JP2004047207A - Method and device of generating ground wave excitation plasma at conductor proximity area - Google Patents
Method and device of generating ground wave excitation plasma at conductor proximity area Download PDFInfo
- Publication number
- JP2004047207A JP2004047207A JP2002201025A JP2002201025A JP2004047207A JP 2004047207 A JP2004047207 A JP 2004047207A JP 2002201025 A JP2002201025 A JP 2002201025A JP 2002201025 A JP2002201025 A JP 2002201025A JP 2004047207 A JP2004047207 A JP 2004047207A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- target
- microwave
- chamber
- generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は非誘電体領域、特に導電性金属面に沿って表面波励起プラズマを発生する方法と装置に関するものである。
【0002】
【従来の技術】
近年、半導体基板や液晶ガラス基板を始め、種々の有機材料、金属材料等の表面処理においては、スパッタリング、エッチング、アッシング、クリーニング、又はプラズマCVD等のプラズマ加工がよく用いられる。プラズマを高密度で発生するためには、一般にマグネトロン方式や、ECR放電を採用するが、これらの有磁場方式ではエネルギー効率が悪く装置構成も複雑で高価となり、電波障害等の弊害も多い。従って、プラズマ加工においては、まずプラズマの主発生源が無磁場方式であること、及び被加工面の形状に応じた均一密度分布のプラズマ相を形成することが肝要である。
【0003】
そこで、注目されるのが、いわゆる表面波励起プラズマの方法であり、例えば、特開平11−102799号公報においては、プラズマチャンバーの中央部に位置せしめた誘電体の表面に沿って、マイクロ波を伝播させることにより、この表面付近に電磁界エネルギーを集中させて高密度なプラズマを発生し、これによるプラズマ相の拡張によってチャンバー内の底部に配置された被処理基板に比較的均一且つ高密度なプラズマを作用させる表面波励起方式のプラズマ発生装置が開示されている。
【0004】
しかしながら、この公報に開示されたプラズマ発生装置は、マイクロ波送出アンテナを包囲し又はマイクロ波放出スリットに連なる誘電体管又は棒が、プラズマチャンバーの天面から垂下しており、プラズマスパッタリングを意図する場合、常套的に誘電体以外の物質、典型的には金属体をターゲットとし、これに被処理基板等を対置させてプラズマスパッタリング及び膜形成を行うという構成をとりにくい。同様の欠点は、上記公報に先行技術として記載された平板形誘電体を用いる場合にも存在する。
【0005】
そこで、発明者は表面波励起プラズマによりスパッタリングを行う場合には、最も高密度にプラズマが発生する表面波伝播領域においてターゲット物質が存在するならば、そのターゲット物質からはプラズマ粒子の衝突により最大効率で原子放出が行われ、この原子放出面に対向し又は包囲した被加工物の表面に効果的に、スパッタリング膜を形成しうるであろうことに着目した。従って、金属体をターゲットとする場合は、その金属体の表面に沿ってマイクロ波を伝播させればよいことになる。
【0006】
【発明が解決しようとする課題】
しかしながら、表面波励起プラズマを発生する場合における「表面」とは、図1Aにおいて模式的に示す通り、ある程度以上の電子(イオン)密度におけるプラズマ相1と、これに接する誘電体2との界面3のことであり、一端側から供給されたマイクロ波4はこの界面に電磁波のエネルギーが集中した状態で(表面波として)伝播される。その結果、界面3に接するプラズマ相1は高エネルギー密度の表面波によって励起・増幅され、高密度プラズマ相を生成・維持するが、この場合の誘電体を金属体に換えたとしても、金属には概して導電性があるため、好ましい表面波の伝播及びプラズマ励起を生ずることはできない。
【0007】
一方、プラズマ相に接する物体の表面近傍には、本質的に単一極性の荷電粒子層、いわゆるシースが形成されるが、物体が負バイアス電圧を加えた金属導電体の場合、シースとは電子密度が低い層(従って、正極性)であって、ほぼ誘電率ε≒1の層となる。このため、負バイアス電圧を高めることによりシース層の厚さを大きくすることができれば、図1Bに示すように、このシース層5をもって、プラズマ相1との界面に表面波4を伝播する誘電体として作用させることにより、金属導電体6の表面には表面波4に基づく高密度励起プラズマによって直接イオン衝撃を与え、スパッタリングを行うことが可能となる。
【0008】
このことを確認したのが、図2に示す実験方法と実験結果の模式図である。同図Aの実験装置では、導電性を有するターゲット金属棒6aは、真空吸引可能なプラズマチャンバー7の一端における石英窓8から、同チャンバー7内に突設され、石英窓8の外面は導波管9のマイクロ波出口に接続される。ターゲット金属棒6aには、調整可能な負バイアス電源Ebが接続される。かくして、チャンバー7内には実験に適した不活性ガスであるアルゴンArを供給するとともに、適当に減圧・吸引(Suc.)し、導波管9からはマイクロ波、例えば、f=2.45GHzの電磁波を放出・供給することにより、誘電体としての石英窓8の内表面及び金属棒6aの近接包囲空間における表面波の伝播と、プラズマ励起状態を観察した。
【0009】
図2Bはターゲット金属棒6aにバイアス電圧を印加することなく(Eb=0ボルト)、石英窓8にマイクロ波を投入した場合に、その石英窓8の内側に表面波が定在することにより、その周辺で励起発光したプラズマを、図2Aの視線CLに沿って暗室(チャンバー)中で撮影した写真から得たイメージの模式図である。明確なプラズマ10は石英窓8内面の周辺領域に限られるが、金属棒6aの突出方向にも微細で不可視のプラズマ拡散相が存在する筈である。このようなプラズマ10は本発明における表面波励起プラズマの初期点火(プラズマ相の初期生成)として利用することができる。
【0010】
図2Cはこの状態からターゲット金属棒6aに負のバイアス電圧(Eb=−150ボルト)を印加することにより、この金属棒6aに沿ったプラズマ相10’が形成されたことを、同じく写真撮影により確認し、模式的に示したものである。このように、マイクロ波を投入し且つ金属棒6aに負のバイアス電圧を印加した結果、金属棒6aに沿って高密度なプラズマ相10’を形成しえたということは、金属棒6aの表面に沿って比較的厚いシース5が形成され、マイクロ波はこのシースとプラズマ相10’との境界面に沿って(表面波として)伝播し、プラズマ相10’の更なる励起を行うという相乗効果が生じたことを示している。
【0011】
本発明の一つの目的は、上記の如く解明された、金属等の導電体からなるターゲット近傍において誘電体を介在しない表面波励起プラズマ現象、従って導電体ターゲット自体を表面波アンテナとして利用した表面波励起プラズマにより、スパッタリング又はイオンインプランテーション等のプラズマ加工を行うに適したプラズマ発生方法及び装置を提供することである。
【0012】
本発明の第2の目的は、プラズマによる管内面加工又は棒状体の表面加工を行う際に困難とされてきた筒状空間内での高密度プラズマの生成を、比較的低コストで行うことができるようにした導電体ターゲット近傍での表面波励起プラズマの発生方法及び装置を提供することである。
【0013】
【課題を解決するための手段】
本発明による表面波励起プラズマの発生方法は、導電体からなるターゲットを少なくともその一端がマイクロ波供給口に近接するように配置し、前記ターゲットの表面に近接してプラズマ相を初期生成し、前記マイクロ波供給口からマイクロ波を放出し且つ前記ターゲットに負バイアス電圧を印加することにより、プラズマ相に対向してターゲット表面の近傍に生成される電子密度の低いシース領域を拡大し、前記放出されたマイクロ波を前記シース領域とプラズマ相との境界に沿って前記一端から他端にかけて伝播させることにより、前記ターゲットを表面波アンテナとして機能させ、表面波励起プラズマを発生するものである。
【0014】
