JP2004047617A - Mounting structure of electronic component and manufacturing method thereof - Google Patents

Mounting structure of electronic component and manufacturing method thereof Download PDF

Info

Publication number
JP2004047617A
JP2004047617A JP2002201295A JP2002201295A JP2004047617A JP 2004047617 A JP2004047617 A JP 2004047617A JP 2002201295 A JP2002201295 A JP 2002201295A JP 2002201295 A JP2002201295 A JP 2002201295A JP 2004047617 A JP2004047617 A JP 2004047617A
Authority
JP
Japan
Prior art keywords
electronic component
insulating layer
thickness
mounting structure
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002201295A
Other languages
Japanese (ja)
Inventor
Toshiaki Iwabuchi
岩渕 寿章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002201295A priority Critical patent/JP2004047617A/en
Publication of JP2004047617A publication Critical patent/JP2004047617A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/24195Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82009Pre-treatment of the connector or the bonding area
    • H01L2224/8203Reshaping, e.g. forming vias
    • H01L2224/82035Reshaping, e.g. forming vias by heating means
    • H01L2224/82039Reshaping, e.g. forming vias by heating means using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Led Device Packages (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting structure of an electronic component and its manufacturing method wherein a connection hole is easily formed and reliability in wiring is enhanced. <P>SOLUTION: The thickness of an insulating layer 2 is so controlled as to match a difference in thicknesses of a resin chip 5 and an IC chip 6 to be mounted. The insulating layers 2 and 3 are partially removed and mounted directly on a substrate 1. The resin chip 5 is mounted on an insulating layer 3. Thus, an electrode 9 of the IC chip 6 is formed to have the same height as that of an electrode 11b of the resin chip 5. Therefore, the connection holes for these electrodes are worked in batch under identical work conditions, and a connection hole 15a of bottom layer wiring can be made shallow with a low aspect ratio for proper wiring. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品の実装構造及びその製造方法に関し、特に、接続孔の加工が容易な電子部品の実装構造及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、画像表示装置の製造方法としては、ウェーハからダイシングして電子部品(例えば半導体チップ)を分離し、分離した電子部品をダイシングシートからチップトレイに移送し、所定の加工及び転写工程を経た後に、チップトレイから電子部品を真空吸着でピックアップして、基板にマウント若しくは接続した後に配線するという方法が知られている。
【0003】
【発明が解決しようとする課題】
図11及び図12は、上記した画像表示装置(以下、単に装置と称することがある。)の一例を示す概略図であり、それぞれ発光素子として、発光ダイオード(以下、LEDと称することがある。)40aを樹脂封止した樹脂チップ35a、又はLED40bを樹脂封止した樹脂チップ35bが実装されている。
【0004】
いずれも、基板31上に積層された絶縁層32(厚さ:約5μm)、33(厚さ:約5μm)上に、前記樹脂チップ35a又は35bが設けられ、これに隣接してこれらのLED駆動用のICチップ36が並設されている。そしてこれらを被覆する絶縁層34に接続孔43、44、45a、45bを形成後に、配線46が形成され、全体の高さHは約110〜130μmに形成されている。
【0005】
そして、図11に示す装置30のLED40aは、上部にp電極41aと下部にn電極(図示省略)とが形成され、下地成長層47上に形成された六角錐形状のLED40aにおける発光が、六角錐の斜面内側での反射を伴い基板31側から取り出される。
【0006】
また、図12に示す装置50のLED40b(プレーナタイプ)は、下部にp電極41aと上部にn電極41bとを有し、LED40bにおける発光が同様に基板31側から取り出せるようになっている。なお、p電極41aの反対側の電極41cはプロービング検査用である。
【0007】
しかしながら、図11及び図12に示すように、基板31からの樹脂チップ35a又は35bの高さA(約50〜70μm)及びICチップ36の高さB(約80〜90μm)が異なるため、これとの接続孔43と44(50〜200μmφ)の深さも異なり、これ以外の下地配線38a、38bとの接続孔45a、45bを合せて、4種類の深さの接続孔が必要であり、それぞれ接続孔の加工条件が異なる上に、深い接続孔はアスペクト比が高く、導通を得ることが困難であった。このため、特に、上記AとBが異なることが問題となっている。
【0008】
また、これらのチップ部品のマウント精度は転写位置により決められていて、転写を繰り返すことにより、同一位置に多数のデバイスをマウントするため位置ずれが累積され、配線基板上にマウントした時には大きく位置がずれることがあった。
【0009】
なお、このような電子部品の実装に関して、特開平9−321408号公報においては、半導体チップの端子にスタッドバンプを形成後に、半導体チップをプリント基板に埋め込み、これを被覆した絶縁部材に孔をあけてスタッドバンプを露出させ、これと配線パターンとを接続することにより、強固な配線ができることが開示されている。
【0010】
また、特開平10−282145号公報には、ガラス基板に設けた凹みに電子部品を配し、その電極に接続した配線を凹み以外の領域に延設し、この配線上に同じ高さのバンプを形成することにより、IC検査を容易にできることが開示されている。
【0011】
また、特開平10−223832号公報には、プリント基板上に電子部品を特定の高さに支持し、この状態で電子部品を基板にはんだ付けすることにより、低コストで良好なはんだ付けが可能になることが開示されている。
【0012】
また、特開平10−223832号公報には、基板上に設けた導電層上に、電極にバンプを設けた半導体チップ及び導電ブロックを配し、これを樹脂膜で被覆して表面を平坦化することで、ベア半導体チップの高さのばらつきを吸収できることが開示されている。
【0013】
また、特開平11−26631号公報には、半導体素子の突起状電極の先端に導電性接着材を設けることにより、これを搭載する基板のうねりに対する突起電極の高さを調整できることが開示されている。
【0014】
しかし、上記公報(以下、先願発明と称する。)のいずれも上記問題を解決するものではなく、本発明とは構成要件が異なると共に、本発明の構成を意図したものではない。
【0015】
そこで本発明の目的は、接続孔の形成が容易、かつ配線の信頼性が高められる電子部品の実装構造及びその製造方法を提供することにある。
【0016】
【課題を解決するための手段】
即ち、本発明は、実装基体上に複数の電子部品が固定され、これらの電子部品を被覆する絶縁層に形成された接続孔を介して各電子部品の電極が取り出されている電子部品の実装構造において、
前記実装基体上に設けられた下地層の厚みの制御によって、前記複数の電子部品の各電極に対する前記接続孔の深さがほぼ同一となっている、電子部品の実装構造(以下、本発明の実装構造と称する。)に係るものである。
【0017】
本発明の実装構造によれば、基体上に設ける下地層の厚みを制御するので、各電子部品の電極の位置を同一高さに形成できるため、これらの電子部品を被覆する絶縁層において、各電子部品の電極に対する接続孔を同一加工条件の下で、一括加工することができる。その結果、接続不良のない良好な配線を形成することができ、信頼性が高められると共に、接続孔の種類が減り、製造工程の簡素化された電子部品の実装構造を提供できる。
