JP2004047736A - 電界効果トランジスタ - Google Patents

電界効果トランジスタ Download PDF

Info

Publication number
JP2004047736A
JP2004047736A JP2002203187A JP2002203187A JP2004047736A JP 2004047736 A JP2004047736 A JP 2004047736A JP 2002203187 A JP2002203187 A JP 2002203187A JP 2002203187 A JP2002203187 A JP 2002203187A JP 2004047736 A JP2004047736 A JP 2004047736A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor region
effect transistor
field effect
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002203187A
Other languages
English (en)
Inventor
Yasuhisa Omura
大村 泰久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Industrial Promotion Organization
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2002203187A priority Critical patent/JP2004047736A/ja
Publication of JP2004047736A publication Critical patent/JP2004047736A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

【課題】新規な電界効果トランジスタを提供する。
【解決手段】絶縁層11と、絶縁層11上に配置されたソース電極12およびドレイン電極13と、絶縁層11上であって且つソース電極12とドレイン電極13との間に配置された能動領域14と、能動領域14上に形成されたゲート絶縁膜15と、ゲート電極16とを備える。そして、能動領域14は、ソース電極12とドレイン電極13との間に配置された第1の半導体領域21と、第1の半導体領域21とソース電極12との間に配置された第2の半導体領域22と、第1の半導体領域21とドレイン電極13との間に配置された第3の半導体領域23と、第1の半導体領域21と第2の半導体領域22との間に配置された第1のトンネル障壁層24と、第1の半導体領域21と第3の半導体領域23との間に配置された第2のトンネル障壁層25とを備える。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、電界効果トランジスタに関する。
【0002】
【従来の技術】
電界効果トランジスタはさまざまな分野で用いられており、その用途に応じてさまざまな特性が必要とされている。たとえば、低消費電力の電界効果トランジスタや高温でも安定に動作する電界効果トランジスタが求められている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の電界効果トランジスタではこれらの要望に十分に応えることができなかった。このような状況に鑑み、本発明は、新規な電界効果トランジスタを提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明の電界効果トランジスタは、絶縁層と、前記絶縁層上に配置されたソース電極およびドレイン電極と、前記絶縁層上であって且つ前記ソース電極と前記ドレイン電極との間に配置された能動領域と、前記能動領域上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上であって前記能動領域に対応する位置に形成されたゲート電極とを備える電界効果トランジスタであって、前記能動領域は、前記ソース電極と前記ドレイン電極との間に配置された第1の半導体領域と、前記第1の半導体領域と前記ソース電極との間に配置された第2の半導体領域と、前記第1の半導体領域と前記ドレイン電極との間に配置された第3の半導体領域と、前記第1の半導体領域と前記第2の半導体領域との間に配置された第1のトンネル障壁層と、前記第1の半導体領域と前記第3の半導体領域との間に配置された第2のトンネル障壁層とを備えることを特徴とする。
【0005】
上記電界効果トランジスタは、前記第1、第2および第3の半導体領域が、同じ導電形の半導体からなるものでもよい。
【0006】
上記電界効果トランジスタは、前記第1の半導体領域は第1の導電形の半導体からなり、前記第2および第3の半導体領域は前記第1の導電形とは異なる第2の導電形の半導体からなるものでもよい。
【0007】
上記電界効果トランジスタでは、前記ソース電極と前記ドレイン電極との間の距離が100nm以下であってもよい。
【0008】
上記電界効果トランジスタでは、前記ソース電極と前記ドレイン電極とを結ぶ方向における前記第1の半導体領域の長さが、5nm以上100nm以下であってもよい。
【0009】
上記電界効果トランジスタでは、前記ソース電極と前記ドレイン電極とを結ぶ方向における前記第1および第2のトンネル障壁層の長さが、それぞれ1nm以上5nm以下であってもよい。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら具体的に説明する。
【0011】
(実施形態1)