上記方法の実施における典型的な初期点火、即ちプラズマ相の初期生成を行うため、本発明ではマイクロ波供給口に誘電体を介在させ、前記マイクロ波供給口から放出されたマイクロ波を前記誘電体に作用させて、前記ターゲット表面に近接した誘電体表面に表面波として伝播させ、この近接領域において表面波励起プラズマからなるプラズマ相を初期生成するものである。
【0015】
上記方法の実施においては、プラズマ生成用ガス入口と排気口を有するとともに、前記マイクロ波供給口を接続したプラズマチャンバーを備え、前記チャンバー内において前記ターゲットを少なくともその一端が前記マイクロ波供給口に近接するように配置して行うことにより、所望のプラズマ生成ガス及び所望の圧力(又は真空度)で実施することができる。
【0016】
本発明による表面波励起プラズマ発生装置の基本構成は、マイクロ波を導く導波管と、前記導波管の終端から電気的に絶縁して突設された導電体からなるターゲットと、前記ターゲットに負バイアス電圧を印加するための電源とを備え、前記ターゲットの周囲においてバイアス電圧の大きさに応じて形成される電子密度の低いシース領域に沿ったマイクロ波の伝播により表面波励起プラズマを発生し、そのターゲットの表面に対向した被加工材料の表面にプラズマ加工を行うことができるように構成したものである。
【0017】
また、本発明による表面波励起プラズマ発生装置の典型的な構成としては、プラズマ生成用ガス入口と排気口、及びマイクロ波供給口を有するプラズマチャンバーと、前記チャンバー内において少なくともその一端が前記マイクロ波供給口に近接するように配置された導電体からなるターゲットと、前記マイクロ波供給口を実質的に横断するように配置された誘電体窓と、前記ターゲットの表面に近接してプラズマ相を初期生成する手段と、前記ターゲットに負バイアス電圧を印加することにより前記初期生成されたプラズマ相とターゲット表面との間における低電子密度シース領域を拡大するためのバイアス電源とを備え、プラズマ相と低電子密度シース領域との界面における表面波励起プラズマにより、ターゲット自身又はプラズマ相に接して配置された場合の被加工材料の表面をプラズマ加工するようにしたものである。
【0018】
上記の装置において、チャンバー内で前記プラズマ相を初期生成する手段としては、本発明の方法の実施に関して既に述べたマイクロ波供給口に介在した誘電体による初期点火の他、前記バイアス電源において点火放電用の交流電圧を前記負バイアス電圧に重畳する回路手段を設けることができる。この回路手段による負バイアス電圧への交流電圧の重畳は、前記点火放電の後においても、プラズマ放電促進用として適当な値で選択的に実行することができる。
【0019】
チャンバー内において前記プラズマ相を初期生成する更に別の手段としては、前記チャンバーを包囲し、少なくとも前記誘電体窓に近接した領域を磁気的に励起するための永久磁石又は電磁石より構成された磁場発生手段を用いることができる。また初期プラズマ相の点火後においては、前記の磁場発生手段自身、又は別の磁場発生手段を用いて、前記チャンバーの周壁の内側を巡るプラズマ閉じ込め用の磁場を生成することができる。
【0020】
本発明のプラズマ発生装置においては、(1)導電体からなるターゲットを棒状体とし、前記導入されたマイクロ波を、前記ターゲットの外周面に沿って伝播させることにより、この棒状体を包囲した被加工筒体の内面にスパッタリング金属による効果的な成膜を行うか、又は棒状体ターゲットへのイオンインプランテーションを行うこと、(2)導電体からなるターゲットを筒状体とし、前記導入されたマイクロ波を、前記ターゲットの内周面に沿って伝播させるようにしたことにより包囲した棒状体(被加工体)の外面にスパッタリング金属による効果的な成膜を行うか、又は筒状体ターゲット金属へのイオンインプランテーションを行うこと、(3)導電体からなるターゲットを板状体とし、前記導入されたマイクロ波を、前記ターゲットのチャンバー内に向かった表面に沿って伝播させるようにしたことにより対向した被加工基板面にスパッタリング金属による効果的な成膜を行うか、又は筒状体ターゲット金属へのイオンインプランテーションを行うことが可能である。
【0021】
もっとも、上記のプラズマ発生装置においては、必ず被加工物に成膜を施すか、又は導電体ターゲット自体にイオンインプランテーション加工を行うことが必須の使用目的ではなく、ターゲットへの負バイアス電圧の調整等を行い、表面波励起により高密度プラズマ(1011〜1012cm−3)を発生すること自体に、新たな応用分野への適用が期待される。以下、図3〜図9を参照して本発明の好ましい実施形態につき説明する。
【0022】
【発明の実施の形態】
図3は第1の実施形態における基本構造の要部断面及び電気接続図である。図3において、11はプラズマチャンバーを構成する真空容器、12はマイクロ波発振器13から、例えば2.45GHzのマイクロ波を真空容器11に供給するため、その容器上端に曲折・接続されたマイクロ波供給口12aを有する導波管である。マイクロ波発振器13は駆動電源14に接続されて駆動されるようになっている。
【0023】
真空容器11は、この場合、金属製であって直立ドラム状をなし、上端の中心開口を外側から板状の誘電体窓15で被蓋された構造を有し、この誘電体窓15から垂下支持した例えば銅などのような導電体からなる棒状ターゲット16の実質的部分を包囲し、容器下端壁の下部絶縁板17から電気接続のため下端部を僅かに突出せしめている。18は負バイアスを得るための直流電圧を主体とした交流電圧を含むプラズマ励起・促進用電圧を棒状ターゲット16に印加するためのバイアス電源であり、図示しないが駆動電源14と共通の制御回路によって制御されることができる。
【0024】
導波管12のマイクロ波供給口12a内には、同軸導波回路を形成するため、絶縁性円錐台12bから突設された同軸円筒導体12cを有し、その円筒導体12cの先端が誘電体窓15の支持凹面において棒状ターゲット16の基端部と背中合わせの位置を占めている。誘電体窓15は前述したように、プラズマの初期点火に用いうるが、別の効果的な初期点火手段としては、マイクロ波供給口12aの先端外周に沿った真空容器の上端板状にECR励起用の永久磁石又はマグネットコイルの配列19を、所望に応じて配置することができる。
【0025】
かくして、この実施例の装置では、真空容器11内において筒状の被加工材料20を、適当な支持手段(図示せず)により、棒状ターゲット16の周囲に、好ましくは同軸状に包囲するように配置して、これにプラズマ加工を行うことができる。例えば、真空容器11内にはプラズマ生成用ガス入口11aよりアルゴンを供給し、排気口11bより適当に真空吸引して器内圧を適当に調整する。次いでマイクロ波発振器13から2.45GHzのマイクロ波を導波管12を介して真空容器11に供給する。これにより、マイクロ波は棒状ターゲット16の付け根に対応する誘電体板15の表面に沿って表面波となり、伝播又は定在して周囲の気相を励起しプラズマ相を初期点火する。この初期プラズマ相は当然に棒状ターゲット16の付け根部に近接して存在する。
【0026】
ここで、棒状ターゲット16に−100Vより高い負のDCバイアスをかけると、この負電位に帯電した棒状表面に近接したプラズマ相の部分領域におけるマイナスイオン粒子(電子)が、プラズマ相内部に向かって押し戻され、電子密度の低い、所謂プラズマシースが形成され、これがプラズマ相に接した誘電体の働きをして表面波の伝播域を拡大し、更なるプラズマ相の励起、そのプラズマ相の拡大に伴うシースの拡大、更なるプラズマ相の励起、という相乗効果を瞬時に発生し、図示のように棒状ターゲット16を包囲した被加工材料20(筒状体)の内側に、均一且つ高密度な定常プラズマ相21を生ぜしめる。これにより、棒状ターゲット16(この場合、銅棒)表面は、プラズマ粒子により激しく衝撃を受け、金属原子Cuを飛散(スパッター)させられる。飛散したCuの原子蒸気は被加工材料20(筒状体)の内壁に被着し、短時間の内に成膜される。
【0027】
このような、本発明による筒内面の成膜処理は再現性がよく、そのスループットは、同様な形状・寸法の筒内面を従来法により処理していた場合の10倍にも達する。これは、一般に筒状体内においてはプラズマを生成しにくく、従来は例えば、軸線に沿った金属線ヒータターゲット方式ではプラズマの励起に時間がかかり且つ断線の危険があり、ECR共鳴による方式では軸方向に短い局限的範囲でしかプラズマ生成できないため、ECR共鳴点を軸線に沿って順次移動させなければならない、等の欠点があったという事情が、本発明によって完全に解決しえたからである。
【0028】
