JP2004047752A - Solar cell equipped with condensing means - Google Patents

Solar cell equipped with condensing means Download PDF

Info

Publication number
JP2004047752A
JP2004047752A JP2002203484A JP2002203484A JP2004047752A JP 2004047752 A JP2004047752 A JP 2004047752A JP 2002203484 A JP2002203484 A JP 2002203484A JP 2002203484 A JP2002203484 A JP 2002203484A JP 2004047752 A JP2004047752 A JP 2004047752A
Authority
JP
Japan
Prior art keywords
solar cell
light
incident
transmitting member
condensing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002203484A
Other languages
Japanese (ja)
Inventor
Masahito Yoshikawa
吉川 雅人
Harutsura Tazawa
田沢 晴列
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002203484A priority Critical patent/JP2004047752A/en
Publication of JP2004047752A publication Critical patent/JP2004047752A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell equipped with a simple and inexpensive condensing means which is capable of efficiently guiding most of the sunlight impinged on the plane of incidence to the solar cell. <P>SOLUTION: A light-transmitting member 1 is formed nearly into a right triangle in a side view. One of two sides of the member 1 crossing each other at a right angle is made to serve as a plane 2 of incidence for the sunlight, the solar cell 3 is mounted in upright position on the other side, and the sloping side of the light-transmitting member 1 is made to serve as a reflecting plane 4 for the incident sunlight. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、集光手段を具える太陽電池に関し、とくに簡単かつ安価な構造にして、集光効率を高める技術を提案するものである。
【0002】
【従来の技術】
太陽電池のための集光装置としては、樋型平面鏡、樋型複合放物面鏡等の反射鏡の他、凸レンズ、フレネルレンズ等のレンズを用いたものがある。
【0003】
【発明が解決しようとする課題】
しかるに、このような従来装置によってなお、太陽光線を、十分に満足できるほどに高い効率で太陽電池に集光することは困難であった。
そこでこの発明は、入射面に入射された太陽光線のほとんどを、太陽電池に効率良く導くことができる、簡単かつ安価な構造の、集光手段を具える太陽電池を提供する。
【0004】
【課題を解決するための手段】
この発明に係る、集光手段を具える太陽電池は、側面形状がほぼ直角三角形をなす透光部材、好ましくは透明部材の、相互に直交する一方の面を太陽光線の入射面とするとともに、他方の面に太陽電池を縦姿勢で取付け、その透光部材の傾斜面を、入射した太陽光線の反射面としたものである。
【0005】
ここで透光部材は、たとえば、ポリスチレン、スチレン・メチルメタクリレート共重合体、アクリル樹脂、ポリメチルペンテン、アリルグリコールカーボネート樹脂、スピラン樹脂、アモルファスポリオレフィン、ポリカーボネート、ポリアミド、ポリアリレート、ポリサルホン、ポリアリルサルボン、ポリエーテルサルホン、ポリエーテルイミド、ポリイミド、ジアリルフタレート、フッ素樹脂、ポリエステルカーボネート、ノルボルネン系樹脂、脂環式アクリル樹脂、シリコーン樹脂、アクリルゴム、シリコーンゴムなどのポリマー材料、ガラスその他によって構成することができる。
【0006】
これによれば、透光部材の反射面により、それの入射面に入射した太陽光線のほぼ全部を、太陽電池の取付面、ひいては、その太陽電池に入射させることができ、これがため、透光部材の入射面に入射された太陽光線を、起電力の発生のために、従来技術に比してはるかに効率的に利用することができる。
【0007】
なおここにおいて、透光部材の反射面に、横断面形状がほぼV字状をなしてそれの幅方向に延びるV字状溝の複数本を全体的に設けた場合には、入射した太陽光線の反射効率を一層高めることができる。
【0008】
ところで、太陽電池としては、単結晶シリコン太陽電池、アモルファスシリコン太陽電池、化合物半導体太陽電池、有機半導体太陽電池等を用いることができるが、とりわけ、有機半導体太陽電池が好ましくは、なかでも、色素増感形太陽電池は、変換効率が高い利点を有する。
なおこの色素増感形太陽電池は、電解液循環型として、電解液の循環精製を可能とすることで、溶媒の揮発、光劣化、耐熱性などの問題を解決して、それの、性能の安定性および耐久性を向上させることができる。
【0009】
そしてまた、反射面としての傾斜面に、シースルー型の他の太陽電池を取付けたときは、反射面から洩出する太陽光線をもまた起電力の発生のために有効に利用することができるので、太陽光線の利用効率を一層高めることができる。しかもここでは、シースルー型の太陽電池を用いることにより、そこを透過した光線を採光のために利用することができる。
【0010】
なお、このことに代えて、反射面としての傾斜面に、塗膜層、貼着層、蒸着層等によって形成することができる反射層を設けた場合には、太陽光線の、その反射面からの洩出をより効果的に防止して、入射面と直交する面に取付けた太陽電池への入射光を一層増加させることができる。
【0011】
【発明の実施の形態】
以下にこの発明の実施の形態を図面に示すところに基づいて説明する。
図1はこの発明の実施形態を示す底面斜視図であり、図中、1は透光部材、より好ましくは、無色透明になる透明部材を示す。
この透光部材1は側面形状を、ほぼ直角三角形状とするとともに、平面および底面形状の他、図の左側からの正面形状および背面形状のそれぞれをともに方形形状とする。
【0012】
前述したポリマー材料、ガラス等にて構成することができるこの透光部材1の、相互に直交する一方の面、図では広い方の面を、太陽光線を入射させる、水平な入射面2とするとともに、他方の面、図では、正面側の垂直面を、太陽電池3の、縦姿勢での取付面とし、そして、この透光部材1の傾斜面を、入射した太陽光線sの反射面4とする。
【0013】
ここで、太陽電池3の、上記垂直面への取付けは、その垂直面一杯に行うことが、太陽光線の利用効率を高める上で好ましく、また、その電池3の取付けは、たとえば、アクリル系、エポキシ系、ウレタン系等のような無色透明の接着剤を用い、接合界面で光の屈折が生じないように行うことが、太陽光線の吸収ロス、屈折洩出等を防ぐ上で好ましい。
【0014】
このように構成してなる装置において、たとえば、水平姿勢の入射面2に対する反射面4の傾き角を45°としたときは、その入射面2から遠く離隔する太陽からの光線sが、入射面2に対して垂直方向から入射されると、その入射光線の全てが、反射面4によって水平方向に反射されて太陽電池3に入射されるので、太陽光線sを効率よく起電力に変換することができる。
【0015】