実施形態1では、本発明の電界効果トランジスタの一例について説明する。実施形態1の電界効果トランジスタ10の断面図を図1(a)に示す。電界効果トランジスタ10は、絶縁層11、ソース電極12、ドレイン電極13、能動領域14、ゲート絶縁膜15およびゲート電極16を備える。
【0012】
絶縁層11は、たとえば酸化シリコンで形成できる。絶縁層11の厚さは特に限定はないが、たとえば400nm程度とすることができる。絶縁層11は、たとえばシリコン基板に一定の加速電圧で酸素を注入することによって形成できる。この場合には、図1(a)に示すように、絶縁層11は、シリコン基板20の一部に形成される。
【0013】
ソース電極12およびドレイン電極13は、絶縁層11上に形成されている。ソース電極12は、金属や、縮退した半導体で形成できる。同様に、ドレイン電極13は、金属や、縮退した半導体で形成できる。縮退した半導体を用いる場合には、第1〜第3の半導体領域21〜23と同様の導電形の半導体を用いる。縮退したn形の半導体をもちいる場合、不純物濃度がたとえば4×1020cm−3の半導体を用いることができる。本発明の素子では、チャネルを短くしても特性の低下が小さい。本発明の素子では、ソース電極12とドレイン電極13との間の距離が、たとえば10nm〜100nmの範囲内であり、従来の構造の素子では高い特性が得られない50nm以下とすることも可能である(以下の実施形態の電界効果トランジスタにおいても同様である)。
【0014】
能動領域14は、絶縁層11上であって且つソース電極12とドレイン電極13との間に形成されている。能動領域14は、ソース電極12とドレイン電極13との間に配置された第1の半導体領域21と、第1の半導体領域21とソース電極12との間に配置された第2の半導体領域22と、第1の半導体領域21とドレイン電極13との間に配置された第3の半導体領域23と、第1の半導体領域21と第2の半導体領域22との間に配置された第1のトンネル障壁層24と、第1の半導体領域21と第3の半導体領域23との間に配置された第2のトンネル障壁層25とを備える。第2の半導体領域22はソース電極12と接している。第3の半導体領域23はドレイン電極13と接している。
【0015】
第1、第2および第3の半導体領域21、22および23は、比較的低濃度で不純物がドーピングされた半導体(シリコンなどの半導体)で形成される。たとえば、不純物濃度が1015〜1018cm−3程度(たとえば1×1015cm−3)の半導体を用いることができる。これらの半導体領域はすべて同じ導電形であり、n形またはp形である。第1の半導体領域21のチャネル方向C(ソース電極12とドレイン電極13とを結ぶ方向。以下同じ。)の長さは、たとえば5nm〜10nm程度とすることができる。また、第1の半導体領域21の厚さ(シリコン基板20と絶縁層11との界面に垂直な方向の長さ。以下同じ。)は、たとえば5nm〜100nm程度とすることができる。第2および第3の半導体領域22および23のチャネル方向Cの長さは、たとえば25nm程度とすることができる。
【0016】
第1および第2のトンネル障壁層24および25は、それぞれ、実質的にトンネル電流のみを透過させる層である。これらの層は、酸化シリコン、シリコン窒化物、五酸化タンタル、酸化アルミニウムといった絶縁物で形成できる。第1および第2のトンネル障壁層24および25のチャネル方向Cの長さは、それぞれ、たとえば1nm〜5nm程度とすることができる。
【0017】
ゲート絶縁膜15は、少なくとも能動領域14を覆うように形成される。ゲート絶縁膜15は、たとえば酸化シリコン、シリコン窒化物、五酸化タンタル、酸化アルミニウムなどで形成できる。
【0018】
ゲート電極16は、ゲート絶縁膜15上であって且つ能動領域14の全領域に対応する位置に少なくとも形成されることが好ましい。ゲート電極16は、導電性が高い材料で形成でき、たとえばTiN(窒化チタン)やタングステンといった金属や高濃度(n形シリコンの場合、たとえば4×1020cm−3)で不純物を添加した半導体で形成できる。
【0019】
実施形態1の電界効果トランジスタ10では、第1、第2および第3の半導体領域21、22および23が同一の導電形の半導体で形成される。図1(b)に、第1、第2および第3の半導体領域21、22および23がn形の半導体(低不純物濃度のn形半導体)で形成され、ソース電極12およびドレイン電極13が縮退したn形半導体(高不純物濃度のn形半導体)で形成された場合について、オフ時のバンドプロファイルを模式的に示す。
【0020】
電界効果トランジスタ10では、ゲート電極16に印加される電圧によってゲート絶縁膜15近傍の半導体領域のキャリア密度が変化し、ソース−ドレイン間を流れる電流が制御される。このとき、ソース−ドレイン間を流れる電流は、2つのトンネル障壁層によって制御されるため、消費電力を小さくできる。また、電界効果トランジスタ10では、トンネル障壁層によってOFF時にチャネルを流れる電流が制限されるため、チャネル長が短くなることによる悪影響を抑制できる。
【0021】
(実施形態2)
実施形態2では、本発明の電界効果トランジスタの他の一例について説明する。実施形態2の電界効果トランジスタ30の断面図を図2(a)に示す。電界効果トランジスタ30は、電界効果トランジスタ10と比較して、能動領域を構成する半導体の導電形のみが異なるため、重複する説明を省略する。
【0022】