【0018】
また、本発明は、実装基体上に複数の電子部品が固定され、これらの電子部品を被覆する絶縁層に形成された接続孔を介して各電子部品の電極が取り出されている電子部品の実装構造を製造する方法において、
前記実装基体上に制御された厚みに下地層を形成する工程と、
前記下地層上に前記複数の電子部品を固定する工程と、
前記絶縁層を形成する工程と、
この絶縁層に前記接続孔を形成する工程と
を有する、電子部品の実装構造を製造する方法(以下、本発明の製造方法と称する。)に係るものである。
【0019】
本発明の製造方法によれば、実装基体上に制御された厚みに下地層を形成し、この下地層上に複数の電子部品を固定し、この電子部品を被覆する絶縁層を形成してこの絶縁層に接続孔を形成するので、電子部品の電極に対する接続孔を同一加工条件で形成できるため、上記した本発明の実装構造と同様の効果が奏せられる、再現性の良い製造方法が提供できる。
【0020】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を説明する。
【0021】
上記した本発明の実装構造及び製造方法においては、厚みの制御された前記下地層の面に、前記実装基体上の最下層の配線を設けることにより、この配線の位置を高めることが可能になるため、アスペクト比の低い接続孔を形成でき、接続不良のない配線により信頼性が高められる点で望ましい。
【0022】
この場合、前記複数の電子部品の厚みの差に対応する膜厚の下地絶縁層を形成し、この絶縁層上に、厚みの小さい方の電子部品を固定することにより、厚みの小さい電子部品の電極と厚みの大きい電子部品の電極の高さを同一にし易い点で望ましい。
【0023】
但し、前記最下層の配線を前記実装基体に直接設けて、前記下地層に形成した接続孔を介して、前記下地層上に前記最下層の配線を導出するようにしてもよい。
【0024】
更に、前記複数の電子部品のうち厚みの大きい方の電子部品の下部において、前記下地絶縁層を除去して凹部を形成し、この凹部内に前記厚みの大きい電子部品を固定することが、この電子部品の位置精度が高められると共に、厚みの小さい電子部品との高さを制御し易い点で望ましい。
【0025】
これにより、前記複数の電子部品間が、前記絶縁層に形成された前記接続孔を介して電気的に良好に接続され、配線の信頼性が高められる点で望ましい。
【0026】
この場合、前記複数の電子部品の一方を発光素子とし、他方を発光素子駆動用の半導体チップとして、更に、前記発光素子を樹脂封止したチップ状態で実装することにより、画像表示装置として構成することができる。
【0027】
次に、上記した好ましい実施の形態を図面参照下で具体的に説明する。
【0028】
実施の形態1
図1は、本実施の形態による実装構造の装置25を示し、(a)は概略断面図、(b)はその一部分の拡大断面図である。
【0029】
この装置25は、既述した図12と同様なタイプのLED5を具備したものであるが、従来と異なる特徴は、一方の電子部品としての樹脂チップ5の電極11bと、他方の電子部品としてのICチップ6の電極9の高さが同一に形成されていることにより、これらの電極に対する接続孔13及び14が同一であること、ICチップ6が基板1上に直接マウントされていること、最下層の配線8aに対する接続孔15aが浅く形成され、このアスペクト比が低く形成されていることである。
【0030】
この実装構造は、図1(a)に示すように、基板1上に積層された絶縁層2、3の一部分が選択的に除去され、この部分にICチップ6がダイボンディング材7を介して基板1上に直接固定され、樹脂チップ5は積層された絶縁層3の上にダイボンディング材7を介して固定されている。その結果、樹脂チップ5の電極11bとICチップ6の電極9が同一の高さに形成されているが、この高さはICチップ6の厚さ(約70〜80μm)と樹脂チップ5の厚さ(約40〜60μm)の差に一致させて、絶縁層2の厚さを制御することにより形成されている。
【0031】
即ち、既述したように、図11又は図12に示した従来の装置において、1層目の絶縁層32の厚さ:約5μm、2層目の絶縁層33の厚さ:約5μm、絶縁層32又は33を含むAの高さ:約50〜70μm及びBの高さ:約80〜90μmであることから、両絶縁層の厚みの合計10μmを差引くと、Bの高さのうちのICチップ36の厚さは70〜80μm、Aの高さのうちの樹脂チップ35a(又は35b)の厚さは40〜60μmである。
【0032】
従って、図11又は図12における実際のBとAの差(A−B)は10〜40μmであることから、本実施の形態における1層目の絶縁層2の厚さ(t)は10〜40μm(例えば10μm)に形成し、樹脂チップ5及びICチップ6の電極を同一高さに形成している。
【0033】
つまり、図1(b)に示すように、1層目の絶縁層2の厚さt、ICチップ6の厚さx及び樹脂チップ5の厚さyは、t=x−yの関係になっている。また、樹脂チップ5はLED10及びその電極等を封止するために、上部に封止樹脂の厚みzを有して全体の厚さyが構成されている。従って、2層目の絶縁層3の厚さzは封止樹脂の厚みに合せることにより、ICチップ6の電極9と樹脂チップ5の電極11bの高さを同一にすることができる。
【0034】
そして、図1(a)に示すように、1層目の絶縁層2の上に最下層の配線8aが配され、2層目の絶縁層3の上に2層目の下層配線8bが配されることにより、クロス配線を可能としている。このようにクロス配線に不可欠な2層構造の上方の絶縁層3の上に樹脂チップ5が配されるため、2層目の絶縁層3の厚み(z)を樹脂チップ5の封止樹脂の厚み(z)と同様の膜厚に形成することにより、t=x−yの関係を構成し、樹脂チップ5の電極11bとICチップ6の電極9の高さを同一に配置している。
【0035】
また、最下層の配線8aが、制御された膜厚(従来より厚い)の絶縁層2の上に配置されることにより、基板1からの高さh(図1参照)は従来に比べて高くなるため、この接続孔15aの深さが浅くなり、アスペクト比が低く形成されている。
【0036】
従って、図1(a)に示すように、ICチップ6及び樹脂チップ5の電極9、11bに対する接続孔13、14が同一に形成されるため、ICチップ6と樹脂チップ5の電極9、11bに対する接続孔の種類が減り、製造プロセスを簡素化することができると共に、下層配線8aに対しても低いアスペクト比の接続孔15aを形成できる。
【0037】
図2〜図4に上記装置の製造プロセスの概略断面図を示す。
【0038】
まず、図2(a)に示す基板1上に、図2(b)に示すように1層目の絶縁層2を形成し、この一端(図中左側)寄りにアルミニウム(Al)からなる最下層の配線8aを配する。この際、実装するICチップ6と樹脂チップ5の厚みの差tを予め測定しておき、この差に一致した厚さに絶縁層2を形成する。
【0039】
次いで、図2(c)に示すように、2層目の絶縁層3を積層する。そしてこの膜厚は上記した如く、この上に固定する樹脂チップ5の封止樹脂の厚さ(図1におけるz)と同一の厚さに形成する。
【0040】
次いで、図2(d)に示すように、最下層の配線8aとは反対側の端部寄りの2層目の絶縁層3上に、Alからなる次の下層配線8bを配する。なお、本実施の形態の下層配線は2層であるが、配線層が多層の場合は、2層目の配線8bの上に更に絶縁層を積層して、配線層を更に形成する。
【0041】
次いで、図2(e)に示すように、ICチップ6をマウントするために、絶縁層2、3の除去部18を形成する。従って、配線はこの除去部を通らないように設計しておく。これにより、ICチップ6と樹脂チップ5の高さを同一にし易いと共に、位置ずれが吸収されてICチップ6のマウント精度を高めることができる。
【0042】
次いで、図3(f)に示すように、上記除去部18にICチップ6をダイボンディング材7を介して固定し、これに隣接して絶縁層3上に樹脂チップ5をダイボンディング材7を介して固定する。
【0043】
次いで、図3(g)に示すように、マウントしたICチップ6及び樹脂チップ5を含む絶縁層3の上部を被覆するように、絶縁層4を形成する。
【0044】
次いで、図3(h)に示すように、各下層配線8a、8b及びICチップ6の電極9と樹脂チップ5の電極11bに対し、これらの電極と接続させるための接続孔15a、15b、13及び14をレーザビーム19の照射によって形成する。
【0045】
ICチップ6の電極9及び樹脂チップ5の電極11bも下層配線8a、8bと同様にアルミニウムで形成されているため、レーザ光照射時に熱吸収率の低いアルミニウムの特性によって、電極等がレーザによって損傷され難いため、高出力の短波長レーザによる接続孔の加工が容易である。
【0046】
レーザビーム19による接続孔の加工は、図3(h)に示すように、接続孔の深さ毎にマスク20を選択し、レンズ21により焦点を絞り、更に、深い接続孔用のレーザ又は浅い接続孔用のレーザを用い、レーザビーム19のショット数を変えてアブレーションすることにより、各種の深さの接続孔を任意に形成でき、この加工に伴って接続孔の径及びテーパが形成される。
【0047】
特に、ICチップ6及び樹脂チップ5の電極に対する接続孔13、14は同一条件の下で一括加工できる。また、下層配線8a、8bに対する接続孔15a、15bは、底部の面積も大きく、テーパ角も大きくとれるので接続孔入り口での配線の段切れも生じ難くなる。
【0048】
次いで、図4(i)に示すように、各接続孔15a、15b、13及び14を含む絶縁層4の上面にスパッタリング等の物理的成膜法によりCu(銅)膜16Aを被着する。この際、電極等のAlとCuに接続性のよい無電解Niめっき(図示省略)を予め施しておくことにより、Alからなる下層配線8a、8b、ICチップ6の電極9、樹脂チップ5の電極11b等とCu膜16Aとの接続性及び導電性を高めることができる。
【0049】
次いで、図4(j)に示すように、被着したCu膜16AをフォトリソグラフィーでパターニングしてCu配線16を形成する。そして、配線16の形成後、保護層(図示せず)を配線16上に形成し、画像表示装置のパネルを完成する。
【0050】
本実施の形態によれば、実装する樹脂チップ5とICチップ6との厚みの差に一致させて、基板1上に配する1層目の絶縁層2の厚みを制御し、2層目の絶縁層3を樹脂チップ5の封止樹脂の厚み(z)と同一の厚さで積層して、樹脂チップ5をこの絶縁層3上にマウントし、ICチップ6はこれらの絶縁層2、3を選択的に除去して基板1上に直接マウントするので、ICチップ6の電極9と樹脂チップ5の電極11bの基板1上における高さを同一に配置することができる。