図2は、上述したように構成してなる装置5、すなわち、集光手段を具える太陽電池の複数個を、入射面2を面一にして幅方向および前後方向のそれぞれに、隙間なく整列させて配置してなるモジュールの一例を示し、このようなモジュールを単位として製造、組立て等を行うことで、各種のコストを有利に低減させることができる。
【0016】
図3は、他の実施形態を示す側面図であり、これは、透光部材1の反射面4に、透光部材1の幅方向に延びる、断面形状がほぼV字状をなすV字状溝6の複数本を、その全体にわたって、たとえば均等に設けたものである。
これによれば、各V字状溝6の、太陽電池3側に向く溝壁の延長線と、入射面2に立てた法線の延長線との交角を、30〜50°の範囲、なかでもほぼ45°とすることで、その入射面2に垂直に入射される太陽光線を、すぐれた反射効率をもって太陽電池3に入射させることができる。
【0017】
従ってここでは、V字状溝6の配設密度を高めることで、太陽電池3への入射光量を所要に応じて高めることができ、また、溝壁面による、入射光線の所期した通りの反射をもたらし得る限りにおいて、入射面2に対する反射面4の傾き角を所要に応じて選択することができるので、透光部材1の太陽電池取付面、ひいては、太陽電池それ自体の表面積に対する、太陽光線の入射面表面積を十分大きくして、電池出力を高めることができる。
【0018】
ところで、ここにおける太陽電池3は、有機半導体太陽電池とすることが、設備コストの低減を図る上で好ましく、なかでもそれを、色素増感形太陽電池とすることが変換効率を高める上で好ましく、そして、この色素増感形太陽電池を、電解液循環型とすることが、性能の安定化および耐久性の向上をもたらす上で好ましい。
【0019】
図4はこのような色素増感形太陽電池の断面図を示す。この電池3は、相互に平行に配設した透明電極11および対電極12と、それらの間を液密に封止する、図では上下の封止材13とで区画される空間内に、酸化チタン層とすることができる酸化物半導体電極14および色素溶液15のそれぞれを封入してなり、多くは、透明電極11の表面を、ガラス基板16によってカバーしてなる。
従って、この電池3は、ガラス基板16を、透光部材1の電池取付面7に、接着材等をもって、好ましくは取付面7の全体にわたって接合することで、透光部材1に取付けられる。
【0020】
ここで、電池の取付面7に縦姿勢で取付けられる、かかる電池3の、電解液としての色素溶液15の循環精製は、たとえば、各個の電池3の上端部に流出口を、そして下端部に流入口をそれぞれ設けて、たとえば、1cc/min〜10L/minの一定流速で、または1時間おきに1L/minの流速で、その色素溶液15を循環させることにより行うことができる。
【0021】
なおこの場合においては、図5に示すように、前述したと同様のモジュールを構成するに当って、幅方向に隙間なく隣接する複数、図では四個の透光部材1のそれぞれの電池取付面7に、全ての透光部材1に共通の電池23を取付けたときは、流出口23aおよび流入口23bの数および流路本数を有効に低減させることができる。
【0022】
以上、透光部材1の一の取付面7に太陽電池3を設ける場合について説明したが、図6に例示するように、透光部材1の反射面4に他の太陽電池24、好ましくはシースルー型の太陽電池を取付けることもでき、これによれば、反射面4にV字状溝6を設けると否とにかかわらず、その反射面4からの洩出光線をもまた、その太陽電池24の起電力の発生に有効に利用することができるので、太陽光線sの利用効率をより一層高めることができ、また、その太陽電池24をシースルー型とすることにより、太陽電池24を透過した光線を採光に利用することができる。
なお、図6(a)は単一の装置5を示し、図6(b)は複数の装置5をモジュール化した場合について示す。
【0023】
ところで、このような太陽電池24に代えて、塗膜層、貼着層、蒸着層等にて形成することができる反射層を設けた場合には、V字状溝6の有無にかかわらず、太陽光線sを電池取付面7側へ一層効率よく反射させることができるので、反射面4に、シースルー型の太陽電池等を取付けるまでもなく、太陽光線sをより有効に利用することができる。
【0024】
【発明の効果】
かくしてこの発明によれば、側面形状がほば直角三角形をなす透光部材を集光レンズの如くに機能させるとともに、その透光部材の一面に太陽電池を直接的に取付けることにより、簡単にして安価な構造の下で、太陽光線の集光効果を、従来技術に比して大きく向上させることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す底面斜視図である。
【図2】太陽電池モジュールを示す底面斜視図である。
【図3】他の実施形態を示す側面図である。
【図4】色素増感形太陽電池を示す断面図である。
【図5】色素増感形太陽電池のモジュールへの適用例を示す底面斜視図である。
【図6】太陽電池の、反射面への取付け例を示す底面斜視図である。
【符号の説明】
1 透光部材
2 入射面
3,23,24 太陽電池
4 反射面
5 装置
6 V字状溝
7 取付面
11 透明電極
12 対電極
13 液封材
14 酸化物半導体電極
15 色素溶液
16 ガラス基板
23a 流出口
23b 流入口
s 太陽光線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell having a light condensing means, and proposes a technique for improving the light condensing efficiency with a particularly simple and inexpensive structure.
[0002]
[Prior art]
As a condensing device for a solar cell, there is a device using a lens such as a convex lens or a Fresnel lens in addition to a reflecting mirror such as a trough-shaped plane mirror and a trough-shaped compound parabolic mirror.
[0003]
[Problems to be solved by the invention]
However, it was still difficult to concentrate sunlight on the solar cell with a sufficiently high efficiency by such a conventional device.
Therefore, the present invention provides a solar cell including a light condensing means having a simple and inexpensive structure capable of efficiently guiding most of the solar rays incident on the incident surface to the solar cell.
[0004]
[Means for Solving the Problems]
According to the present invention, a solar cell including a light condensing unit is a light-transmitting member having a substantially right-angled triangular shape, preferably a transparent member, and one of the surfaces orthogonal to each other is an incident surface of sunlight, The solar cell is mounted on the other surface in a vertical position, and the inclined surface of the translucent member is used as a reflecting surface for the incident sunlight.
[0005]