電界効果トランジスタ30は、第1、第2および第3の半導体領域21、22および23に対応する位置に配置された第1、第2および第3の半導体領域31、32および33と、第1および第2のトンネル障壁層24および25とを含む能動領域34を備える。そして、第1の半導体領域31が第1の導電形の半導体で形成され、第2および第3の半導体領域32および33が第1の導電形の半導体とは異なる第2の導電形の半導体で形成される。たとえば、第1の半導体領域31がn形の半導体で形成される場合には、第2および第3の半導体領域32および33はp形の半導体で形成される。一方、第1の半導体領域31がp形の半導体で形成される場合には、第2および第3の半導体領域32および33はn形の半導体で形成される。いずれの場合でも、それぞれの半導体領域は不純物濃度が比較的低く、たとえば、不純物濃度が1015〜1018cm−3程度(たとえば1×1015cm−3)の半導体を用いることができる。各半導体領域のサイズは、実施形態1の素子と同様である。
【0023】
第1の半導体領域31がn形の半導体で形成され、第2および第3の半導体領域32および33がp形の半導体で形成される場合について、オフ時のバンドプロファイルを図2(b)に模式的に示す。
【0024】
電界効果トランジスタ30は、温度依存性が小さいトンネル障壁層によって電流が制御されるため、特性の温度依存性が小さい。また、電界効果トランジスタは、第1の半導体領域31の導電形と、第2および第3の半導体領域32および33の導電形とが異なる。このため、温度が上昇してもゲート電圧が印可されない限り、第2および第3の半導体領域32および33のキャリア密度の増加が小さい。これらのことから、電界効果トランジスタ30では、従来の素子に比べて、温度が上昇してもオフ時の電流はそれほど変化しない。
【0025】
一方、ゲート電極16に印加する電圧を増加させると、第2および第3の半導体領域32および33のうちゲート絶縁膜15近傍の部分には、反転層が形成される。また、第1の半導体領域31のうちゲート絶縁膜15近傍のキャリア密度は増加する。これにより、ソース−ドレイン間の電流は、ゲート絶縁膜15近傍の能動領域34を流れる。電流は、2つのトンネル障壁層をキャリアがトンネルすることによって流れる。
【0026】
以上説明したように、実施形態2の電界効果トランジスタ30では、実施形態1の電界効果トランジスタ10と同様の効果が得られる。さらに、電界効果トランジスタ30では、300℃以上の高温でもスイッチング動作を実現できる。
【0027】
以下、電界効果トランジスタ30の製造方法について説明する。なお、以下の製造方法では、第1の半導体領域31がn形のシリコンで形成される場合について説明するが、第1の半導体領域31がp形など他の半導体で形成される場合でも、基板やドーパントを選択することによって同様に製造できることはいうまでもない。また、以下の製造方法では、層間絶縁膜と金属電極とを備える電界効果トランジスタを製造する一例について説明する。
【0028】
まず、図3(a)に示すように、シリコン基板20、絶縁層11および半導体層40からなる多層基板を形成する。この構造は一般的な方法で形成できる。たとえば、シリコン基板のうち絶縁層11に相当する部分にのみ酸素を注入することによって形成できる。また、シリコン基板の表面に絶縁層を形成したのち、絶縁層上にアモルファスシリコン層を形成し、このアモルファスシリコン層を多結晶化することによっても形成できる。絶縁層は、熱酸化などによって形成できる。半導体層40はn形からなる。シリコン基板20の導電形に限定はない。この一例では、半導体層40はn形である。
【0029】
次に、半導体層40上に絶縁層を形成したのち、その絶縁層および半導体層40の一部をエッチングすることによって、図3(b)に示すように、絶縁層11の一部の上に配置された第1の半導体領域31と、第1の半導体領域31上に配置された絶縁層41とを形成する。絶縁層は、たとえば半導体層40を熱酸化することによって形成できる。また、エッチングは、たとえばフォトリソ・エッチング法によって行うことができる。
【0030】
次に、図3(c)に示すように、第1および第2のトンネル障壁層24および25と、p形の半導体層42と、絶縁層43とを形成する。第1および第2のトンネル障壁層24および25は、第1の半導体領域31の側面の部分に形成される。これらのトンネル障壁層は、たとえば第1の半導体領域31の表面を熱酸化することによって形成できる。半導体層42は、その後の工程によって、第2および第3の半導体領域32および33、ならびにソース電極12およびドレイン電極13となる半導体である。半導体層42は、たとえばCVD法によって形成できる。また、絶縁層43は、たとえばシリコン酸化膜からなり、たとえばCVD法によって形成できる。
【0031】
次に、半導体層42が露出するまで絶縁層43を研磨したのち、露出した半導体層42を選択的且つ所定の深さまでエッチングすることによって、図3(d)に示すような構造を形成する。絶縁層43の研磨は、たとえばCMP(Chemical−Mechanical Polishing)によって行うことができる。半導体層42の選択的なエッチングは、公知のエッチング法で行うことができる。半導体層42をエッチングする際には、第1および第2のトンネル障壁層24および25に隣接する半導体層42が露出しないようにする。
【0032】
次に、絶縁層41を除去したのち、露出した第1の半導体領域31、トンネル障壁層および半導体層42を覆うようにゲート絶縁膜15を形成する。そして、ゲート絶縁膜15および絶縁層43を覆うように、縮退した半導体膜44(金属膜でもよい)を形成する。このようにして、図4(e)に示す構造を形成する。ゲート絶縁膜15は、たとえば熱酸化によって形成できる。半導体膜44は、スパッタリング法や蒸着法によって形成できる。
【0033】
次に、絶縁層43が露出するまで半導体膜44を除去する。この工程は、たとえばCMPによって行うことができる。その後、露出した絶縁層43を選択的に除去することによって、図4(f)に示すように、ゲート絶縁膜15上に形成されたゲート電極16を形成する。絶縁層43の選択的な除去は、公知のエッチング法で行うことができる。