上述したプラズマ加工の初期点火においては、誘電体窓15による部分表面波励起方式を用いたが、電源18により棒状ターゲット16に負バイアスとともに適当な電圧及び周波数とした励起用交流電圧を重畳したり、ECR励起用磁石配列19の近接・有効化を行う等の方法を用いてもよい。また説明したプラズマ加工は、この場合、セラミック筒の内面に、銅被膜を成膜した例であるが、他の金属ターゲットによる他の筒状材料の内側硬膜処理、例えばターゲットをチタンとし、プラズマ生成用ガスとして窒素を用いることにより、ステンレス管の内面に窒化チタン膜を形成して耐磨耗性及び耐腐食性の向上を図ること、又は炭素棒ターゲットによる筒状体内面のDLC(ダイヤモンドライク・コーティング)処理を、この方式において実行すること等ができる。
【0029】
図4は、第2の実施形態における基本構造の要部断面及び電気接続図である。図4において、図3に示した部分と同一の参照数字を付した部分は、同一の機能部分であり、説明を省略する。この第2の実施形態においては、図3のターゲットと被加工材料との形状と位置関係を逆転し、中心には適当な方法で棒状の被加工材料26を配置し、これを包囲するように絶縁基材27に支持した導電体からなる筒状ターゲット30を配置する。この場合、導波管12のマイクロ波供給口12aには、比較的大きい同軸絞り孔12dを有し、先端開口には口径一杯に誘電体窓15’が嵌入されている。この場合、初期点火用の部分表面波は誘電体窓15’の裏面(真空容器内に接する面)の全面に沿って伝播・定在して、筒状ターゲット30の上端に近接し、負バイアスされる同ターゲット表面の初期シースと十分な相互作用(シースとプラズマ相の、表面波を介した相互拡大作用)を発揮する。
【0030】
第2の実施形態は以上の通りであって、第1の実施形態とはターゲットと被加工材料との関係が逆転しているため、棒状の被加工材料26の表面に対して、筒状ターゲット30からの飛散原子蒸気により、同様なスパッタリング蒸着を行うことができる。その他の変形実施態様が可能であることも、第1の実施形態と同様である。
【0031】
図5は、第3の実施形態における基本構造の要部断面及び電気接続図である。図5において、図3に示した部分と同一の参照数字を付した部分は、同一の機能部分であり、説明を省略する。この第3の実施形態においては、図3の棒状ターゲット16と類似の棒状ターゲット16’そのものがイオン・インプランテーションの被加工材料として、真空容器11の範囲内において垂下支持され、このターゲット16’を包囲する筒状体は存在しない。この例では、筒状体が存在しないことを利用して、プラズマ相21に直接作用するプラズマ閉じ込めよう磁場(典型的には、環状のN/S極交互配列による磁場)発生手段29を、所望に応じて真空容器11の外周壁に沿うように設置する。磁場発生手段29は永久磁石、又は電磁石の何れでもよく、プラズマ相の閉じ込め以外にプラズマズマ初期点火にも用いることができる。
【0032】
この第3の実施形態において、プラズマは第1の実施形態と同様に励起・生成されることにより、ターゲット16’の表面に、プラズマ相中のイオン粒子が打ち込まれ、所望の不純物層を形成することができる。プラズマ生成用ガスの種類や容器11内の圧力は形成すべき不純物層や表層構造に応じて選択される。
【0033】
図6は、第4の実施形態における基本構造の要部断面及び電気接続図である。図6において、図4に示した部分と同一の参照数字を付した部分は、同一の機能部分であり、説明を省略する。この第4の実施形態においては、図4の筒状ターゲット30と類似の棒状ターゲット30’そのものがイオン・インプランテーションの被加工材料として、真空容器11の範囲内において垂下支持され、このターゲット16’を包囲する筒状体は存在しない。
【0034】
この第4の実施形態においても、プラズマは第2の実施形態(図4)と同様に励起・生成されるため、ターゲット30’の内表面には、プラズマ相中のイオン粒子が打ち込まれ、所望の不純物層を形成することができる。プラズマ生成用ガスの種類や容器11内の圧力は形成すべき不純物層や表層構造に応じて選択される。
【0035】
図7は、第5の実施形態における基本構造の要部断面及び電気接続図である。この実施形態のものは、図3〜図6に示したチャンバー形とは異なり、チャンバーを用いずに、大気中で発生したプラズマを利用してプラズマ加工を行う携帯可能な装置であり、機能的には第1の実施形態(図3)から真空容器11を除去したものと考えることができる。従って、図3に示した部分と同一の参照数字を付した部分は、同一の機能部分であり、説明を省略する。但し、マイクロ波供給口12a先端中央の誘電体15”は、同軸円筒導体12cに保持される程度に小さくされ、導電体からなる棒状ターゲット36は、この誘電体15”にビス止め(図示せず)等の適当な方法により十分強固に保持されて、そのマイクロ波供給口12aより突出している。
【0036】
この第5の実施形態においては、導波管12のマイクロ波供給口12aからマイクロ波を放出し、棒状ターゲット36に適当な負バイアス電圧を印加すると(適当な初期プラズマ相の点火プロセスを経て)、棒状ターゲット36の周囲には定常的プラズマ相21が生成される。この例では、据えつけられた機械の一部分等、真空容器内に収容しきれないものか、収容可能な単体でも大気中でターゲット対向面にプラズマ加工したいような被加工材料37に対し、導波管12から突設した棒状ターゲット36を、図7に示す位置関係で固定する。従って、被加工材料37の、ターゲット表面に対向した凹面には、ターゲット材料のプラズマスパッタリングによる蒸着及び表面改質を行うことができる。
【0037】
ターゲット材料は、相手材料と加工目的に応じて種々に選択可能であり、場合によっては、作業位置において、後からプラズマチャンバーとして適用可能なコンテナ38を被せ、プラズマ生成ガスの流通及び圧力調整を行うようにしてもよい。更に、この携帯型装置のターゲット36の形状は、図示の棒状に限らず、被加工面の輪郭形状に応じて、球状、立体型、円錐又は角錐状、平板形、円錐台形等種々の形状とすることができる。
【0038】
図8及び図9に示す実施形態は、これまでのターゲット/ワーク同軸配置型装置と異なり、平板状導体からなるターゲットを用いた装置であり、被加工材料もまた、ターゲットの正面側に形成されるプラズマ相により効果的に加工されるため、そのターゲット板に対向して配置される。これらの図においても、既に説明した部分と同一の参照符号を用いた部分は、同一の機能部分であるため、重ねての説明を省略する。また、これらの図においては、簡略化のため真空容器の壁の厚みを省略する。
【0039】
図8に示す第6の実施形態では、導波管12のマイクロ波供給口12a’、12a”は管先端部の一側面(図の下側面)に形成されたスリットからなるもので、それらは定在波を得るため、マイクロ波長の整数倍のピッチで平行に配置される。導波管12側のマイクロ波供給口12a’、12a”には誘電体窓15a、15bが装着され、真空容器11の上端面に適用される絶縁板31、及びこの絶縁板31装着されたターゲット板32にも、これらのマイクロ波供給口12a’、12a”に連なるスリットが形成される。真空容器11内において、被加工板33は、マイクロ波供給口12a’、12a”の間隔をやや上回る程度の幅を有効加工幅とし且つターゲット板32に対応する奥行きを有するものとして、適当な手段により、ターゲット板32に対向して配置される。
【0040】
この第6の実施形態においても、導波管12のマイクロ波供給口12aからマイクロ波を放出し、ターゲット板32に適当な負バイアス電圧を印加すると(適当な初期プラズマ相の点火プロセスを経て)、ターゲット板32の下側空間には拡大されたシース層を介して定常的プラズマ相21が生成される。これにより、被加工板33の、ターゲット表面に対向した上面には、ターゲット材料のプラズマスパッタリングによる蒸着及び表面改質を行うことができる。
【0041】
図9に示す第7の実施形態では、導波管12のマイクロ波供給口は先端開口部に装着された誘電体窓15’そのものにより形成される。この誘電体窓15’は真空容器11の側壁上端から同容器11内を覗くように配置され、真空容器11の天井壁の主要部には導電性を有するターゲット板34が絶縁体35を介して支持され、チャンバー内に面している。被加工板33は、ターゲット板34の投影面積内の大きさをもって有効加工面積とし、適当な手段によりターゲット板34に対向して配置される。
【0042】
この第7の実施形態においても、導波管12のマイクロ波供給口からマイクロ波を放出し、ターゲット板34に適当な負バイアス電圧を印加すると(適当な初期プラズマ相の点火プロセスを経て)、ターゲット板34の下側空間には拡大されたシース層を介して定常的プラズマ相21が生成される。これにより、被加工板33の、ターゲット表面に対向した上面には、ターゲット材料のプラズマスパッタリングによる蒸着及び表面改質を行うことができる。