【0051】
従って、ICチップ6の電極9及び樹脂チップ5の電極11bに対する接続孔13、14を同一の加工条件で同一の深さに一括加工にて形成でき、製造工程を簡素化できる。しかも、制御によって厚く形成された1層目の絶縁層2上に最下層の配線8aが配されるので、この接続孔15aが従来よりも浅く、低いアスペクト比に形成できる。これによりICチップ6及び樹脂チップ5の電極9、11bとの接続孔13、14と同様に、最下層の配線8aとの接続孔15等についても接続不良のない良好な配線を形成でき、信頼性を高めることができる。
【0052】
上記したように、本実施の形態は、既述した先願発明が意図していない構成と特徴とを有しており、先願発明のいずれも、その構成を本実施の形態に適用することは不可能であり、無理に適用しても本実施の形態の目的を実現することはできない。
【0053】
実施の形態2
図5は、本実施の形態による実装構造の装置26を示し、(a)は概略断面図、(b)はその一部分の拡大断面図である。
【0054】
この装置26も、基本的な構造は実施の形態1とほぼ同様であるが、厚みの薄い樹脂チップ5A(電極11a、11bが封止樹脂外に露出している。)を実装している点が異なる。
【0055】
即ち、この樹脂チップ5Aも2層目の絶縁層3上に接着材17を介して固定され、これ以外は実施の形態1と同様の構造になっている。従って、実施の形態1の樹脂チップ5に比べて、封止用の樹脂が用いられていないため、この樹脂相当分だけ厚みが薄くなるが、この場合も、ICチップ6と樹脂チップ5Aの厚みの差に一致するように、絶縁層2、3の厚みを制御することにより、ICチップ6の電極9と樹脂チップ5Aの電極11bの高さが同一に形成されている。
【0056】
つまり、図5(b)に示すように、この場合の絶縁層の厚さtは、1層目の絶縁層2及び2層目の絶縁層3の合計の厚さであり、樹脂チップ5Aの厚さy’は接着材17を含む厚さであり、実施の形態1と同様のICチップ6の厚みxとの関係は、t=x−y’となっている。
【0057】
従って、最下層の配線8aを実施の形態1と同様に形成するとすれば、1層目の絶縁層2の厚みは変らないため、2層目の絶縁層3の厚みを制御して合計の厚さy’が形成されている。
【0058】
これにより、ICチップ6の電極9及び樹脂チップ5Aの電極11bを、基板1上において同一の高さに形成することができるため、この両チップの各電極9、11bに対する接続孔13、14を同一の加工条件で同一に形成することができ、実施の形態1と同等の効果を得ることができる。
【0059】
実施の形態3
図6は、本実施の形態による実装構造の装置27を示し、(a)は概略断面図、(b)はその一部分の拡大断面図である。
【0060】
この装置も、基本的な構造は実施の形態1とほぼ同様であるが、ICチップ6Aの厚みが実施の形態1の場合よりも薄く形成されている点が異なる。
【0061】
即ち、各種の半導体チップが薄型化傾向にあり、薄型化されたICチップ6Aを用いた実装構造である。従って、図6に示すように、このICチップ6Aのマウント部は2層目の絶縁層3のみを除去し、ICチップ6Aは1層目の絶縁層2の上に固定されている。これ以外は実施の形態1と同様な構成である。
【0062】
従って、図6(b)に示すように、絶縁層2、3の厚み及び樹脂チップ5の厚みは実施の形態1と変らず、ICチップ6Aの厚みのみが異なるため、ICチップ6Aの厚み(x’)は絶縁層3の厚み(z’)との関係となり、z’=x’−y+zとなっている。
【0063】
このように、この場合も、ICチップ6Aと樹脂チップ5の厚みの差に一致させて、絶縁層3の厚みを制御することにより、ICチップ6Aの電極9と樹脂チップ5の電極11bの高さが同一に形成されている。
【0064】
また、本実施の形態は図6に示すように、ICチップ6Aを1層目の絶縁層2の上にマウントしているが、ICチップ6Aの厚さに応じて絶縁層の除去も異なる。即ち、絶縁層2の一部分も除去する必要がある場合や、絶縁層3の一部分のみの除去で足りる場合など、種々の形態が想定されるが、いずれの場合も、その状態に応じたICチップ6Aと樹脂チップ5の厚みの差を基に絶縁層の厚みを制御する。
【0065】
これにより、ICチップ6Aの電極9及び樹脂チップ5の電極11bの高さを同一に形成できるため、この両チップの各電極9、11bに対する接続孔13、14を同一の加工条件で同一に形成することができ、実施の形態1と同等の効果を得ることができる。
【0066】
図7に、実施の形態1の変形例を示す。
【0067】
この装置28が実施の形態1と異なる点は、最下層の配線8aが基板1上に直接形成され、この配線8a上にプラグ23を設けて、接続孔が2層目の配線8bに対する接続孔15bと同一に形成されていることである。
【0068】
従って、これ以外は実施の形態1と同様な構造であるため、ICチップ6の電極9及び樹脂チップ5の電極11bとの接続孔13、14が、同一の加工条件で同一に形成できることに加え、下層配線8a、8bとの接続孔15bが同一の加工条件で、同一のアスペクト比に形成できるため、接続孔の種類を更に減らせる利点がある。
【0069】
図8〜図10にこの製造プロセスの概略断面図を示すが、この製造プロセスも実施の形態1の製造プロセス(図2〜図4)と類似点が多いので、異なる点を中心に説明する。
【0070】
即ち、図8(a)に示すように、まず基板1上に最下層の配線8aを形成し、この上に絶縁層2、3を積層する(図8(b))。
【0071】
次いで、図8(c)に示すように、上記配線8aに対する接続孔24がレーザ加工され、この接続孔24にプラグ23を2層目の絶縁層3を超える高さに設ける。そしてこの高さは、これと反対側の端部側の絶縁層3上に形成する2層目の下層配線8bと同一高さに形成する(図8(d))。
【0072】
次いで、図8(e)に示すように、ICチップ6をマウント部するための絶縁層2、3の選択的除去を行い、続いて、この除去部18へのICチップ6の固定及び絶縁層3上への樹脂チップ5の固定を行う(図9(f))。
【0073】
次いで、図9(g)〜図10(j)に示すプロセスを、実施の形態1におけるプロセス(図3(g)〜図4(j)参照)と同様に行う。
【0074】
上記した各実施の形態は、本発明の技術的思想に基づいて更に変形が可能である。
【0075】
例えば、ICチップ6(6A)と樹脂チップ5(5A)との厚みの差に一致させて絶縁層の厚みを制御する方法は、実施の形態と同等の効果が得られれば任意であってもよく、また、実施の形態以外の制御方法で行ってもよい。
【0076】
また、実施の形態では、一般的に樹脂チップ5よりも厚いICチップ6をマウントするために、絶縁層2、3に除去部18を設けたが、樹脂チップ5の方がICチップ6よりも厚い場合には、上記除去部18を樹脂チップ5の側に形成してもよい。
【0077】
また、下層配線が更に多層である場合は、更に絶縁層を配線毎に積層すると共に、ICチップと樹脂チップの電極の高さを同一にするための絶縁層の厚みの制御も、実態に即して適宜にすることができる。
【0078】
また、実施の形態は、ICチップ6(6A)と樹脂チップ5(5A)の実装に関するものであるが、図11に示した如き構造の素子をはじめ、他の任意の素子の実装に適用することができる。
【0079】
また、実施の形態における各部の材質、構造及び形状等も適宜にすることができる。
【0080】
【発明の作用効果】
上述した如く、本発明の電子部品の実装構造及びその製造方法によれば、基体上に設ける下地層の厚みを制御するので、各電子部品の電極の位置を同一高さに形成できるため、これらの電子部品を被覆する絶縁層において、各電子部品の電極に対する接続孔を同一加工条件の下で、一括加工することができる。その結果、接続不良のない良好な配線を形成することができ、信頼性が高められると共に、接続孔の種類が減り、製造工程の簡素化された電子部品の実装構造を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による実装構造を示し、(a)は概略断面図、(b)は一部の拡大断面図である。
【図2】同、実装構造の製造プロセスを示す概略断面図である。
【図3】同、実装構造の他の製造プロセスを示す概略断面図である。
【図4】同、実装構造の更に他の製造プロセスを示す概略断面図である。
【図5】同、実施の形態2による電子部品の実装構造を示し、(a)は概略断面図、(b)は一部分の拡大断面図である。
【図6】同、実施の形態3による電子部品の実装構造を示し、(a)は概略断面図、(b)は一部分の拡大断面図である。
【図7】同、実施の形態1の変形例による実装構造の概略断面図である。
【図8】同、実装構造の製造プロセスを示す概略断面図である。
【図9】同、実装構造の他の製造プロセスを示す概略断面図である。
【図10】同、実装構造の更に他の製造プロセスを示す概略断面図である。
【図11】従来例による電子部品の実装構造の一例を示す概略断面図である。
【図12】従来例による電子部品の実装構造の他の一例を示す概略断面図である。
【符号の説明】
1…基板、2、3、4…絶縁層、5、5A…樹脂チップ、
6、6A…ICチップ、7…ダイボンディング材、8a、8b…下層配線、
9…電極、10…発光ダイオード、11a…p電極、11b…n電極、
13、14、15a、15b、24…接続孔、16…配線、16A…銅、
17…接着材、18…除去部、19…レーザビーム、20…マスク、
21…レンズ、23…プラグ、25、26、27、28…装置、
h…最下層配線の基板からの高さ、t…1層目の絶縁層の厚み、
x、x’、B…ICチップの厚み、y、y’A…樹脂チップの厚み、
z…2層目の絶縁層の厚み(又は、樹脂チップ上部の厚み)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mounting structure of an electronic component and a method of manufacturing the same, and more particularly, to a mounting structure of an electronic component in which connection holes can be easily processed and a method of manufacturing the same.
