected without attaching a see-through type solar cell or the like to the reflection surface 19. Can be used.
[0030]
【The invention's effect】
Thus, according to the present invention, a parabolic light-transmitting member to which a solar cell is attached, or a connection structure of a parabolic light-transmitting member and a wedge-shaped light transmitting member having a substantially right-angled triangular side surface. By constructing a light-collecting element and making each light-transmitting member function like a light-collecting lens, the light-collecting efficiency of sunlight can be reduced compared to the conventional technology under a simple and inexpensive structure. It can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of the present invention.
FIG. 2 is a perspective view showing a solar cell module.
FIG. 3 is a perspective view showing another embodiment.
FIG. 4 is a perspective view showing another solar cell module.
FIG. 5 is a side view showing another embodiment.
FIG. 6 is a diagram illustrating an example of mounting a solar cell on a reflection surface.
[Explanation of symbols]
1,11 condensing element 2,15,23 solar cell 3,12 parabolic light-transmitting member 4,17 incident surface 5,16 mounting surface 6,20 solar cell with condensing element 7,21 module 13 wedge-shaped light transmitting Members 14, 18 Connecting surface 19 Reflecting surface 22 V-shaped groove n Center axis s Sun rays

Claims (5)

集光素子の一端面に太陽電池を取付けたものであり、
その集光素子を、中心軸線の周りの放物線回転体とほぼ対応する外輪郭形状を有するパラボラ状の透光部材により構成し、この透光部材の大径端を太陽光線の入射面とし、小径端を太陽電池の取付面としてなる集光素子付き太陽電池。
A solar cell is attached to one end of the light-collecting element.
The light-collecting element is constituted by a parabolic light-transmitting member having an outer contour substantially corresponding to a parabolic rotator around the central axis, and a large-diameter end of the light-transmitting member is used as an incident surface of sunlight, and a small-diameter light-transmitting member. A solar cell with a light-collecting element whose end is the mounting surface of the solar cell.
集光素子の一端面に太陽電池を取付けたものであり、
その集光素子を、パラボラ状の透光部材と楔状の透光部材との連結構造体により構成し、
パラボラ状の透光部材を、中心軸線の周りの放物線回転体とほぼ対応する外輪郭形状を有するものとし、この透光部材の大径端を、楔状の透光部材との連結面とするとともに、小径端を太陽電池の取付面とし、
楔状の透光部材を、側面形状がほぼ直角三角形をなすものとし、この透光部材の、相互に直交する一方の面を太陽光線の入射面とするとともに、他方の面を、パラボラ状の透光部材との連結面とし、残りの傾斜面を、入射した太陽光線の反射面としてなる集光素子付き太陽電池。
A solar cell is attached to one end of the light-collecting element.
The light-collecting element is constituted by a connection structure of a parabolic light-transmitting member and a wedge-shaped light transmitting member,
The parabolic light-transmitting member has an outer contour substantially corresponding to the parabolic rotator around the central axis, and the large-diameter end of the light-transmitting member serves as a connection surface with the wedge-shaped light-transmitting member. , The small diameter end is the mounting surface of the solar cell,
The wedge-shaped light-transmitting member has a side surface substantially in the shape of a right triangle, and one surface of the light-transmitting member which is orthogonal to the other is used as a solar light incident surface, and the other surface is used as a parabolic light-transmitting member. A solar cell with a light-collecting element, wherein the solar cell has a connection surface with an optical member, and the remaining inclined surface serves as a reflection surface for incident sunlight.
楔状の透光部材の反射面に、それの幅方向に延びる複数本のV字状溝を全体的に設けてなる請求項2に記載の集光素子付き太陽電池。The solar cell with a light-collecting element according to claim 2, wherein a plurality of V-shaped grooves extending in the width direction of the reflection surface of the wedge-shaped light-transmitting member are entirely provided. 反射面としての傾斜面に、シースルー型の太陽電池を取付けてなる請求項2もしくは3に記載の集光素子付き太陽電池。The solar cell with a light-collecting element according to claim 2 or 3, wherein a see-through type solar cell is attached to an inclined surface as a reflection surface. 反射面としての傾斜面に、反射層を設けてなる請求項2もしくは3に記載の集光素子付き太陽電池。The solar cell with a light-collecting element according to claim 2 or 3, wherein a reflection layer is provided on an inclined surface as a reflection surface.
JP2002203487A 2002-07-12 2002-07-12 Solar cell with condensing element Pending JP2004047753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203487A JP2004047753A (en) 2002-07-12 2002-07-12 Solar cell with condensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203487A JP2004047753A (en) 2002-07-12 2002-07-12 Solar cell with condensing element

Publications (1)

Publication Number Publication Date
JP2004047753A true JP2004047753A (en) 2004-02-12

Family

ID=31709339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203487A Pending JP2004047753A (en) 2002-07-12 2002-07-12 Solar cell with condensing element

Country Status (1)