【0043】
上述した第7の実施形態による装置構成において、被加工板33を配置しない場合でも、プラズマは同様に励起・生成されるため、ターゲット板34の内側表面には、プラズマ相中のイオン粒子が打ち込まれ、所望の不純物層を形成することができる。プラズマ生成用ガスの種類や容器11内の圧力は形成すべき不純物層や表層構造に応じて選択される。
【0044】
【発明の効果】
以上述べた通り、本発明によれば、導電体からなるターゲット近傍において誘電体を介在しない表面波励起プラズマ現象を発生させることにより、基本的にターゲット形状に対応した被加工材料に対し、スパッタリング又はイオンインプランテーション等のプラズマ加工を行うに適したプラズマ発生方法及び装置が提供される。
本発明は特に、プラズマによる管内面加工又は棒状体の表面加工を行う際に困難とされてきた筒状空間内での高密度プラズマの生成を、比較的低コストで行うことができるようにした導電体ターゲット近傍での表面波励起プラズマの発生方法及び装置を提供するものであることは明らかである。なお、内側面をターゲット面とする比較的大径の導電性筒状ターゲットを用意し、その内側に、棒状体でなく管状の材料を配置して先ずその材料の外側面をプラズマ加工し、今度はその材料を棒状ターゲットの周囲に配置すれば、その内側面も同様なプラズマ加工を施すことができる等、その工業上の利用価値は極めて大きい。
【図面の簡単な説明】
【図1】従来技術において誘電体とプラズマ相との界面にマイクロ波長の表面波が伝播し、プラズマを更に励起再生する状態(A)、及び本発明において導電体ターゲットに面して形成されるプラズマシースと本体プラズマ相との界面にマイクロ波長の表面波が伝播し、プラズマを更に励起再生する状態(B)を模式的に示す図である。
【図2】本発明の原理を証明するための実験装置の略図(A)、その実験装置内のターゲット金属棒にバイアス電圧を印加することなく石英窓の内側に表面波を定在させたとき周辺にプラズマが励起発光した状態の模式図(B)、及びその石英窓周辺に励起発光したプラズマを種火とし負バイアス電圧を印加したターゲット金属棒の全長に沿ってプラズマ相を生成した状態の模式図(C)である。
【図3】本発明装置の第1の実施例を示す装置部の縦断面及び電気接続図である。
【図4】本発明装置の第2の実施例を示す装置部の縦断面及び電気接続図である。
【図5】本発明装置の第3の実施例を示す装置部の縦断面及び電気接続図である。
【図6】本発明装置の第4の実施例を示す装置部の縦断面及び電気接続図である。
【図7】本発明装置の第5の実施例を示す装置部の縦断面及び電気接続図である。
【図8】本発明装置の第6の実施例を示す装置部の縦断面及び電気接続図である。
【図9】本発明装置の第7の実施例を示す装置部の縦断面及び電気接続図である。
【符号の説明】
11 真空容器(チャンバー)
12 導波管
13 マイクロ波発振器
14 駆動電源
15 誘電体板
16、36 棒状ターゲット
17 下部絶縁板
18 バイアス電源
19 ECR用磁石配列
20 被加工材料(筒状)
21 プラズマ相
26 被加工材料(棒状)
27 絶縁基材
30 筒状ターゲット
31 絶縁板
32、34 ターゲット板
33 被加工板
35 絶縁体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for generating a surface wave excited plasma along a non-dielectric region, particularly a conductive metal surface.
[0002]
[Prior art]
2. Description of the Related Art In recent years, sputtering, etching, ashing, cleaning, or plasma processing such as plasma CVD is often used for surface treatment of various organic materials, metal materials, and the like, including semiconductor substrates and liquid crystal glass substrates. In order to generate plasma at a high density, a magnetron method or an ECR discharge is generally employed. However, these magnetic field methods have low energy efficiency, are complicated and expensive, and have many adverse effects such as radio interference. Therefore, in plasma processing, it is important that the main source of plasma is a magnetic field-free system and that a plasma phase having a uniform density distribution corresponding to the shape of the surface to be processed is first formed.
[0003]
Attention has been paid to a so-called surface-wave-excited plasma method. For example, in Japanese Patent Application Laid-Open No. H11-102799, a microwave is applied along the surface of a dielectric material positioned at the center of a plasma chamber. By the propagation, the electromagnetic field energy is concentrated near this surface to generate a high-density plasma, and the expansion of the plasma phase causes a relatively uniform and high-density plasma to be applied to the substrate disposed at the bottom in the chamber. There is disclosed a surface wave excitation type plasma generating apparatus for applying plasma.
[0004]
However, in the plasma generator disclosed in this publication, a dielectric tube or rod surrounding the microwave transmission antenna or connected to the microwave emission slit is suspended from the top surface of the plasma chamber, and is intended for plasma sputtering. In this case, it is difficult to adopt a configuration in which a material other than a dielectric, typically a metal, is used as a target, and a substrate to be processed or the like is opposed to the target and plasma sputtering and film formation are performed. A similar drawback exists when using the plate-type dielectric described in the above publication as a prior art.
[0005]