【0034】
その後、ゲート電極16をマスクとして半導体層42の一部に不純物(たとえばリン)を導入する。これによって、図4(g)に示すように、p形の第2および第3の半導体領域32および33と、高不純物濃度のn形半導体からなるソース電極12およびドレイン電極13とを形成する。
【0035】
最後に、図4(h)に示すように、絶縁膜45と金属電極46および47とを形成する。これらの絶縁膜および金属電極は、一般的な方法で形成できる。以上のようにして電界効果トランジスタ30を製造できる。また、実施形態1で説明した電界効果トランジスタも、形成する半導体層の導電形を変更することによって同様の方法で製造できる。なお、上述した製造方法は一例であり、本発明の電界効果トランジスタは上述した製造方法で製造されるトランジスタに限定されない。
【0036】
以下、本発明および従来の電界効果トランジスタの特性についてシミュレーションを行った結果を説明する。本発明の電界効果トランジスタとして、図2に示した電界効果トランジスタ30を用いた。本発明の電界効果トランジスタのシミュレーションで採用した仮定について説明する。第1の半導体領域31のチャネル方向Cの長さ(ソース−ドレイン方向の長さ)を8nmとし、不純物濃度を1×1015cm−3とした。第2および第3の半導体領域32および33のチャネル方向の長さを25nmとし、不純物濃度を1×1015cm−3とした。第1〜第3の半導体領域の厚さ(シリコン基板20と絶縁層11との界面に垂直な方向の長さ)は、それぞれ10nmとした。
【0037】
一方、従来の電界効果トランジスタのシミュレーションには、図5に示す構造のトランジスタを仮定した。図5の電界効果トランジスタ100は、シリコン基板101と、シリコン基板101上に配置された絶縁層102と、絶縁層102上に配置されたソース電極103、p形の半導体104およびドレイン電極105と、ゲート絶縁膜106とゲート電極107とを備える。このシミュレーションでは、半導体104のチャネル方向の長さを50nmとし不純物濃度を3×1017cm−3とした。
【0038】
シミュレーションの結果を図6〜図9に示す。図6および図7は、それぞれ従来および本発明の電界効果トランジスタについて、300Kにおけるゲート電圧とドレイン電流との関係を示すグラフである。図6および図7では、ドレイン電圧を、0.1V、0.3Vまたは0.5Vとした場合の3つの結果を示している。図8および図9は、それぞれ従来および本発明の電界効果トランジスタについて、ドレイン電圧を0.5Vに固定した場合のゲート電圧とドレイン電流との関係を示すグラフである。図8および図9では、温度を300K、400K、500Kまたは600Kに変化させた場合の結果を示している。
【0039】
図6〜図9から明らかなように、本発明の電界効果トランジスタは、消費電力が小さいという結果が得られた。これは、本発明の電界効果トランジスタでは、チャネルを流れる電流が、2つのトンネル障壁層を通過するトンネル電流によって制限されるためである。また、本発明の電界効果トランジスタは、ON時のドレイン電流とOFF時のドレイン電流との比が大きく、高温でも大きなON/OFF比が得られるという結果が得られた。たとえば、本発明の電界効果トランジスタでは、図9に示すように、400Kでも3桁以上のON/OFF比が得られた。
【0040】
以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することができる。
【0041】
【発明の効果】
以上のように本発明によれば、消費電力が少なく、温度依存性が小さい電界効果トランジスタが得られる。このような電界効果トランジスタは、高温での使用が予想される回路、たとえば、自動車のエンジン制御用の回路などに好適である。また、消費電力が小さいことから、腕時計用の回路などにも好適である。さらに、温度依存性が小さいことから、回路の熱暴走を防止するための素子としても好適である。
【図面の簡単な説明】
【図1】本発明の電界効果トランジスタの一例について(a)構造を示す断面図および(b)バンド構造を示す模式図である。
【図2】本発明の電界効果トランジスタの他の一例について(a)構造を示す断面図および(b)バンド構造を示す模式図である。
【図3】本発明の電界効果トランジスタの製造方法について一例の製造工程を示す断面図である。
【図4】図3に示した製造工程に続く製造工程を示す断面図である。
【図5】シミュレーションで仮定した従来の電界効果トランジスタの構造を示す断面図である。
【図6】従来の電界効果トランジスタについて300Kにおけるゲート電圧とドレイン電流との関係をシミュレーションした結果を示す図である。
【図7】本発明の電界効果トランジスタについて300Kにおけるゲート電圧とドレイン電流との関係をシミュレーションした結果を示す図である。
【図8】従来の電界効果トランジスタについてVd=0.5Vにおけるゲート電圧とドレイン電流との関係をシミュレーションした結果を示す図である。
【図9】本発明の電界効果トランジスタについてVd=0.5Vにおけるゲート電圧とドレイン電流との関係をシミュレーションした結果を示す図である。
【符号の説明】
10、30 電界効果トランジスタ
11 絶縁層
12 ソース電極
13 ドレイン電極
14 能動領域
15 ゲート絶縁膜
16 ゲート電極
20 シリコン基板
21 第1の半導体領域
22 第2の半導体領域
23 第3の半導体領域
24 第1のトンネル障壁層
25 第2のトンネル障壁層
31 第1の半導体領域
32 第2の半導体領域
33 第3の半導体領域
34 能動領域