[0002]
[Prior art]
Conventionally, as a method of manufacturing an image display device, an electronic component (for example, a semiconductor chip) is separated by dicing from a wafer, the separated electronic component is transferred from a dicing sheet to a chip tray, and after a predetermined processing and transfer process, A method is known in which electronic components are picked up from a chip tray by vacuum suction, mounted or connected to a substrate, and then wired.
[0003]
[Problems to be solved by the invention]
FIGS. 11 and 12 are schematic diagrams illustrating an example of the above-described image display device (hereinafter, may be simply referred to as a device). Each of the light-emitting elements may be referred to as a light-emitting diode (hereinafter, may be referred to as an LED). ) A resin chip 35a in which resin 40a is sealed with resin or a resin chip 35b in which LED 40b is sealed with resin is mounted.
[0004]
In any case, the resin chip 35a or 35b is provided on an insulating layer 32 (thickness: about 5 μm) or 33 (thickness: about 5 μm) laminated on a substrate 31, and these LED chips are provided adjacent to the resin chip 35a or 35b. The driving IC chips 36 are provided side by side. After forming the connection holes 43, 44, 45a, and 45b in the insulating layer 34 that covers them, the wiring 46 is formed, and the entire height H is formed to be about 110 to 130 μm.
[0005]
The LED 40a of the device 30 shown in FIG. 11 has a p-electrode 41a formed on the upper part and an n-electrode (not shown) formed on the lower part, and emits light from the hexagonal pyramid LED 40a formed on the base growth layer 47. The light is taken out from the substrate 31 side with the reflection inside the slope of the pyramid.
[0006]
The LED 40b (planar type) of the device 50 shown in FIG. 12 has a p-electrode 41a in the lower part and an n-electrode 41b in the upper part, so that the light emitted from the LED 40b can be similarly extracted from the substrate 31 side. The electrode 41c on the opposite side of the p-electrode 41a is for probing inspection.
[0007]
However, as shown in FIGS. 11 and 12, the height A (about 50 to 70 μm) of the resin chip 35a or 35b from the substrate 31 and the height B (about 80 to 90 μm) of the IC chip 36 are different. The connection holes 43 and 44 (50 to 200 μmφ) also have different depths, and the connection holes 45a and 45b with the other underlying wirings 38a and 38b are combined to form connection holes of four different depths. In addition to the different processing conditions for the connection holes, the deep connection holes have a high aspect ratio, making it difficult to obtain electrical continuity. For this reason, there is a problem that A is different from B in particular.
[0008]
In addition, the mounting accuracy of these chip components is determined by the transfer position. By repeating the transfer, many devices are mounted at the same position, and the positional deviation is accumulated. There was a shift.
[0009]
Regarding the mounting of such electronic components, in Japanese Patent Application Laid-Open No. 9-321408, after forming stud bumps on terminals of a semiconductor chip, the semiconductor chip is embedded in a printed circuit board, and a hole is formed in an insulating member covering the printed circuit board. It is disclosed that a strong wiring can be formed by exposing a stud bump and connecting it to a wiring pattern.
[0010]
Japanese Patent Application Laid-Open No. 10-282145 discloses that an electronic component is arranged in a recess provided in a glass substrate, a wiring connected to the electrode is extended to a region other than the recess, and bumps having the same height are provided on the wiring. It is disclosed that the IC inspection can be facilitated by forming the.
[0011]
Japanese Patent Application Laid-Open No. Hei 10-223832 discloses that low-cost and good soldering can be achieved by supporting an electronic component on a printed board at a specific height and soldering the electronic component to the board in this state. Is disclosed.
[0012]
Japanese Patent Application Laid-Open No. Hei 10-223832 discloses that a semiconductor chip and a conductive block provided with bumps on electrodes are arranged on a conductive layer provided on a substrate, and this is covered with a resin film to planarize the surface. Thus, it is disclosed that variations in the height of bare semiconductor chips can be absorbed.
[0013]
Japanese Patent Application Laid-Open No. H11-26631 discloses that by providing a conductive adhesive at the tip of a protruding electrode of a semiconductor element, the height of the protruding electrode with respect to the undulation of a substrate on which it is mounted can be adjusted. I have.
[0014]
However, none of the above publications (hereinafter, referred to as the prior invention) solves the above-mentioned problem, and the constitutional requirements are different from the present invention, and the constitution of the present invention is not intended.
[0015]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a mounting structure of an electronic component in which connection holes can be easily formed and wiring reliability is improved, and a method of manufacturing the same.
[0016]
[Means for Solving the Problems]
That is, the present invention provides a method for mounting an electronic component in which a plurality of electronic components are fixed on a mounting base and electrodes of each electronic component are taken out through connection holes formed in an insulating layer covering these electronic components. In structure
By controlling the thickness of a base layer provided on the mounting substrate, the mounting structure of an electronic component (hereinafter, referred to as the present invention), in which the depth of the connection hole for each electrode of the plurality of electronic components is substantially the same. Mounting structure).
[0017]
According to the mounting structure of the present invention, since the thickness of the underlayer provided on the base is controlled, the positions of the electrodes of each electronic component can be formed at the same height. The connection holes for the electrodes of the electronic component can be collectively processed under the same processing conditions. As a result, it is possible to form a favorable wiring without a connection failure, to improve reliability, to reduce the types of connection holes, and to provide a mounting structure of an electronic component with a simplified manufacturing process.
[0018]
In addition, the present invention also relates to a mounting of an electronic component in which a plurality of electronic components are fixed on a mounting base, and electrodes of the respective electronic components are taken out through connection holes formed in an insulating layer covering these electronic components. In the method of manufacturing a structure,
Forming an underlayer to a controlled thickness on the mounting substrate;
Fixing the plurality of electronic components on the underlayer,
Forming the insulating layer;
Forming the connection hole in the insulating layer;
(Hereinafter, referred to as a manufacturing method of the present invention).