Therefore, when performing sputtering using surface wave excited plasma, if the target material exists in the surface wave propagation region where the plasma is generated at the highest density, the target material will have the maximum efficiency due to the collision of plasma particles. It was noted that a sputtered film could be effectively formed on the surface of the workpiece facing or surrounding the atom emitting surface. Therefore, when a metal body is targeted, microwaves need only be propagated along the surface of the metal body.
[0006]
[Problems to be solved by the invention]
However, as shown schematically in FIG. 1A, the “surface” in the case of generating the surface wave excited plasma means the
[0007]
On the other hand, a charged particle layer of a single polarity, a so-called sheath, is formed essentially near the surface of the object in contact with the plasma phase, but when the object is a metal conductor to which a negative bias voltage is applied, the sheath is an electron. This is a layer having a low density (accordingly, a positive polarity) and a layer having a dielectric constant ε ≒ 1. For this reason, if the thickness of the sheath layer can be increased by increasing the negative bias voltage, as shown in FIG. 1B, the dielectric material that propagates the
[0008]
This is confirmed by the experimental method and the schematic diagram of the experimental results shown in FIG. In the experimental apparatus shown in FIG. 2A, a
[0009]
FIG. 2B shows that when a microwave is applied to the
[0010]
FIG. 2C shows that, by applying a negative bias voltage (Eb = −150 volts) to the
[0011]
One object of the present invention is to elucidate the above, a surface wave excited plasma phenomenon without a dielectric substance in the vicinity of a target made of a conductor such as a metal, and therefore, a surface wave using a conductor target itself as a surface wave antenna. An object of the present invention is to provide a plasma generation method and apparatus suitable for performing plasma processing such as sputtering or ion implantation using excited plasma.
[0012]
A second object of the present invention is to perform high-density plasma generation in a cylindrical space, which has been considered difficult when performing tube inner surface processing or surface processing of a rod-shaped body with plasma, at a relatively low cost. An object of the present invention is to provide a method and an apparatus for generating surface wave excited plasma in the vicinity of a conductor target.
[0013]
[Means for Solving the Problems]
In the method for generating surface wave excited plasma according to the present invention, a target made of a conductor is arranged so that at least one end thereof is close to a microwave supply port, and a plasma phase is initially generated close to the surface of the target, By emitting a microwave from a microwave supply port and applying a negative bias voltage to the target, a sheath region having a low electron density generated near the target surface in opposition to the plasma phase is enlarged, and the emitted The microwave is propagated from the one end to the other end along the boundary between the sheath region and the plasma phase, so that the target functions as a surface wave antenna and generates surface wave excited plasma.
[0014]
In order to perform typical initial ignition in the implementation of the above method, that is, initial generation of a plasma phase, in the present invention, a dielectric is interposed in the microwave supply port, and the microwave emitted from the microwave supply port is used as the dielectric substance. To propagate as a surface wave on the dielectric surface close to the target surface, and initially generate a plasma phase composed of surface wave excited plasma in this proximity region.