Country Link
JP (1) JP2004047753A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063416A2 (en) * 2007-11-13 2009-05-22 Koninklijke Philips Electronics, N.V. Thin and efficient collecting optics for solar system
JP2009535599A (en) * 2006-04-30 2009-10-01 紀文 張 Solar energy device for collecting and collecting heat
JP2010141297A (en) * 2008-11-14 2010-06-24 Nippon Leiz Co Ltd Light guide, photoelectric converter, and flat surface photoelectric conversion device
EP2201309A2 (en) * 2007-09-10 2010-06-30 Banyan Energy, Inc Compact optics for concentration, aggregation and illumination of light energy
JP2010525582A (en) * 2007-05-01 2010-07-22 モーガン ソーラー インコーポレーテッド Light guiding solar panel and manufacturing method thereof
JP2010212280A (en) * 2009-03-06 2010-09-24 Sumitomo Electric Ind Ltd Light guide structure for solar cell, solar cell unit and solar cell module
WO2011001545A1 (en) * 2009-07-02 2011-01-06 三井造船株式会社 Solar photovoltaic power generator, and light collecting method therefor
CN101951197A (en) * 2010-09-30 2011-01-19 北京印刷学院 Closed cavity hemisphere lighting spotlight multiplication solar power generation device
CN101951201A (en) * 2010-09-30 2011-01-19 北京印刷学院 Light-collecting solar power generation device with secondary reflection disc closed cavity
CN101964614A (en) * 2010-10-25 2011-02-02 北京印刷学院 Parabolic cylinder light-gathering parabolic cylinder closed cavity daylighting solar generating set
JP2011523217A (en) * 2008-06-07 2011-08-04 ホフマン,ジェームズ Solar energy collection system
JP2011526419A (en) * 2008-06-30 2011-10-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device for reducing the shielding effect of electrodes by concentrators
CN102216695A (en) * 2008-09-19 2011-10-12 加利福尼亚大学董事会 System and method for solar energy capture and related method of manufacturing
WO2011158548A1 (en) * 2010-06-17 2011-12-22 シャープ株式会社 Solar cell module, and solar energy generator device comprising the solar cell module
JP2012514323A (en) * 2008-12-31 2012-06-21 ピタゴラス ソーラー インコーポレイテッド Solar prism concentrator
CN102790114A (en) * 2012-08-25 2012-11-21 赵雪冰 Condensing lens for solar cell and tracking-free condensing solar cell device
KR101231367B1 (en) * 2011-02-09 2013-02-07 정연학 Lighting Apparatus Using the Solar cell
JP2013072929A (en) * 2011-09-27 2013-04-22 Toshiba Corp Display device
JP2013543150A (en) * 2010-11-04 2013-11-28 バニヤン エナジー インコーポレイテッド Compact optical components for heat collection and lighting systems
WO2014011240A1 (en) * 2012-07-12 2014-01-16 The Regents Of The University Of California Solar thermal concentrator and method of forming same
US8928988B1 (en) 2011-04-01 2015-01-06 The Regents Of The University Of California Monocentric imaging
WO2017155318A3 (en) * 2016-03-09 2018-08-02 황우성 Three-dimensional parabolic reflector and manufacturing method therefor
KR102045145B1 (en) * 2018-05-10 2019-11-14 전자부품연구원 Concentrated photovoltaic cell with photonic crystal reflector