Here, the light transmitting member is, for example, polystyrene, styrene / methyl methacrylate copolymer, acrylic resin, polymethylpentene, allyl glycol carbonate resin, spirane resin, amorphous polyolefin, polycarbonate, polyamide, polyarylate, polysulfone, polyallyl sulfone Composed of polymer materials such as polyethersulfone, polyetherimide, polyimide, diallyl phthalate, fluororesin, polyester carbonate, norbornene resin, alicyclic acrylic resin, silicone resin, acrylic rubber, silicone rubber, glass, etc. Can be.
[0006]
According to this, by the reflecting surface of the light transmitting member, almost all of the solar light incident on the incident surface thereof can be made incident on the mounting surface of the solar cell and, consequently, the solar cell. The sunlight rays incident on the incident surface of the member can be used much more efficiently for generating an electromotive force as compared with the related art.
[0007]
Here, when a plurality of V-shaped grooves having a substantially V-shaped cross section and extending in the width direction of the light-transmitting member are provided on the reflection surface of the light-transmitting member, the incident sunlight rays Can be further enhanced in reflection efficiency.
[0008]
By the way, as the solar cell, a single-crystal silicon solar cell, an amorphous silicon solar cell, a compound semiconductor solar cell, an organic semiconductor solar cell, or the like can be used. Sensitive solar cells have the advantage of high conversion efficiency.
In addition, this dye-sensitized solar cell, as an electrolyte circulation type, can solve the problems of solvent volatilization, light deterioration, heat resistance, etc. Stability and durability can be improved.
[0009]
Further, when another see-through type solar cell is attached to the inclined surface as the reflecting surface, the solar rays leaking from the reflecting surface can also be effectively used for generating the electromotive force. Thus, the efficiency of using solar rays can be further improved. Moreover, here, by using a see-through type solar cell, the light beam transmitted therethrough can be used for lighting.
[0010]
Note that, in place of this, when a reflection layer that can be formed by a coating layer, a sticking layer, a vapor deposition layer, or the like is provided on an inclined surface as a reflection surface, the reflection surface of the sunlight is reflected from the reflection surface. Can be more effectively prevented, and the incident light to the solar cell mounted on the surface orthogonal to the incident surface can be further increased.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a bottom perspective view showing an embodiment of the present invention. In the drawing, reference numeral 1 denotes a light-transmitting member, and more preferably, a transparent member that becomes colorless and transparent.
The light-transmitting member 1 has a substantially right-angled triangular side surface, a square shape, a front shape and a back shape from the left side of the drawing, as well as a flat surface and a bottom surface.
[0012]
One surface of the translucent member 1, which can be made of the above-described polymer material, glass, or the like, which is orthogonal to one another, the wider surface in the figure, is a horizontal incident surface 2 on which sunlight is incident. At the same time, the other surface, in the figure, the vertical surface on the front side is used as the mounting surface of the solar cell 3 in the vertical position, and the inclined surface of the light transmitting member 1 is used as the reflecting surface 4 of the incident solar light s. And
[0013]