[0015]
In the implementation of the above method, a plasma chamber having a plasma generating gas inlet and an exhaust port and having the microwave supply port connected thereto is provided, and in the chamber, at least one end of the target is close to the microwave supply port. By arranging them so that they can be performed, it can be carried out with a desired plasma generating gas and a desired pressure (or degree of vacuum).
[0016]
The basic configuration of the surface-wave-excited plasma generator according to the present invention includes a waveguide that guides microwaves, a target made of a conductor that is electrically insulated and protruded from the end of the waveguide, and A power supply for applying a negative bias voltage, and generating a surface wave excited plasma by propagation of microwaves along a sheath region having a low electron density formed according to the magnitude of the bias voltage around the target. The plasma processing can be performed on the surface of the material to be processed facing the surface of the target.
[0017]
A typical configuration of the surface wave excited plasma generating apparatus according to the present invention includes a plasma chamber having a plasma generating gas inlet, an exhaust port, and a microwave supply port, and at least one end of the plasma chamber having the microwave. A target made of a conductor disposed close to the supply port, a dielectric window disposed substantially across the microwave supply port, and initializing a plasma phase close to the surface of the target. And a bias power supply for enlarging a low electron density sheath region between the initially generated plasma phase and the target surface by applying a negative bias voltage to the target. The surface wave excited plasma at the interface with the electron density sheath region makes the target itself or the plasma phase The surface of the work piece when placed in is obtained so as to plasma processing.
[0018]
In the above-described apparatus, the means for initially generating the plasma phase in the chamber may include the initial ignition by the dielectric interposed in the microwave supply port, which has already been described in relation to the implementation of the method of the present invention, and the ignition discharge in the bias power supply. Circuit means for superimposing an AC voltage for use on the negative bias voltage. The superimposition of the AC voltage on the negative bias voltage by this circuit means can be selectively performed with an appropriate value for promoting the plasma discharge even after the ignition discharge.
[0019]
Still another means for initially generating the plasma phase in the chamber includes a magnetic field generation comprising a permanent magnet or an electromagnet surrounding the chamber and magnetically exciting at least a region close to the dielectric window. Means can be used. Further, after the ignition of the initial plasma phase, a magnetic field for confining plasma surrounding the inside of the peripheral wall of the chamber can be generated using the magnetic field generating means itself or another magnetic field generating means.
[0020]
In the plasma generator of the present invention, (1) the target made of a conductor is a rod, and the introduced microwave is propagated along the outer peripheral surface of the target to cover the rod. Efficient film formation by sputtering metal on the inner surface of the processing cylinder, or ion implantation to a rod-shaped target, (2) a target made of a conductor is formed into a cylindrical body, The wave is propagated along the inner peripheral surface of the target, so that an effective film is formed on the outer surface of the surrounding rod-shaped body (workpiece) by a sputtering metal, or to the cylindrical target metal. (3) making the target made of a conductor a plate-like body, and applying the introduced microwave to the target The film is propagated along the surface of the substrate facing the inside of the chamber, so that an effective film is formed by sputtering metal on the surface of the substrate to be processed, or ion implantation is performed on the cylindrical target metal. It is possible.
[0021]
However, in the above-described plasma generator, it is not essential to perform film formation on the workpiece or to perform ion implantation on the conductor target itself, but to adjust the negative bias voltage to the target. And the like, and high density plasma (10 11 -10 12 cm -3 ) Is expected to be applied to new application fields. Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 is a sectional view and an electrical connection diagram of a main part of the basic structure according to the first embodiment. In FIG. 3,
[0023]
In this case, the
[0024]
The
[0025]
Thus, in the apparatus of this embodiment, the
[0026]
Here, when a negative DC bias higher than -100 V is applied to the rod-shaped
[0027]
Such a film forming process of the inner surface of the cylinder according to the present invention has good reproducibility, and the throughput thereof is as high as 10 times that when the inner surface of the cylinder having the same shape and dimensions is processed by the conventional method. This is because it is generally difficult to generate plasma in a cylindrical body. Conventionally, for example, in the case of a metal wire heater target system along the axis, it takes time to excite the plasma and there is a risk of disconnection. This is because the present invention has completely solved the problem that the plasma generation can be performed only in a short localized range, so that the ECR resonance points must be sequentially moved along the axis.
[0028]
In the initial ignition of the plasma processing described above, the partial surface wave excitation method using the
[0029]
FIG. 4 is a sectional view and an electrical connection diagram of a main part of a basic structure according to the second embodiment. In FIG. 4, portions denoted by the same reference numerals as the portions shown in FIG. 3 are the same functional portions, and description thereof will be omitted. In the second embodiment, the shape and the positional relationship between the target and the workpiece in FIG. 3 are reversed, and a bar-shaped
[0030]
The second embodiment is as described above. Since the relationship between the target and the material to be processed is reversed from that of the first embodiment, the cylindrical target 26 A similar sputtering deposition can be performed with the scattered atomic vapors from 30. Other modified embodiments are possible, as in the first embodiment.
[0031]
FIG. 5 is a sectional view and an electrical connection diagram of a main part of a basic structure according to the third embodiment. In FIG. 5, portions denoted by the same reference numerals as the portions shown in FIG. 3 are the same functional portions, and description thereof will be omitted. In the third embodiment, a rod-shaped
[0032]
In the third embodiment, the plasma is excited and generated in the same manner as in the first embodiment, so that the ion particles in the plasma phase are implanted into the surface of the target 16 ', thereby forming a desired impurity layer. be able to. The type of plasma generation gas and the pressure in the
[0033]
FIG. 6 is a sectional view and an electrical connection diagram of a main part of a basic structure according to the fourth embodiment. In FIG. 6, portions denoted by the same reference numerals as the portions shown in FIG. 4 are the same functional portions, and description thereof will be omitted. In the fourth embodiment, a rod-shaped
[0034]
Also in the fourth embodiment, since the plasma is excited and generated in the same manner as in the second embodiment (FIG. 4), ion particles in the plasma phase are implanted into the inner surface of the target 30 ', and Can be formed. The type of plasma generation gas and the pressure in the
[0035]
FIG. 7 is a sectional view and an electrical connection diagram of a main part of a basic structure according to a fifth embodiment. This embodiment differs from the chamber type shown in FIGS. 3 to 6 in that it is a portable device that performs plasma processing using plasma generated in the atmosphere without using a chamber. It can be considered that the
[0036]
In the fifth embodiment, when microwaves are emitted from the
[0037]
The target material can be selected variously according to the mating material and the processing purpose. In some cases, the work position is covered with a
[0038]
The embodiment shown in FIG. 8 and FIG. 9 is an apparatus using a target made of a flat conductor, unlike the conventional target / workpiece coaxial arrangement type apparatus. The material to be processed is also formed on the front side of the target. Since it is effectively processed by the plasma phase, it is arranged to face the target plate. Also in these figures, the portions using the same reference numerals as those already described are the same functional portions, and thus the overlapping description will be omitted. In these figures, the thickness of the wall of the vacuum vessel is omitted for simplification.