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535599A (en) * 2006-04-30 2009-10-01 紀文 張 Solar energy device for collecting and collecting heat
JP2010525582A (en) * 2007-05-01 2010-07-22 モーガン ソーラー インコーポレーテッド Light guiding solar panel and manufacturing method thereof
EP2201309A2 (en) * 2007-09-10 2010-06-30 Banyan Energy, Inc Compact optics for concentration, aggregation and illumination of light energy
KR101455892B1 (en) * 2007-09-10 2014-11-04 반얀 에너지, 인크 Compact Optics for Concentration, Aggregation and Illumination of Light Energy
EP2201309A4 (en) * 2007-09-10 2010-12-01 Banyan Energy Inc Compact optics for concentration, aggregation and illumination of light energy
JP2010539428A (en) * 2007-09-10 2010-12-16 バンヤン エナジー,インコーポレイテッド Compact optical system for collecting, integrating and irradiating light energy
AU2008299119B2 (en) * 2007-09-10 2012-06-14 Banyan Energy, Inc Compact optics for concentration, aggregation and illumination of light energy
WO2009063416A3 (en) * 2007-11-13 2009-08-06 Koninkl Philips Electronics Nv Thin and efficient collecting optics for solar system
WO2009063416A2 (en) * 2007-11-13 2009-05-22 Koninklijke Philips Electronics, N.V. Thin and efficient collecting optics for solar system
JP2011523217A (en) * 2008-06-07 2011-08-04 ホフマン,ジェームズ Solar energy collection system
US9261630B2 (en) 2008-06-07 2016-02-16 Sun Synchrony, Inc. Solar energy collection system
US8686452B2 (en) 2008-06-30 2014-04-01 Osram Opto Semiconductors Gmbh Optoelectronic apparatus
JP2011526419A (en) * 2008-06-30 2011-10-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device for reducing the shielding effect of electrodes by concentrators
US9046673B2 (en) 2008-06-30 2015-06-02 Osram Opto Semiconductors Gmbh Optoelectronic apparatus
US9274266B2 (en) 2008-09-19 2016-03-01 The Regents Of The University Of California System and method for solar energy capture and related method of manufacturing
CN102216695A (en) * 2008-09-19 2011-10-12 加利福尼亚大学董事会 System and method for solar energy capture and related method of manufacturing
JP2010141297A (en) * 2008-11-14 2010-06-24 Nippon Leiz Co Ltd Light guide, photoelectric converter, and flat surface photoelectric conversion device
JP2012514323A (en) * 2008-12-31 2012-06-21 ピタゴラス ソーラー インコーポレイテッド Solar prism concentrator
JP2010212280A (en) * 2009-03-06 2010-09-24 Sumitomo Electric Ind Ltd Light guide structure for solar cell, solar cell unit and solar cell module
WO2011001545A1 (en) * 2009-07-02 2011-01-06 三井造船株式会社 Solar photovoltaic power generator, and light collecting method therefor
WO2011158548A1 (en) * 2010-06-17 2011-12-22 シャープ株式会社 Solar cell module, and solar energy generator device comprising the solar cell module
CN101951197A (en) * 2010-09-30 2011-01-19 北京印刷学院 Closed cavity hemisphere lighting spotlight multiplication solar power generation device
CN101951201A (en) * 2010-09-30 2011-01-19 北京印刷学院 Light-collecting solar power generation device with secondary reflection disc closed cavity
CN101964614A (en) * 2010-10-25 2011-02-02 北京印刷学院 Parabolic cylinder light-gathering parabolic cylinder closed cavity daylighting solar generating set
JP2013543150A (en) * 2010-11-04 2013-11-28 バニヤン エナジー インコーポレイテッド Compact optical components for heat collection and lighting systems
KR101231367B1 (en) * 2011-02-09 2013-02-07 정연학 Lighting Apparatus Using the Solar cell
US8928988B1 (en) 2011-04-01 2015-01-06 The Regents Of The University Of California Monocentric imaging
US9482850B2 (en) 2011-04-01 2016-11-01 The Regents Of The University Of California Monocentric imaging
JP2013072929A (en) * 2011-09-27 2013-04-22 Toshiba Corp Display device
WO2014011240A1 (en) * 2012-07-12 2014-01-16 The Regents Of The University Of California Solar thermal concentrator and method of forming same
US9958185B2 (en) 2012-07-12 2018-05-01 The Regents Of The University Of California Solar thermal concentrator and method of forming same
US10921027B2 (en) 2012-07-12 2021-02-16 The Regents Of The University Of California Solar thermal concentrator and method of forming same
CN102790114A (en) * 2012-08-25 2012-11-21 赵雪冰 Condensing lens for solar cell and tracking-free condensing solar cell device
WO2017155318A3 (en) * 2016-03-09 2018-08-02 황우성 Three-dimensional parabolic reflector and manufacturing method therefor
KR102045145B1 (en) * 2018-05-10 2019-11-14 전자부품연구원 Concentrated photovoltaic cell with photonic crystal reflector

Similar Documents

Publication Publication Date Title
JP2004047753A (en) Solar cell with condensing element
JP3174549B2 (en) Photovoltaic power generation device, photovoltaic power generation module, and method of installing photovoltaic power generation system
US9464783B2 (en) Concentrated photovoltaic panel
JP2009037242A (en) Beam-condensing device
WO2012070533A1 (en) Solar cell module and photovolatic power generation device
JP2003336909A (en) Static type light condensing system
JP2000323740A (en) Condensing photovoltaic power-generation device
JP2006332113A (en) Concentrating solar power generation module and solar power generator
CN201029095Y (en) Light-collecting type photovoltaic battery component
WO2013008665A1 (en) Condenser, light condensing system, solar power generation device, and solar system
JPH11340493A (en) Sunlight condensing device
JP2007073774A (en) Solar battery
CN111725342A (en) High-absorptivity photovoltaic module
TWI435459B (en) Multi-directional solar energy collector system
TWI537533B (en) Side-irradiated concentrated photovoltaic system
JP2005340583A (en) Acceptance surface structure for optical power generating body
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
JP2004047752A (en) Solar cell equipped with condensing means
KR101898593B1 (en) Solar cell module
JP2011210890A (en) Photovoltaic power generator
KR101899845B1 (en) A Photovoltaic Generating Module Using Light Concentrating Apparatus
US10199527B2 (en) Solar concentrator and illumination apparatus
CN103117319A (en) Solar cell photovoltaic component system
TWI704764B (en) Light-collecting lens, light-collecting module, solar cell device, and solar cell system
WO2012066935A1 (en) Solar cell module and solar power generation device