Claims (6)

  1. 絶縁層と、前記絶縁層上に配置されたソース電極およびドレイン電極と、前記絶縁層上であって且つ前記ソース電極と前記ドレイン電極との間に配置された能動領域と、前記能動領域上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上であって前記能動領域に対応する位置に形成されたゲート電極とを備える電界効果トランジスタであって、
    前記能動領域は、前記ソース電極と前記ドレイン電極との間に配置された第1の半導体領域と、前記第1の半導体領域と前記ソース電極との間に配置された第2の半導体領域と、前記第1の半導体領域と前記ドレイン電極との間に配置された第3の半導体領域と、前記第1の半導体領域と前記第2の半導体領域との間に配置された第1のトンネル障壁層と、前記第1の半導体領域と前記第3の半導体領域との間に配置された第2のトンネル障壁層とを備えることを特徴とする電界効果トランジスタ。
  2. 前記第1、第2および第3の半導体領域が、同じ導電形の半導体からなる請求項1に記載の電界効果トランジスタ。
  3. 前記第1の半導体領域は第1の導電形の半導体からなり、
    前記第2および第3の半導体領域は前記第1の導電形とは異なる第2の導電形の半導体からなる請求項1に記載の電界効果トランジスタ。
  4. 前記ソース電極と前記ドレイン電極との間の距離が100nm以下である請求項1ないし3のいずれかに記載の電界効果トランジスタ。
  5. 前記ソース電極と前記ドレイン電極とを結ぶ方向における前記第1の半導体領域の長さが、5nm以上100nm以下である請求項1ないし3のいずれかに記載の電界効果トランジスタ。
  6. 前記ソース電極と前記ドレイン電極とを結ぶ方向における前記第1および第2のトンネル障壁層の長さが、それぞれ1nm以上5nm以下である請求項1ないし3のいずれかに記載の電界効果トランジスタ。
JP2002203187A 2002-07-11 2002-07-11 電界効果トランジスタ Withdrawn JP2004047736A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203187A JP2004047736A (ja) 2002-07-11 2002-07-11 電界効果トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203187A JP2004047736A (ja) 2002-07-11 2002-07-11 電界効果トランジスタ