[0019]
According to the manufacturing method of the present invention, an underlayer is formed at a controlled thickness on a mounting substrate, a plurality of electronic components are fixed on the underlayer, and an insulating layer covering the electronic components is formed. Since the connection hole is formed in the insulating layer, the connection hole for the electrode of the electronic component can be formed under the same processing conditions. Therefore, the same effect as the above-described mounting structure of the present invention can be obtained, and a highly reproducible manufacturing method is provided. it can.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0021]
In the mounting structure and the manufacturing method of the present invention described above, the lowermost layer wiring on the mounting base is provided on the surface of the underlayer whose thickness is controlled, whereby the position of the wiring can be increased. Therefore, a connection hole having a low aspect ratio can be formed, and the reliability is improved by wiring without connection failure.
[0022]
In this case, a base insulating layer having a film thickness corresponding to the difference in thickness between the plurality of electronic components is formed, and the electronic component having a smaller thickness is fixed on the insulating layer, whereby the electronic component having a smaller thickness is formed. This is desirable in that it is easy to make the height of the electrode of the electronic component thicker than that of the electrode.
[0023]
However, the wiring of the lowermost layer may be provided directly on the mounting base, and the wiring of the lowermost layer may be led out onto the underlying layer through a connection hole formed in the underlying layer.
[0024]
Further, it is preferable that the lower insulating layer is removed and a recess is formed below the thicker electronic component of the plurality of electronic components, and the thick electronic component is fixed in the recess. This is desirable because the position accuracy of the electronic component can be enhanced and the height of the electronic component with a small thickness can be easily controlled.
[0025]
This is desirable in that the plurality of electronic components are electrically connected well via the connection holes formed in the insulating layer, and the reliability of wiring is enhanced.
[0026]
In this case, one of the plurality of electronic components is a light emitting element, the other is a semiconductor chip for driving the light emitting element, and further, the light emitting element is mounted in a resin-sealed chip state to form an image display device. be able to.
[0027]
Next, the preferred embodiments described above will be specifically described with reference to the drawings.
[0028]
Embodiment 1
1A and 1B show a device 25 having a mounting structure according to the present embodiment, in which FIG. 1A is a schematic sectional view, and FIG. 1B is an enlarged sectional view of a part thereof.
[0029]
This device 25 is equipped with the same type of LED 5 as that of FIG. 12 described above. However, the feature different from the conventional one is that the electrode 11b of the resin chip 5 as one electronic component and the electrode 11b as the other electronic component. Since the heights of the electrodes 9 of the IC chip 6 are the same, the connection holes 13 and 14 for these electrodes are the same, that the IC chip 6 is directly mounted on the substrate 1, This means that the connection hole 15a for the lower wiring 8a is formed shallowly and has a low aspect ratio.
[0030]
In this mounting structure, as shown in FIG. 1A, a part of the insulating layers 2 and 3 laminated on the substrate 1 is selectively removed, and an IC chip 6 is attached to this part via a die bonding material 7. The resin chip 5 is directly fixed on the substrate 1, and the resin chip 5 is fixed on the laminated insulating layer 3 via a die bonding material 7. As a result, the electrodes 11b of the resin chip 5 and the electrodes 9 of the IC chip 6 are formed at the same height, but this height depends on the thickness of the IC chip 6 (about 70 to 80 μm) and the thickness of the resin chip 5. It is formed by controlling the thickness of the insulating layer 2 in accordance with the difference in thickness (about 40 to 60 μm).
[0031]
That is, as described above, in the conventional device shown in FIG. 11 or FIG. 12, the thickness of the first insulating layer 32: about 5 μm, the thickness of the second insulating layer 33: about 5 μm, Since the height of A including the layer 32 or 33 is about 50 to 70 μm and the height of B is about 80 to 90 μm, subtracting the total thickness of both insulating layers of 10 μm, The thickness of the IC chip 36 is 70 to 80 μm, and the thickness of the resin chip 35a (or 35b) of the height A is 40 to 60 μm.
[0032]
Therefore, the actual difference (AB) between B and A in FIG. 11 or FIG. 12 is 10 to 40 μm, and thus the thickness (t) of the first insulating layer 2 in this embodiment is 10 to 40 μm. The resin chip 5 and the electrode of the IC chip 6 are formed at the same height.
[0033]
That is, as shown in FIG. 1B, the thickness t of the first insulating layer 2, the thickness x of the IC chip 6, and the thickness y of the resin chip 5 have a relationship of t = xy. ing. The resin chip 5 has an overall thickness y with an encapsulating resin thickness z on the upper part in order to seal the LED 10 and its electrodes and the like. Therefore, the height z of the electrode 9 of the IC chip 6 and the height of the electrode 11b of the resin chip 5 can be made equal by adjusting the thickness z of the second insulating layer 3 to the thickness of the sealing resin.
[0034]
Then, as shown in FIG. 1A, the lowermost wiring 8a is disposed on the first insulating layer 2, and the second lower wiring 8b is disposed on the second insulating layer 3. This enables cross wiring. As described above, since the resin chip 5 is disposed on the insulating layer 3 above the two-layer structure indispensable for cross wiring, the thickness (z) of the second insulating layer 3 is determined by the thickness of the sealing resin of the resin chip 5. By forming the same thickness as the thickness (z), a relationship of t = xy is formed, and the height of the electrode 11b of the resin chip 5 and the height of the electrode 9 of the IC chip 6 are the same.
[0035]
Further, since the lowermost wiring 8a is disposed on the insulating layer 2 having a controlled thickness (thicker than the conventional one), the height h from the substrate 1 (see FIG. 1) is higher than that of the conventional one. Therefore, the depth of the connection hole 15a is reduced and the aspect ratio is formed low.
[0036]
Therefore, as shown in FIG. 1A, since the connection holes 13 and 14 for the electrodes 9 and 11b of the IC chip 6 and the resin chip 5 are formed in the same manner, the electrodes 9 and 11b of the IC chip 6 and the resin chip 5 are formed. The number of types of connection holes for the semiconductor device can be reduced, the manufacturing process can be simplified, and the connection holes 15a having a low aspect ratio can be formed for the lower wiring 8a.
[0037]
2 to 4 show schematic cross-sectional views of a manufacturing process of the above device.
[0038]
First, a first insulating layer 2 is formed on a substrate 1 shown in FIG. 2 (a) as shown in FIG. 2 (b). The lower wiring 8a is provided. At this time, the thickness difference t between the IC chip 6 to be mounted and the resin chip 5 is measured in advance, and the insulating layer 2 is formed to have a thickness corresponding to the difference.
[0039]
Next, as shown in FIG. 2C, a second insulating layer 3 is laminated. As described above, this film thickness is formed to be the same as the thickness (z in FIG. 1) of the sealing resin of the resin chip 5 fixed thereon.
[0040]
Next, as shown in FIG. 2D, the next lower wiring 8b made of Al is arranged on the second insulating layer 3 near the end opposite to the lowermost wiring 8a. Although the lower wiring of this embodiment has two layers, in the case of a multilayer wiring layer, an insulating layer is further laminated on the second wiring 8b to further form a wiring layer.
[0041]
Next, as shown in FIG. 2E, in order to mount the IC chip 6, a removed portion 18 of the insulating layers 2, 3 is formed. Therefore, the wiring is designed so as not to pass through the removed portion. This makes it easy to make the height of the IC chip 6 and the height of the resin chip 5 the same, and the positional deviation is absorbed, so that the mounting accuracy of the IC chip 6 can be improved.
[0042]
Next, as shown in FIG. 3 (f), the IC chip 6 is fixed to the above-mentioned removed portion 18 via the die bonding material 7, and the resin chip 5 is attached to the insulating layer 3 on the insulating layer 3 adjacent thereto. Fixed through.
[0043]
Next, as shown in FIG. 3G, the insulating layer 4 is formed so as to cover the upper part of the insulating layer 3 including the mounted IC chip 6 and the resin chip 5.
[0044]
Then, as shown in FIG. 3 (h), the connection holes 15a, 15b, 13 for connecting the lower wirings 8a, 8b, the electrode 9 of the IC chip 6 and the electrode 11b of the resin chip 5 to these electrodes are formed. And 14 are formed by irradiation with a laser beam 19.
[0045]
The electrodes 9 of the IC chip 6 and the electrodes 11b of the resin chip 5 are also formed of aluminum similarly to the lower wirings 8a and 8b. Therefore, it is easy to process the connection hole by using a high-output short-wavelength laser.