Here, it is preferable that the mounting of the solar cell 3 on the vertical surface be performed on the entire vertical surface in order to enhance the utilization efficiency of the sunlight, and the mounting of the battery 3 is, for example, an acrylic type. It is preferable to use a colorless and transparent adhesive such as an epoxy-based or urethane-based adhesive so that refraction of light does not occur at the joint interface, in order to prevent absorption loss of solar rays, leakage of leakage, and the like.
[0014]
In the device configured as described above, for example, when the inclination angle of the reflection surface 4 with respect to the entrance surface 2 in the horizontal posture is set to 45 °, a light beam s from the sun far away from the entrance surface 2 is transmitted to the entrance surface. When the light is incident on the photovoltaic cell 2 from the vertical direction, all of the incident light is reflected in the horizontal direction by the reflecting surface 4 and is incident on the solar cell 3. Can be.
[0015]
FIG. 2 shows an arrangement of the device 5 configured as described above, that is, a plurality of solar cells provided with a light condensing means, in the width direction and the front-rear direction with the incident surface 2 flush, without any gap. An example of a module that is arranged in such a manner will be described. By manufacturing, assembling, and the like using such a module as a unit, various costs can be advantageously reduced.
[0016]
FIG. 3 is a side view showing another embodiment, in which a V-shaped cross-section having a substantially V-shape is formed on the reflection surface 4 of the light-transmitting member 1 in the width direction of the light-transmitting member 1. The plurality of grooves 6 are provided, for example, uniformly over the entirety.
According to this, the intersection angle between the extension of the groove wall of each V-shaped groove 6 facing the solar cell 3 and the extension of the normal drawn on the incident surface 2 is in the range of 30 to 50 °. However, by setting the angle to approximately 45 °, the solar light that is perpendicularly incident on the incident surface 2 can be incident on the solar cell 3 with excellent reflection efficiency.
[0017]
Therefore, here, by increasing the arrangement density of the V-shaped grooves 6, the amount of incident light on the solar cell 3 can be increased as required, and the expected reflection of the incident light by the groove wall surface is achieved. Can be selected as needed as long as the angle of incidence can be obtained, so that the solar radiation with respect to the solar cell mounting surface of the translucent member 1 and thus the surface area of the solar cell itself can be selected. , The surface area of the light incident surface can be made sufficiently large to increase the battery output.
[0018]
By the way, the solar cell 3 here is preferably an organic semiconductor solar cell in order to reduce equipment costs, and in particular, it is preferably a dye-sensitized solar cell in order to increase conversion efficiency. It is preferable that the dye-sensitized solar cell be of an electrolyte solution circulation type in order to stabilize performance and improve durability.
[0019]
FIG. 4 shows a cross-sectional view of such a dye-sensitized solar cell. The battery 3 includes an oxidizing device in a space defined by a transparent electrode 11 and a counter electrode 12 disposed in parallel with each other and a sealing material 13 that seals the space between the transparent electrode 11 and the counter electrode 12 in a liquid-tight manner. Each of the oxide semiconductor electrode 14 and the dye solution 15, which can be a titanium layer, is encapsulated. In many cases, the surface of the transparent electrode 11 is covered with a glass substrate 16.