Publications (1)

Publication Number Publication Date
JP2004047736A true JP2004047736A (ja) 2004-02-12

Family

ID=31709152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203187A Withdrawn JP2004047736A (ja) 2002-07-11 2002-07-11 電界効果トランジスタ

Country Status (1)

Country Link
JP (1) JP2004047736A (ja)

Similar Documents

Publication Publication Date Title
TWI234283B (en) Novel field effect transistor and method of fabrication
US6686231B1 (en) Damascene gate process with sacrificial oxide in semiconductor devices
US6833588B2 (en) Semiconductor device having a U-shaped gate structure
KR102528801B1 (ko) 상부 금속 루팅층에 리피터/버퍼를 포함하는 반도체 장치 및 그 제조 방법
TWI394232B (zh) 半導體裝置
US7221032B2 (en) Semiconductor device including FinFET having vertical double gate structure and method of fabricating the same
US10243002B2 (en) Asymmetric band gap junctions in narrow band gap MOSFET
US20090032849A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2010073869A (ja) 半導体装置およびその製造方法
TWI574402B (zh) 場效電晶體結構
KR100592740B1 (ko) 쇼트키 장벽 관통 단전자 트랜지스터 및 그 제조방법
US6911697B1 (en) Semiconductor device having a thin fin and raised source/drain areas
US7416925B2 (en) Doped structure for finfet devices
US6876042B1 (en) Additional gate control for a double-gate MOSFET
JP3344381B2 (ja) 半導体装置及びその製造方法
US20230014586A1 (en) Horizontal gaa nano-wire and nano-slab transistors
KR100560432B1 (ko) N형 쇼트키 장벽 관통 트랜지스터 소자 및 제조 방법
JPH05343686A (ja) 半導体装置およびその製造方法
KR100307828B1 (ko) 반도체소자의 제조방법
JP3522440B2 (ja) 薄膜半導体装置
JP2004047736A (ja) 電界効果トランジスタ
JP3423859B2 (ja) 電界効果型半導体装置の製造方法
WO2024138688A1 (zh) 混合导通机制鳍型栅场效应晶体管器件
CN115911133A (zh) 混合导通机制鳍型栅场效应晶体管器件
JP4090531B2 (ja) 半導体装置およびその作製方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004