[0039]
In the sixth embodiment shown in FIG. 8, the
[0040]
Also in the sixth embodiment, when microwaves are emitted from the
[0041]
In the seventh embodiment shown in FIG. 9, the microwave supply port of the
[0042]
Also in the seventh embodiment, when microwaves are emitted from the microwave supply port of the
[0043]
In the apparatus configuration according to the above-described seventh embodiment, even when the
[0044]
【The invention's effect】
As described above, according to the present invention, by generating a surface wave excited plasma phenomenon without a dielectric material in the vicinity of a target made of a conductor, a material to be processed basically corresponding to the target shape is sputtered or sputtered. A plasma generation method and apparatus suitable for performing plasma processing such as ion implantation are provided.
In particular, the present invention makes it possible to generate high-density plasma in a cylindrical space, which has been difficult when performing inner surface processing of a tube or surface processing of a rod-shaped body with plasma, at a relatively low cost. It is apparent that the present invention provides a method and an apparatus for generating a surface wave excited plasma near a conductor target. In addition, a relatively large-diameter conductive cylindrical target having an inner surface as a target surface is prepared, and a tubular material, not a rod-shaped body, is disposed inside the target. First, the outer surface of the material is plasma-processed. By arranging the material around the rod-shaped target, the inner surface thereof can be subjected to the same plasma processing, and the industrial use value thereof is extremely large.
[Brief description of the drawings]
FIG. 1 shows a state (A) in which a microwavelength surface wave propagates at an interface between a dielectric and a plasma phase in the prior art to further excite and regenerate plasma, and is formed in the present invention so as to face a conductor target. It is a figure which shows typically the state (B) in which the surface wave of a microwave propagates to the interface of a plasma sheath and a main body plasma phase, and further excites and reproduces plasma.
FIG. 2 is a schematic diagram (A) of an experimental device for proving the principle of the present invention, in which a surface wave is standing inside a quartz window without applying a bias voltage to a target metal rod in the experimental device. A schematic diagram (B) of a state in which plasma is excited and emitted in the periphery, and a state in which a plasma phase is generated along the entire length of a target metal rod to which a negatively biased voltage is applied by using the plasma excited and emitted in the vicinity of the quartz window as a pilot light. It is a schematic diagram (C).
FIG. 3 is a longitudinal sectional view and an electrical connection diagram of a device section showing a first embodiment of the device of the present invention.
FIG. 4 is a longitudinal sectional view and an electrical connection diagram of a device section showing a second embodiment of the device of the present invention.
FIG. 5 is a longitudinal sectional view and an electrical connection diagram of a device section showing a third embodiment of the device of the present invention.
FIG. 6 is a longitudinal sectional view and an electrical connection diagram of a device section showing a fourth embodiment of the device of the present invention.
FIG. 7 is a longitudinal sectional view and an electrical connection diagram of a device section showing a fifth embodiment of the device of the present invention.
FIG. 8 is a longitudinal sectional view and an electrical connection diagram of a device section showing a sixth embodiment of the device of the present invention.
FIG. 9 is a longitudinal sectional view and an electrical connection diagram of a device section showing a seventh embodiment of the device of the present invention.
[Explanation of symbols]
11 Vacuum container (chamber)
12 Waveguide
13 Microwave oscillator
14 Drive power supply
15 Dielectric plate
16, 36 Bar target
17 Lower insulating plate
18 bias power supply
19 ECR magnet array
20 Work material (tubular)
21 Plasma phase
26 Work material (rod shape)
27 Insulating base material
30 cylindrical target
31 Insulating board
32, 34 Target plate
33 Work plate
35 Insulator
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002201025A JP4152135B2 (en) | 2002-07-10 | 2002-07-10 | Method and apparatus for generating surface wave excited plasma in the vicinity of a conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002201025A JP4152135B2 (en) | 2002-07-10 | 2002-07-10 | Method and apparatus for generating surface wave excited plasma in the vicinity of a conductor |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004047207A true JP2004047207A (en) | 2004-02-12 |
JP2004047207A5 JP2004047207A5 (en) | 2005-10-27 |
JP4152135B2 JP4152135B2 (en) | 2008-09-17 |
Family
ID=31707678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002201025A Expired - Lifetime JP4152135B2 (en) | 2002-07-10 | 2002-07-10 | Method and apparatus for generating surface wave excited plasma in the vicinity of a conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4152135B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008010537A1 (en) * | 2006-07-20 | 2008-01-24 | National University Corporation Nagoya University | Plasma processing device, plasma processing method, and plasma surface processing method |
JP2009070735A (en) * | 2007-09-14 | 2009-04-02 | Univ Nagoya | Electromagnetic wave plasma generator, its generating method, its surface treatment apparatus, and its surface treatment method |
WO2011064084A1 (en) * | 2009-11-11 | 2011-06-03 | Roth & Rau Muegge Gmbh | Device for generating plasma by means of microwaves |
JP2012131231A (en) * | 2005-03-17 | 2012-07-12 | Dupont Teijin Films Us Lp | Composite film suitable for use in opto-electronic and electronic device |
TWI402001B (en) * | 2008-03-26 | 2013-07-11 | Tokyo Electron Ltd | Plasma processing device, plasma processing method, and processed object treated by the method |
JP2014051715A (en) * | 2012-09-07 | 2014-03-20 | Nagoya Univ | Apparatus and method for forming film and film forming program |
WO2014156752A1 (en) * | 2013-03-28 | 2014-10-02 | ブラザー工業株式会社 | Film formation devce |
WO2014156753A1 (en) * | 2013-03-28 | 2014-10-02 | ブラザー工業株式会社 | Film-forming device |