Therefore, the battery 3 is mounted on the light transmitting member 1 by bonding the glass substrate 16 to the battery mounting surface 7 of the light transmitting member 1 with an adhesive or the like, preferably over the entire mounting surface 7.
[0020]
Here, the circulation purification of the dye solution 15 as an electrolytic solution of the battery 3 mounted on the mounting surface 7 of the battery in a vertical position is performed, for example, by providing an outlet at the upper end of each battery 3 and an outlet at the lower end. For example, the dye solution 15 can be circulated at a constant flow rate of 1 cc / min to 10 L / min or at a flow rate of 1 L / min every one hour by providing an inlet.
[0021]
In this case, as shown in FIG. 5, in constructing a module similar to that described above, each battery mounting surface of a plurality of, in the figure, four light-transmitting members 1 adjacent to each other without any gap in the width direction. 7, when the common battery 23 is attached to all the light transmitting members 1, the number of the outlets 23a and the inlets 23b and the number of flow paths can be effectively reduced.
[0022]
The case where the solar cell 3 is provided on one mounting surface 7 of the light transmitting member 1 has been described above. However, as illustrated in FIG. 6, another solar cell 24, preferably see-through, is provided on the reflection surface 4 of the light transmitting member 1. A solar cell of the type can also be mounted, with or without the provision of the V-shaped groove 6 in the reflecting surface 4, the light leaking from the reflecting surface 4 is also transferred to the solar cell 24. Can be effectively used to generate the electromotive force of the solar cell, the utilization efficiency of the solar ray s can be further enhanced, and by making the solar cell 24 a see-through type, the light transmitted through the solar cell 24 Can be used for lighting.
6A shows a single device 5, and FIG. 6B shows a case where a plurality of devices 5 are modularized.
[0023]
By the way, in the case where a reflection layer that can be formed by a coating layer, a sticking layer, a vapor deposition layer, or the like is provided instead of the solar cell 24, regardless of the presence or absence of the V-shaped groove 6, Since the solar rays s can be more efficiently reflected to the battery mounting surface 7 side, the solar rays s can be used more effectively without having to attach a see-through type solar cell or the like to the reflective surface 4.
[0024]
【The invention's effect】
Thus, according to the present invention, the light-transmitting member having a substantially right-sided triangular shape functions as a condenser lens, and the solar cell is directly attached to one surface of the light-transmitting member, thereby simplifying the operation. Under an inexpensive structure, the effect of condensing sunlight can be greatly improved as compared with the related art.
[Brief description of the drawings]
FIG. 1 is a bottom perspective view showing an embodiment of the present invention.
FIG. 2 is a bottom perspective view showing the solar cell module.
FIG. 3 is a side view showing another embodiment.
FIG. 4 is a sectional view showing a dye-sensitized solar cell.
FIG. 5 is a bottom perspective view showing an application example of a dye-sensitized solar cell to a module.
FIG. 6 is a bottom perspective view showing an example of attaching a solar cell to a reflection surface.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 translucent member 2 incident surface 3, 23, 24 solar cell 4 reflective surface 5 device 6 V-shaped groove 7 mounting surface 11 transparent electrode 12 counter electrode 13 liquid sealing material 14 oxide semiconductor electrode 15 dye solution 16 glass substrate 23a flow Exit 23b Inlet s Sun rays