[0046]
As shown in FIG. 3H, the processing of the connection hole by the laser beam 19 selects a mask 20 for each depth of the connection hole, narrows the focus by the lens 21, and further performs a laser for a deep connection hole or a shallow laser. By using a laser for a connection hole and performing ablation while changing the number of shots of the laser beam 19, connection holes of various depths can be arbitrarily formed, and the diameter and the taper of the connection hole are formed with this processing. .
[0047]
In particular, the connection holes 13 and 14 for the electrodes of the IC chip 6 and the resin chip 5 can be collectively processed under the same conditions. In addition, the connection holes 15a and 15b for the lower layer wirings 8a and 8b have a large bottom area and a large taper angle, so that disconnection of the wiring at the entrance of the connection hole hardly occurs.
[0048]
Next, as shown in FIG. 4I, a Cu (copper) film 16A is deposited on the upper surface of the insulating layer 4 including the connection holes 15a, 15b, 13 and 14 by a physical film forming method such as sputtering. At this time, by preliminarily applying electroless Ni plating (not shown) having good connectivity to Al and Cu such as electrodes, the lower wirings 8a and 8b made of Al, the electrodes 9 of the IC chip 6, and the The connectivity and conductivity between the electrode 11b and the like and the Cu film 16A can be improved.
[0049]
Next, as shown in FIG. 4J, the Cu film 16A thus deposited is patterned by photolithography to form a Cu wiring 16. Then, after the formation of the wiring 16, a protective layer (not shown) is formed on the wiring 16, thereby completing the panel of the image display device.
[0050]
According to the present embodiment, the thickness of the first insulating layer 2 disposed on the substrate 1 is controlled in accordance with the difference in thickness between the resin chip 5 and the IC chip 6 to be mounted. The insulating layer 3 is laminated with the same thickness (z) as the sealing resin of the resin chip 5, the resin chip 5 is mounted on the insulating layer 3, and the IC chip 6 is Is selectively removed and mounted directly on the substrate 1, so that the electrodes 9 of the IC chip 6 and the electrodes 11b of the resin chip 5 can be arranged at the same height on the substrate 1.
[0051]
Therefore, the connection holes 13 and 14 for the electrode 9 of the IC chip 6 and the electrode 11b of the resin chip 5 can be formed at the same depth under the same processing conditions by batch processing, and the manufacturing process can be simplified. In addition, since the lowermost wiring 8a is arranged on the first insulating layer 2 which is formed thicker by control, the connection hole 15a can be formed shallower and lower in aspect ratio than the conventional one. As a result, similar to the connection holes 13 and 14 with the electrodes 9 and 11b of the IC chip 6 and the resin chip 5, the connection holes 15 and the like with the wiring 8a in the lowermost layer can be formed with good wiring without poor connection. Can be enhanced.
[0052]
As described above, the present embodiment has the configuration and features not intended by the prior invention described above, and any of the prior inventions applies the configuration to the present embodiment. Is impossible, and the object of the present embodiment cannot be realized even if it is forcibly applied.
[0053]
Embodiment 2
5A and 5B show a device 26 having a mounting structure according to the present embodiment, in which FIG. 5A is a schematic sectional view, and FIG. 5B is an enlarged sectional view of a part thereof.
[0054]
This device 26 also has a basic structure substantially similar to that of the first embodiment, except that a thin resin chip 5A (electrodes 11a and 11b are exposed outside the sealing resin) is mounted. Are different.
[0055]
That is, the resin chip 5A is also fixed on the second insulating layer 3 via the adhesive 17, and has the same structure as that of the first embodiment except for this. Therefore, compared to the resin chip 5 of the first embodiment, since the resin for sealing is not used, the thickness is reduced by the amount corresponding to this resin. By controlling the thicknesses of the insulating layers 2 and 3 so as to match the difference between the two, the height of the electrode 9 of the IC chip 6 and the height of the electrode 11b of the resin chip 5A are the same.
[0056]
That is, as shown in FIG. 5B, the thickness t of the insulating layer in this case is the total thickness of the first insulating layer 2 and the second insulating layer 3, and the thickness of the resin chip 5A is The thickness y ′ is a thickness including the adhesive 17, and the relationship with the thickness x of the IC chip 6 as in the first embodiment is t = xy ′.
[0057]
Accordingly, if the lowermost wiring 8a is formed in the same manner as in the first embodiment, the thickness of the first insulating layer 2 does not change, so that the total thickness of the second insulating layer 3 is controlled. Is formed.
[0058]
As a result, the electrodes 9 of the IC chip 6 and the electrodes 11b of the resin chip 5A can be formed at the same height on the substrate 1, so that the connection holes 13, 14 for the electrodes 9, 11b of both chips are formed. It is possible to form the same under the same processing conditions, and to obtain the same effect as in the first embodiment.
[0059]
Embodiment 3
6A and 6B show a device 27 having a mounting structure according to the present embodiment, wherein FIG. 6A is a schematic sectional view and FIG. 6B is an enlarged sectional view of a part thereof.
[0060]
The basic structure of this device is almost the same as that of the first embodiment, except that the thickness of the IC chip 6A is smaller than that of the first embodiment.
[0061]
That is, various semiconductor chips tend to be thinner, and the mounting structure uses the thinned IC chip 6A. Accordingly, as shown in FIG. 6, only the second insulating layer 3 is removed from the mounting portion of the IC chip 6A, and the IC chip 6A is fixed on the first insulating layer 2. Otherwise, the configuration is the same as that of the first embodiment.
[0062]
Therefore, as shown in FIG. 6B, the thicknesses of the insulating layers 2 and 3 and the thickness of the resin chip 5 are the same as those of the first embodiment, and only the thickness of the IC chip 6A is different. x ′) has a relationship with the thickness (z ′) of the insulating layer 3, and z ′ = x′−y + z.
[0063]
Thus, also in this case, the height of the electrode 9 of the IC chip 6A and the height of the electrode 11b of the resin chip 5 are controlled by controlling the thickness of the insulating layer 3 in accordance with the difference in thickness between the IC chip 6A and the resin chip 5. Are formed identically.
[0064]
In this embodiment, as shown in FIG. 6, the IC chip 6A is mounted on the first insulating layer 2, but the removal of the insulating layer differs depending on the thickness of the IC chip 6A. That is, various forms are conceivable, such as a case where it is necessary to remove a part of the insulating layer 2 or a case where it is sufficient to remove only a part of the insulating layer 3. In any case, an IC chip corresponding to the state is assumed. The thickness of the insulating layer is controlled based on the difference between the thickness of 6A and the thickness of the resin chip 5.
[0065]
As a result, the height of the electrode 9 of the IC chip 6A and the height of the electrode 11b of the resin chip 5 can be made the same, so that the connection holes 13 and 14 for the electrodes 9 and 11b of the two chips are formed identically under the same processing conditions. Therefore, the same effect as in the first embodiment can be obtained.
[0066]
FIG. 7 shows a modification of the first embodiment.
[0067]
This device 28 is different from the first embodiment in that the lowermost wiring 8a is formed directly on the substrate 1, a plug 23 is provided on this wiring 8a, and a connection hole is formed for the second layer wiring 8b. 15b.
[0068]
Therefore, since the structure other than the above is the same as that of the first embodiment, the connection holes 13 and 14 for the electrode 9 of the IC chip 6 and the electrode 11b of the resin chip 5 can be formed identically under the same processing conditions. Since the connection holes 15b for the lower wirings 8a and 8b can be formed with the same processing conditions and the same aspect ratio, there is an advantage that the types of connection holes can be further reduced.
[0069]
FIGS. 8 to 10 show schematic cross-sectional views of this manufacturing process. Since this manufacturing process has many similarities to the manufacturing process of the first embodiment (FIGS. 2 to 4), different points will be mainly described.
[0070]
That is, as shown in FIG. 8A, the lowermost wiring 8a is first formed on the substrate 1, and the insulating layers 2 and 3 are stacked thereon (FIG. 8B).
[0071]
Next, as shown in FIG. 8C, a connection hole 24 for the wiring 8a is laser-processed, and a plug 23 is provided in the connection hole 24 at a height exceeding the second insulating layer 3. This height is formed to be the same as the height of the second-layer lower wiring 8b formed on the insulating layer 3 on the opposite end side (FIG. 8D).
[0072]
Next, as shown in FIG. 8E, the insulating layers 2 and 3 for mounting the IC chip 6 are selectively removed. Subsequently, the IC chip 6 is fixed to the removed portion 18 and the insulating layer is removed. The resin chip 5 is fixed on the top 3 (FIG. 9F).
[0073]
Next, the processes shown in FIGS. 9G to 10J are performed in the same manner as the processes in the first embodiment (see FIGS. 3G to 4J).
[0074]
Each of the embodiments described above can be further modified based on the technical idea of the present invention.
[0075]
For example, the method of controlling the thickness of the insulating layer in accordance with the difference in thickness between the IC chip 6 (6A) and the resin chip 5 (5A) may be arbitrary as long as the same effect as in the embodiment can be obtained. Alternatively, control may be performed by a control method other than the embodiment.
[0076]
Further, in the embodiment, in order to mount the IC chip 6 which is generally thicker than the resin chip 5, the removing portions 18 are provided in the insulating layers 2 and 3. However, the resin chip 5 is larger than the IC chip 6. When the thickness is thick, the removal portion 18 may be formed on the resin chip 5 side.
[0077]
In the case where the lower wiring is further multilayered, an insulating layer is further laminated for each wiring, and the control of the thickness of the insulating layer in order to make the heights of the electrodes of the IC chip and the resin chip the same is also immediate. And can be made appropriately.
[0078]
Although the embodiment relates to the mounting of the IC chip 6 (6A) and the resin chip 5 (5A), the embodiment is applied to the mounting of any other element including the element having the structure shown in FIG. be able to.
[0079]
Further, the material, structure, shape, and the like of each part in the embodiment can be appropriately set.
[0080]
Operation and Effect of the Invention
As described above, according to the electronic component mounting structure and the method of manufacturing the same of the present invention, since the thickness of the base layer provided on the base is controlled, the positions of the electrodes of each electronic component can be formed at the same height. In the insulating layer covering the electronic component, the connection holes for the electrodes of each electronic component can be collectively processed under the same processing conditions. As a result, it is possible to form a favorable wiring without a connection failure, to improve reliability, to reduce the types of connection holes, and to provide a mounting structure of an electronic component with a simplified manufacturing process.
[Brief description of the drawings]
1A and 1B show a mounting structure according to a first embodiment of the present invention, wherein FIG. 1A is a schematic cross-sectional view, and FIG. 1B is a partially enlarged cross-sectional view.
FIG. 2 is a schematic cross-sectional view showing a manufacturing process of the mounting structure.
FIG. 3 is a schematic sectional view showing another manufacturing process of the mounting structure.
FIG. 4 is a schematic sectional view showing still another manufacturing process of the mounting structure.
5A and 5B show a mounting structure of an electronic component according to the second embodiment, wherein FIG. 5A is a schematic cross-sectional view and FIG. 5B is a partially enlarged cross-sectional view.
6A and 6B show a mounting structure of an electronic component according to the third embodiment, wherein FIG. 6A is a schematic cross-sectional view and FIG. 6B is an enlarged cross-sectional view of a part.
FIG. 7 is a schematic sectional view of a mounting structure according to a modification of the first embodiment.
FIG. 8 is a schematic sectional view showing a manufacturing process of the mounting structure.
FIG. 9 is a schematic sectional view showing another manufacturing process of the mounting structure.
FIG. 10 is a schematic sectional view showing still another manufacturing process of the mounting structure.
FIG. 11 is a schematic sectional view showing an example of a mounting structure of an electronic component according to a conventional example.
FIG. 12 is a schematic sectional view showing another example of a mounting structure of an electronic component according to a conventional example.
[Explanation of symbols]
1 ... substrate, 2,3,4 ... insulating layer, 5,5A ... resin chip,
6, 6A: IC chip, 7: Die bonding material, 8a, 8b: Lower wiring,
9 ... electrode, 10 ... light emitting diode, 11a ... p electrode, 11b ... n electrode,
13, 14, 15a, 15b, 24 ... connection hole, 16 ... wiring, 16A ... copper,
17 adhesive, 18 removal part, 19 laser beam, 20 mask,
21 ... lens, 23 ... plug, 25, 26, 27, 28 ... device,
h: height of the lowermost wiring from the substrate; t: thickness of the first insulating layer;
x, x ', B: thickness of IC chip, y, y'A: thickness of resin chip,
z: The thickness of the second insulating layer (or the thickness of the upper part of the resin chip)

Claims (18)

実装基体上に複数の電子部品が固定され、これらの電子部品を被覆する絶縁層に形成された接続孔を介して各電子部品の電極が取り出されている電子部品の実装構造において、
前記実装基体上に設けられた下地層の厚みの制御によって、前記複数の電子部品の各電極に対する前記接続孔の深さがほぼ同一となっている、電子部品の実装構造。
In a mounting structure of an electronic component in which a plurality of electronic components are fixed on a mounting base, and electrodes of each electronic component are taken out through connection holes formed in an insulating layer covering these electronic components,
An electronic component mounting structure, wherein a depth of the connection hole for each electrode of the plurality of electronic components is substantially the same by controlling a thickness of a base layer provided on the mounting substrate.
厚みの制御された前記下地層の面に、前記実装基体上の最下層の配線が設けられている、請求項1に記載した電子部品の実装構造。2. The electronic component mounting structure according to claim 1, wherein a wiring of a lowermost layer on the mounting substrate is provided on a surface of the underlayer whose thickness is controlled. 3. 前記複数の電子部品の厚みの差に対応する膜厚の下地絶縁層が、厚みの小さい方の電子部品の下地層として設けられている、請求項1に記載した電子部品の実装構造。2. The electronic component mounting structure according to claim 1, wherein a base insulating layer having a thickness corresponding to a difference in thickness between the plurality of electronic components is provided as a base layer of the smaller electronic component. 3. 前記複数の電子部品のうち厚みの大きい方の電子部品の下部において、前記下地絶縁層が除去されて凹部が形成され、この凹部内に前記厚みの大きい電子部品が固定されている、請求項3に記載した電子部品の実装構造。4. The lower part of the electronic component having a larger thickness of the plurality of electronic components, the base insulating layer is removed to form a recess, and the electronic component having a larger thickness is fixed in the recess. The mounting structure of the electronic component described in. 前記最下層の配線が前記実装基体に直接設けられ、前記下地層に形成された接続孔を介して、前記下地層上に前記最下層の配線が導出されている、請求項2に記載した電子部品の実装構造。The electronic device according to claim 2, wherein the lowermost wiring is provided directly on the mounting base, and the lowermost wiring is led out onto the base layer through a connection hole formed in the base layer. 4. Component mounting structure. 前記複数の電子部品間が、前記絶縁層に形成された前記接続孔を介して電気的に接続されている、請求項1に記載した電子部品の実装構造。The electronic component mounting structure according to claim 1, wherein the plurality of electronic components are electrically connected to each other through the connection holes formed in the insulating layer. 前記複数の電子部品の一方が発光素子であり、他方が発光素子駆動用の半導体チップである、請求項6に記載した電子部品の実装構造。The electronic component mounting structure according to claim 6, wherein one of the plurality of electronic components is a light emitting element, and the other is a semiconductor chip for driving the light emitting element. 前記発光素子が樹脂封止されたチップ状態で実装されている、請求項7に記載した電子部品の実装構造。The electronic component mounting structure according to claim 7, wherein the light emitting element is mounted in a resin-sealed chip state. 画像表示装置を構成する、請求項7に記載した電子部品の実装構造。The electronic component mounting structure according to claim 7, which constitutes an image display device. 実装基体上に複数の電子部品が固定され、これらの電子部品を被覆する絶縁層に形成された接続孔を介して各電子部品の電極が取り出されている電子部品の実装構造を製造する方法において、
前記実装基体上に制御された厚みに下地層を形成する工程と、
前記下地層上に前記複数の電子部品を固定する工程と、
前記絶縁層を形成する工程と、
この絶縁層に前記接続孔を形成する工程と
を有する、電子部品の実装構造を製造する方法。
In a method of manufacturing a mounting structure of an electronic component, a plurality of electronic components are fixed on a mounting base, and electrodes of each electronic component are taken out through connection holes formed in an insulating layer covering these electronic components. ,
Forming an underlayer to a controlled thickness on the mounting substrate,
Fixing the plurality of electronic components on the underlayer;
Forming the insulating layer;
Forming the connection hole in the insulating layer.