WO2015099014A1 (en) * | 2013-12-27 | 2015-07-02 | ブラザー工業株式会社 | Film forming device |
JP2015196862A (en) * | 2014-03-31 | 2015-11-09 | ブラザー工業株式会社 | Film deposition apparatus |
JP2016069685A (en) * | 2014-09-30 | 2016-05-09 | ブラザー工業株式会社 | Film deposition apparatus |
JP2016160460A (en) * | 2015-02-27 | 2016-09-05 | ブラザー工業株式会社 | Film deposition apparatus |
EP3109891A1 (en) | 2015-06-24 | 2016-12-28 | Toyota Jidosha Kabushiki Kaisha | Plasma chemical vapor deposition device |
EP3214202A1 (en) | 2016-03-01 | 2017-09-06 | Toyota Jidosha Kabushiki Kaisha | Film forming method and plasma chemical vapor deposition apparatus |
US9972476B2 (en) | 2013-03-28 | 2018-05-15 | Brother Kogyo Kabushiki Kaisha | Film forming device, film forming method, and film forming program |
-
2002
- 2002-07-10 JP JP2002201025A patent/JP4152135B2/en not_active Expired - Lifetime
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012131231A (en) * | 2005-03-17 | 2012-07-12 | Dupont Teijin Films Us Lp | Composite film suitable for use in opto-electronic and electronic device |
WO2008010537A1 (en) * | 2006-07-20 | 2008-01-24 | National University Corporation Nagoya University | Plasma processing device, plasma processing method, and plasma surface processing method |
JPWO2008010537A1 (en) * | 2006-07-20 | 2009-12-17 | 国立大学法人名古屋大学 | Plasma processing apparatus, plasma processing method, and plasma surface processing method |
US8752503B2 (en) | 2006-07-20 | 2014-06-17 | National University Corporation Nagoya University | Plasma processing device, plasma processing method, and plasma surface processing method |
JP2009070735A (en) * | 2007-09-14 | 2009-04-02 | Univ Nagoya | Electromagnetic wave plasma generator, its generating method, its surface treatment apparatus, and its surface treatment method |
TWI402001B (en) * | 2008-03-26 | 2013-07-11 | Tokyo Electron Ltd | Plasma processing device, plasma processing method, and processed object treated by the method |
WO2011064084A1 (en) * | 2009-11-11 | 2011-06-03 | Roth & Rau Muegge Gmbh | Device for generating plasma by means of microwaves |
US20120279448A1 (en) * | 2009-11-11 | 2012-11-08 | Roth & Rau Ag | Device for generating plasma by means of microwaves |
CN103003913A (en) * | 2009-11-11 | 2013-03-27 | 米格有限责任公司 | Device for generating plasma by means of microwaves |
DE102009044496B4 (en) | 2009-11-11 | 2023-11-02 | Muegge Gmbh | Device for generating plasma using microwaves |
US10290471B2 (en) | 2009-11-11 | 2019-05-14 | Muegge Gmbh | Device for generating plasma by means of microwaves |
JP2014051715A (en) * | 2012-09-07 | 2014-03-20 | Nagoya Univ | Apparatus and method for forming film and film forming program |
JP2014189897A (en) * | 2013-03-28 | 2014-10-06 | Brother Ind Ltd | Film deposition apparatus |
WO2014156753A1 (en) * | 2013-03-28 | 2014-10-02 | ブラザー工業株式会社 | Film-forming device |
JP2014189900A (en) * | 2013-03-28 | 2014-10-06 | Brother Ind Ltd | Film deposition apparatus |
WO2014156752A1 (en) * | 2013-03-28 | 2014-10-02 | ブラザー工業株式会社 | Film formation devce |
US9972476B2 (en) | 2013-03-28 | 2018-05-15 | Brother Kogyo Kabushiki Kaisha | Film forming device, film forming method, and film forming program |
WO2015099014A1 (en) * | 2013-12-27 | 2015-07-02 | ブラザー工業株式会社 | Film forming device |
JP2015124424A (en) * | 2013-12-27 | 2015-07-06 | ブラザー工業株式会社 | Film deposition device |
JP2015196862A (en) * | 2014-03-31 | 2015-11-09 | ブラザー工業株式会社 | Film deposition apparatus |
JP2016069685A (en) * | 2014-09-30 | 2016-05-09 | ブラザー工業株式会社 | Film deposition apparatus |
JP2016160460A (en) * | 2015-02-27 | 2016-09-05 | ブラザー工業株式会社 | Film deposition apparatus |
EP3109891A1 (en) | 2015-06-24 | 2016-12-28 | Toyota Jidosha Kabushiki Kaisha | Plasma chemical vapor deposition device |
US10151033B2 (en) | 2015-06-24 | 2018-12-11 | Toyota Jidosha Kabushiki Kaisha | Plasma chemical vapor deposition device |
US10246771B2 (en) | 2016-03-01 | 2019-04-02 | Toyota Jidosha Kabushiki Kaisha | Film forming method and plasma chemical vapor deposition apparatus |
EP3214202A1 (en) | 2016-03-01 | 2017-09-06 | Toyota Jidosha Kabushiki Kaisha | Film forming method and plasma chemical vapor deposition apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4152135B2 (en) | 2008-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100291152B1 (en) | Plasma generating apparatus | |
US6062163A (en) | Plasma initiating assembly | |
JP4037760B2 (en) | Apparatus and method for improving plasma distribution and performance in inductively coupled plasmas | |
JP4152135B2 (en) | Method and apparatus for generating surface wave excited plasma in the vicinity of a conductor | |
JP2822103B2 (en) | An improved resonant radio frequency wave coupler device. | |
JP4607073B2 (en) | Microwave resonance plasma generating apparatus and plasma processing system including the apparatus | |
KR101366125B1 (en) | Microwave-assisted rotatable pvd | |
US7034285B2 (en) | Beam source and beam processing apparatus | |
JP5767627B2 (en) | Combined ICP and ECR plasma source for wide ribbon beam generation and control | |
JP4671313B2 (en) | Electron cyclotron resonant plasma source with coaxial microwave applicator and plasma generation method | |
US20040108469A1 (en) | Beam processing apparatus | |
JPH02103932A (en) | Particle source | |
JP2005146416A (en) | Ionized physical vapor deposition apparatus using helical magnetic-resonant coil | |
JP2010525155A (en) | Plasma generator | |
WO1987007760A1 (en) | Dual plasma microwave apparatus and method for treating a surface | |
JP2010500470A (en) | ECR plasma source | |
TWI259037B (en) | Neutral particle beam processing apparatus | |
JP2004047207A5 (en) | ||
US20100078315A1 (en) | Microstrip antenna assisted ipvd | |
JP2003073814A (en) | Film forming apparatus | |
JP2016035925A (en) | Plasma beam generating method and plasma source | |
KR100325404B1 (en) | plasma processing apparatus | |
JP3883615B2 (en) | Plasma generator and plasma processing apparatus | |
WO2009048294A2 (en) | Magnetized inductively coupled plasma processing apparatus and generating method | |
TWI321810B (en) | Plasma enhanced sputtering method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050708 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050708 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070723 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080604 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4152135 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140711 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |