JP2004045287A - System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric - Google Patents

System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric Download PDF

Info

Publication number
JP2004045287A
JP2004045287A JP2002204687A JP2002204687A JP2004045287A JP 2004045287 A JP2004045287 A JP 2004045287A JP 2002204687 A JP2002204687 A JP 2002204687A JP 2002204687 A JP2002204687 A JP 2002204687A JP 2004045287 A JP2004045287 A JP 2004045287A
Authority
JP
Japan
Prior art keywords
liquid
electromagnetic wave
waveguide
container
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204687A
Other languages
Japanese (ja)
Inventor
Ko Fukunaga
福永 香
Soichi Watanabe
渡辺 聡一
Atsuhiro Nishikata
西方 敦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP2002204687A priority Critical patent/JP2004045287A/en
Publication of JP2004045287A publication Critical patent/JP2004045287A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To impart a function capable of evaluating a complex dielectric constant and a complex magnetic permeability of a small amount of liquid sample, or of a liquid sample comprising a plurality of compositions and fast in change after mixed. <P>SOLUTION: This system is provided with a rectangular waveguide for propagating a predetermined frequency of electromagnetic wave, a means for inputting the electromagnetic wave to the waveguide, an output means for taking out the electromagnetic wave from the waveguide, a means for drawing out an electric parameter based on comparison of the input electromagnetic wave with the output electromagnetic wave, a container arranged between the input means and the output means to reserve a measuring liquid, a pipe for introducing the liquid into the container, and a pipe for discharging the liquid from the container. The container is arranged in the position, between the input means and the output means, where a magnetic field of the electromagnetic wave gets maximum. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、封入された液体または流動中の液体の複素誘電率や複素透磁率等を測定することのできる液体誘電体評価監視システムに関し、また液体混合機能をもたせることによりその電気的特性を調整しながら混合液体を製造することのできる液体誘電体製造装置に関するものである。
【0002】
【従来の技術】
物質の超短波帯からマイクロ波帯でのスペクトロスコピーには、既によく知られている様に周波数を掃引するものと磁場強度を掃引するものとがある。周波数を掃引する場合には、周波数を変える必要があることから、導波管の内部に測定試料が置かれることは無い。しかし、磁場を掃引する場合は、周波数を固定することができることから導波管の内部に測定試料が置かれる場合がある。この例としては、ESR(電子スピン共鳴)として知られる分光法である。この場合は、サーキュレータと短絡端を持った導波管が使われ、測定試料は導波管の短絡端に近くでマイクロ波の磁場成分が最大になる位置付近に置かれる。一方、本発明においては、導波管中の測定試料の位置は、マイクロ波の電場が最大になる位置である。
【0003】
また、超短波帯からマイクロ波帯での液体の誘電特性の測定に用いられものとしては、ヒューレットパッカード社の誘電体プローブキット85070Cがある。これは、液体に同軸ケーブルの端部を開放した形のプローブを入れ、使用周波数での反射係数を測定し、それを元に複素誘電率を算出するものである。
【0004】
しかしこの場合は、液体試料の入った容器として、理想的には無限大の大きさのものを想定している。実際には、充分大きな容器に満たされた液体試料の測定を念頭に置いたものである。またプローブは、直接液体と接触するため、接触電位差の小さい電極や液体と反応しない電極を用いる必要があり、さらにまた、電極に気泡が付着することを防ぐ必要がある。開放系の測定装置であるので、当然ながら、揮発性の物質の測定には適していない。
【0005】
【発明が解決しようとする課題】
上記の様に、従来の液体誘電体評価装置では、充分大きな容器に満たされた液体試料を用意する必要があり、また、電極に気泡が付着することを防ぐ必要がある。このため、測定に人為的誤差が含まれやすい。また揮発性の試料の測定には適していない。
【0006】
この発明は上記に鑑み提案されたもので、少量の液体試料や複数の組成からなる液体で作成後の変化の速い液体試料の複素誘電率や複素透磁率を評価することができる機能を備えた液体誘電体評価監視システムおよび液体誘電体製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明における第1の発明は、液体誘電体評価監視システムに関しており、測定する液体を入れる容器と、予め決められた周波数の電磁波を伝搬させる矩形導波管と、導波管に電磁波を入力するための手段と、導波管から電磁波を取り出すための出力手段と、入力電磁波に対する出力電磁波の比較から電気的パラメータを導く手段と、上記の入力手段と出力手段との間の電磁波の電場が最大となる位置に上記の容器を配置する構成と、を備えることを特徴としている。
【0008】
また、本発明における第2の発明は、液体誘電体評価監視システムに関しており、照射する電磁波を測定試料が吸収してその温度が変化する場合でも、温度変化による影響を少なくするために、予め決められた周波数の電磁波を伝搬させる矩形導波管と、前記導波管に電磁波を入力するための手段と、導波管から電磁波を取り出すための出力手段と、入力電磁波に対する出力電磁波の比較から電気的パラメータを導く手段と、上記の入力手段と出力手段との間に配置された液体の容器と、前記の容器に液体を導入する管と、前記の容器から液体を排出する管と、上記の入力手段と出力手段との間の電磁波の電場が最大となる位置に上記の容器を配置する構成と、を備えることを特徴としている。
【0009】
また、本発明における第3の発明は、第2の発明を用いた液体誘電体製造装置に関しており、周囲温度が変化した場合でも測定する液体の温度を正確に管理できる様にするために、上記の第2の発明に加え、液体に流れを与える輸液ポンプと、液体の温度を測定する温度測定手段とを、さらに備えることを特徴としている。
【0010】
また、本発明における第4の発明は、第3の発明を用いた液体誘電体製造装置に関しており、2種類の液体を混合してつくる液体の場合でその特性の時間的な変化が速く起こる場合でも混合直後の液体を測定できる様にするために、分子構造あるいは物理的状態の異なる液体を混合する液体混合手段と、混合された液体を上記の入力手段と出力手段との間に配置された液体の流路に導く構成とを、さらに備えることを特徴としている。
【0011】
【発明の実施の形態】
携帯電話の送信電波の人体頭部に対する影響を調べるために、頭部の組織と電気的に等価な特性を持った液体材料を人体頭部の形状を持ったファントム外殻に入れて、上記の電波を与えた時の液剤中の電界を計測することにより人体頭部に対する影響が調べられている。人体頭部は様々な組織で構成されているが、等価な均一液剤を用いる際の電気特性が国際的に定められている。その電気的特性は周波数によって異なり、例えば900MHzあるいは1450MHzにおいては、表1に示すような値となる。この特性を実現するために、表1にあるような組成の混合液体が作られる。この組成や、濃度は、周波数帯によって異なり、さらに低周波帯あるいは高周波帯では、また表1とは異なる混合液体が用いられる。このような混合液体では、時間の経過とともその電気的特性が変化するため、長時間に渡る使用には適さない。本発明は、その電気的特性が一定に保たれる様に調整する装置に使用されることを、一例として想定している。
【0012】
【表1】

Figure 2004045287
【0013】
以下にこの発明の実施の形態を図面に基づいて詳細に説明する。図1は、測定される液体を挿入する矩形導波管1を持った液体誘電体評価監視システムを示している。矩形導波管内1の電気特性は、導波管内部に電磁的に結合したシールド線40、41とネットワークアナライザ7によって、入力に対する反射と出力が測定され、そこからS(スキャッタリング)パラメータが評価される。また、矩形導波管内1に液体封入用の管15が配置される。管15は導管22、23と連続している。この管15は、導波管の内部の電界が最大になる位置の近傍に設けることが望ましく、電磁波の伝搬モードに応じて変える必要がある。
【0014】