Claims (7)

側面形状がほぼ直角三角形をなす透光部材の、相互に直交もしくはほぼ直交する一方の面を太陽光線の入射面とするとともに、他方の面に太陽電池を縦姿勢で取付け、その透光部材の傾斜面を、入射した太陽光線の反射面としてなる集光手段を具える太陽電池。One side of the translucent member having a substantially right-angled triangular shape, which is orthogonal or substantially orthogonal to the other, is used as a sunlight incident surface, and a solar cell is mounted on the other surface in a vertical posture, and the translucent member is A solar cell comprising a condensing means in which an inclined surface serves as a reflecting surface for incident sunlight. 透光部材の反射面に、それの幅方向に延びる複数本のV字状溝を全体的に設けてなる請求項1に記載の集光手段を具える太陽電池。The solar cell according to claim 1, wherein a plurality of V-shaped grooves extending in a width direction of the light transmitting member are provided on the reflecting surface of the light transmitting member. 太陽電池を有機半導体太陽電池としてなる請求項1もしくは2に記載の集光手段を具える太陽電池。A solar cell comprising the light collecting means according to claim 1 or 2, wherein the solar cell is an organic semiconductor solar cell. 有機半導体太陽電池を色素増感形太陽電池としてなる請求項3に記載の集光手段を具える太陽電池。A solar cell comprising the condensing means according to claim 3, wherein the organic semiconductor solar cell is a dye-sensitized solar cell. 色素増感形太陽電池を電解液循環型としてなる請求項4に記載の集光手段を具える太陽電池。A solar cell comprising the condensing means according to claim 4, wherein the dye-sensitized solar cell is of an electrolyte circulation type. 反射面としての傾斜面に、シースルー型の他の太陽電池を取付けてなる請求項1〜5のいずれかに記載の集光手段を具える太陽電池。A solar cell comprising the condensing means according to any one of claims 1 to 5, wherein another see-through type solar cell is attached to an inclined surface as a reflection surface. 反射面としての傾斜面に、反射層を設けてなる請求項1〜5のいずれかに記載の集光手段を具える太陽電池。A solar cell comprising the light collecting means according to claim 1, wherein a reflection layer is provided on an inclined surface as a reflection surface.
JP2002203484A 2002-07-12 2002-07-12 Solar cell equipped with condensing means Pending JP2004047752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203484A JP2004047752A (en) 2002-07-12 2002-07-12 Solar cell equipped with condensing means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203484A JP2004047752A (en) 2002-07-12 2002-07-12 Solar cell equipped with condensing means

Publications (1)

Publication Number Publication Date
JP2004047752A true JP2004047752A (en) 2004-02-12

Family

ID=31709337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203484A Pending JP2004047752A (en) 2002-07-12 2002-07-12 Solar cell equipped with condensing means

Country Status (1)

Country Link
JP (1) JP2004047752A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035698A1 (en) * 2004-09-27 2006-04-06 Dueller Corporation Sheet-like concentrator and solar cell sheet employing it
WO2008032715A1 (en) 2006-09-12 2008-03-20 Hiroshima University Organic semiconductor material, organic semiconductor device using the same, and their production methods
CN101882635A (en) * 2009-05-06 2010-11-10 财团法人工业技术研究院 Solar energy module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035698A1 (en) * 2004-09-27 2006-04-06 Dueller Corporation Sheet-like concentrator and solar cell sheet employing it
WO2008032715A1 (en) 2006-09-12 2008-03-20 Hiroshima University Organic semiconductor material, organic semiconductor device using the same, and their production methods
CN101882635A (en) * 2009-05-06 2010-11-10 财团法人工业技术研究院 Solar energy module

Similar Documents

Publication Publication Date Title
JP2004047753A (en) Solar cell with condensing element
JP3174549B2 (en) Photovoltaic power generation device, photovoltaic power generation module, and method of installing photovoltaic power generation system
JP3259692B2 (en) Concentrating photovoltaic module, method of manufacturing the same, and concentrating photovoltaic system
JP6416333B2 (en) Solar cell module
US20050127379A1 (en) Light emitting or light receiving semiconductor module and method for manufacturing same
ES2774573T3 (en) Photovoltaic module
US20140261625A1 (en) Concentrated photovoltaic panel
JP2001127331A (en) Solar battery module
WO2009067479A2 (en) Luminescent solar concentrators
WO1999045596A1 (en) Method and apparatus for directing solar energy to solar energy collecting cells
WO2019015564A1 (en) Solar power generation assembly
CN201029095Y (en) Light-collecting type photovoltaic battery component
JP2007073774A (en) Solar battery
JP2002043600A (en) Flat type solar concentration solar battery module
WO2023155939A2 (en) Heat-reducing reflection device, heat-reducing-type photovoltaic power generation device, and apparatus
JP2004047752A (en) Solar cell equipped with condensing means
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
JP2000091614A (en) Solar battery module and solar battery array
CN210040222U (en) Solar cell module
JPH06511602A (en) Optical device for photovoltaic cells
KR101898593B1 (en) Solar cell module
TWI537533B (en) Side-irradiated concentrated photovoltaic system
TWM441933U (en) Solar cell module
JP2022062642A (en) Photoelectric conversion device for photovoltaic power generation
JP2008311408A (en) Condensing solar cell module