厚みの制御された前記下地層の面に、前記実装基体上の最下層の配線を設ける、請求項10に記載した電子部品の実装構造を製造する方法。The method for manufacturing a mounting structure of an electronic component according to claim 10, further comprising: providing a lowermost layer wiring on the mounting substrate on a surface of the underlayer whose thickness is controlled. 前記複数の電子部品の厚みの差に対応する膜厚の下地絶縁層を形成し、この絶縁層上に厚みの小さい方の電子部品を固定する、請求項10に記載した電子部品の実装構造を製造する方法。The electronic component mounting structure according to claim 10, wherein a base insulating layer having a thickness corresponding to a difference in thickness between the plurality of electronic components is formed, and the electronic component having a smaller thickness is fixed on the insulating layer. How to make. 前記複数の電子部品のうち厚みの大きい方の電子部品の下部において、前記下地絶縁層を除去して凹部を形成し、この凹部内に前記厚みの大きい電子部品を固定する、請求項12に記載した電子部品の実装構造を製造する方法。13. The electronic component according to claim 12, wherein the lower insulating layer is removed to form a concave portion below the electronic component having a larger thickness among the plurality of electronic components, and the electronic component having a larger thickness is fixed in the concave portion. For manufacturing a mounting structure of a manufactured electronic component. 前記最下層の配線を前記実装基体に直接設け、前記下地層に形成された接続孔を介して、前記下地層上に前記最下層の配線を導出する、請求項11に記載した電子部品の実装構造を製造する方法。12. The mounting of the electronic component according to claim 11, wherein the lowermost layer wiring is provided directly on the mounting substrate, and the lowermost layer wiring is led out onto the base layer through a connection hole formed in the base layer. The method of manufacturing the structure. 前記複数の電子部品間を、前記絶縁層に形成された前記接続孔を介して電気的に接続する、請求項10に記載した電子部品の実装構造を製造する方法。The method according to claim 10, wherein the plurality of electronic components are electrically connected to each other through the connection holes formed in the insulating layer. 前記複数の電子部品の一方を発光素子とし、他方を発光素子駆動用の半導体チップとする、請求項15に記載した電子部品の実装構造を製造する方法。The method according to claim 15, wherein one of the plurality of electronic components is a light emitting element, and the other is a semiconductor chip for driving the light emitting element. 前記発光素子を樹脂封止されたチップ状態で実装する、請求項16に記載した電子部品の実装構造を製造する方法。The method according to claim 16, wherein the light emitting element is mounted in a resin-sealed chip state. 画像表示装置を製造する、請求項16に記載した電子部品の実装構造を製造する方法。The method for manufacturing an electronic component mounting structure according to claim 16, wherein the image display device is manufactured.
JP2002201295A 2002-07-10 2002-07-10 Mounting structure of electronic component and manufacturing method thereof Pending JP2004047617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201295A JP2004047617A (en) 2002-07-10 2002-07-10 Mounting structure of electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201295A JP2004047617A (en) 2002-07-10 2002-07-10 Mounting structure of electronic component and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004047617A true JP2004047617A (en) 2004-02-12

Family

ID=31707875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201295A Pending JP2004047617A (en) 2002-07-10 2002-07-10 Mounting structure of electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004047617A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103714A (en) * 2005-10-05 2007-04-19 Sony Corp Semiconductor device and manufacturing method thereof
JP2009531839A (en) * 2006-03-31 2009-09-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photoelectric headlight, method for manufacturing photoelectric headlight, and light emitting diode chip
JP2010541227A (en) * 2007-09-28 2010-12-24 シーメンス アクチエンゲゼルシヤフト Electronic circuit comprising partial circuit and method for manufacturing the same
JP2013016842A (en) * 2012-09-07 2013-01-24 Shinko Electric Ind Co Ltd Semiconductor package
JP2013093453A (en) * 2011-10-26 2013-05-16 Nippon Dempa Kogyo Co Ltd Electronic module and manufacturing method therefor
JP2021044421A (en) * 2019-09-12 2021-03-18 日亜化学工業株式会社 Manufacturing method for light-emitting device and light-emitting device
WO2021122149A1 (en) * 2019-12-20 2021-06-24 Osram Opto Semiconductors Gmbh Semiconductor component and method for producing same
WO2023140003A1 (en) * 2022-01-18 2023-07-27 株式会社ジャパンディスプレイ Display device and method for manufacturing display device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103714A (en) * 2005-10-05 2007-04-19 Sony Corp Semiconductor device and manufacturing method thereof
KR101314367B1 (en) 2006-03-31 2013-10-04 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic headlight, method for production of an optoelectronic headlight, and a luminescence diode chip
JP2009531839A (en) * 2006-03-31 2009-09-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photoelectric headlight, method for manufacturing photoelectric headlight, and light emitting diode chip
US8267561B2 (en) 2006-03-31 2012-09-18 Osram Opto Semiconductors Gmbh Optoelectronic headlight, method for production of an optoelectronic headlight and a luminescence diode chip
US8814406B2 (en) 2006-03-31 2014-08-26 Osram Opto Semiconductors Gmbh Optoelectronic headlight, method for production of an optoelectronic headlight and a luminescence diode chip
JP2010541227A (en) * 2007-09-28 2010-12-24 シーメンス アクチエンゲゼルシヤフト Electronic circuit comprising partial circuit and method for manufacturing the same
US8441114B2 (en) 2007-09-28 2013-05-14 Siemens Aktiengesellschaft Electronic circuit composed of sub-circuits and method for producing
JP2013093453A (en) * 2011-10-26 2013-05-16 Nippon Dempa Kogyo Co Ltd Electronic module and manufacturing method therefor
JP2013016842A (en) * 2012-09-07 2013-01-24 Shinko Electric Ind Co Ltd Semiconductor package
JP2021044421A (en) * 2019-09-12 2021-03-18 日亜化学工業株式会社 Manufacturing method for light-emitting device and light-emitting device
JP7339517B2 (en) 2019-09-12 2023-09-06 日亜化学工業株式会社 Light-emitting device manufacturing method and light-emitting device
US11894498B2 (en) 2019-09-12 2024-02-06 Nichia Corporation Light emitting device
WO2021122149A1 (en) * 2019-12-20 2021-06-24 Osram Opto Semiconductors Gmbh Semiconductor component and method for producing same
WO2023140003A1 (en) * 2022-01-18 2023-07-27 株式会社ジャパンディスプレイ Display device and method for manufacturing display device

Similar Documents

Publication Publication Date Title
JP6001524B2 (en) Multi-layer wiring element with pin interface
TWI395274B (en) Method of manufacturing a circuit substrate and method of manufacturing an electronic parts packaging structure
US7622317B2 (en) Light emitting diode and method for manufacturing the same
US6541848B2 (en) Semiconductor device including stud bumps as external connection terminals
US7829987B2 (en) Carrier structure embedded with semiconductor chips and method for manufacturing the same
US8293574B2 (en) Semiconductor device having a plurality of semiconductor constructs
US20120021541A1 (en) Light emitting device and method of fabricating the same
US20050184377A1 (en) Semiconductor device and method of manufacturing the same
JP2004343030A (en) Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board
KR101986855B1 (en) Circuit for a light emitting component and method of manufacturing the same
JP2003174120A (en) Semiconductor device and method of manufacturing the same
US20060091524A1 (en) Semiconductor module, process for producing the same, and film interposer
KR20060048473A (en) Circuit device and manufacturing method thereof
EP0989610A2 (en) Multilayered wiring structure and method of manufacturing the same
JP2009194079A (en) Wiring substrate for use in semiconductor apparatus, method for fabricating the same, and semiconductor apparatus using the same
TWI450345B (en) Chip package and method for forming the same
US20100314778A1 (en) Semiconductor device and method for producing the same
CN112310005A (en) Wiring structure
US20080142945A1 (en) Semiconductor package with redistribution layer of semiconductor chip directly contacted with substrate and method of fabricating the same
JP4494249B2 (en) Semiconductor device
JP2004047617A (en) Mounting structure of electronic component and manufacturing method thereof
US7656046B2 (en) Semiconductor device
JP2004221600A (en) Ball grid array package construction with raised solder ball pad
JP5912471B2 (en) Semiconductor device
KR102633431B1 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080326