このような構成のため、上記の誘電体プローブキットのように、液体とプローブとが接触することは無い。このため、電極と液体との相互作用や電極に気泡が付着することによる誤差がなく、試料が密閉されるため揮発性の液体でも精度よく測定できることは明らかである。
【0015】
図5は、2000〜3000MHz測定用の矩形導波管の実例を示している。この例においては、図5(a)に示される様に、矩形導波管は、1a、1b、1c、1d、1eの5つの部分から構成されている。この導波管のサイズは、約30cm×12cm×80cmである。1a、1e部分には、シールド線が接続され、これはネットワークアナライザからの給電線として用いられる。また、図5(c)に示される様に、1c部には管を通すための6mmの貫通孔が設けられている。この貫通孔は、導波管内の電磁界への擾乱が小さくなる様になるべく小さい径にすることが望ましい。また、図5(b)あるいは(d)に示される様に、この貫通孔には、内径4mmのガラス管が通されている。
【0016】
管15は、液体試料に比べて、比誘電率の小さい材料で作られていることが望ましい。しかし、ファントム(模擬人体)に用いる液体は一般に高誘電率で高損失であるため、実用上はガラス管でも問題ない。寸法精度が高くでき、また試料が化学的に活性な場合にも適用できる材料が好ましく、ガラス官の他にテフロン(R)管等も推奨できる。矩形導波管と円筒系の管を用いる理由は、導波管壁やガラス管による散乱等を数値解析によって評価するのが容易であるためであるが、他の形状でも、それらを予め評価できるものであれば使用することができる。測定結果から導波管壁やガラス管による散乱等のよる効果を差し引くことによって、液体の散乱によるSパラメータを得る事ができる。また、そのSパラメータから、数値解析によって液体の電気特性、すなわち、その複素誘電率や複素透磁率を求めることができる。
【0017】
また、図2は、液体誘電体評価監視システムを用いた液体誘電体製造装置を示している。図2において、液体は、原料10、11、12から配管26、27、28により、コンピュータ8によって制御された混合調整器9に供給される。ここでは、便宜上3種類の液体の混合を示す。さらに多くの種類の液体を混合する場合も同様に行えばよい。混合された液体は、配管25により、温度調整器4上に設置された貯液槽3に供給される。ここで、混合された液体が速く変化する場合は、これを貯液槽3に供給するのではなく、輸液ポンプ2に供給することが望ましい。
【0018】
貯液槽3からは、配管21と輸液ポンプ2を用いて液体誘電体評価監視システム50に液体が供給される。液体誘電体評価監視システム50から配管23を伝って出た液体は、温度測定器6により温度が測定され、貯液槽3に戻る。貯水槽3は、閉鎖型が望ましいが、開放型のものでも精度よく調整することができる。ここで、液体誘電体評価監視システム50のネットワークアナライザ7からの情報はコンピュータ8に送られ、この情報をもとに混合調整器9が制御される。また、温度測定器6の情報はコンピュータ8に送られ、この情報をもとに温度調整器4が制御される。この温度調整器4は、貯水槽3の液体の温度を調整するものである。コンピュータは、また、液体放出用の配管20に設けられた弁5を制御し、液量を調整する。この配管20は、電気的特性の調整された液体を、貯液槽3から、他の、図には記載されていない何らかのシステムに供給する際にも用いられる。これは、上記したファントムへの液体の供給にも使われる。
【0019】
図2に示した装置を用いた測定例を図3に示す。図3は比誘電率の実数部と虚数部との時間経過を示し、当初、食塩を投入することによって比誘電率の実数部を減少させ、その虚数部を増加させた後、砂糖(蔗糖)を投入して比誘電率の実数部と虚数部とを減少させたものである。このように液体の組成比率を変える事によって、容易に複素誘電率を制御できることが分かる。
【0020】
以上の説明においては、液体誘電体評価監視システムの矩形導波管に1本の管を設ける場合を説明したが、なるべく多量の液体を導波管の内部に導入するためには、導波管設ける貫通孔を小さくするために、図4(a)のように、内部の直径がより大きな管を用いるか、図4(b)あるいは(c)の様に複数の管を設ける。これらの配置は、用いる波長に比べて充分小さい範囲にあることが望ましい。
【0021】
【発明の効果】
この発明は上記した構成からなるので、以下に説明するような効果を奏することができる。
【0022】
本発明の第1の発明では、導波管をプローブとして、液体試料の測定を行うようにしたので、密閉系の測定となり、揮発性の試料の測定も可能で、人為的な誤差を未然に防ぐことができる。
【0023】
また、本発明の第2の発明では、液体試料を入れ換えるようにしたので、照射する電磁波を測定試料が吸収してその温度が変化したり、周囲温度が変化したりする場合でも、温度変化による影響が少なくなる。
【0024】
また、本発明の第3の発明では、液体試料を循環して温度管理を行うようにしたので、マイクロ波による加熱現象が起こったり周囲温度が変化したりする場合でも測定する液体の温度を正確に管理できる。
【0025】
また、本発明の第4の発明では、自動的に液体の電気定数を監視、さらに調整まで自動で行なうことができるようになる。
【図面の簡単な説明】
【図1】液体誘電体評価監視システムを示すブロック図である。
【図2】液体誘電体製造装置を示すブロック図である。
【図3】液体誘電体製造装置を用いた測定例を示す図である。
【図4】液体誘電体評価監視システムの矩形導波管に設ける管の構成例を示す図である。
【図5】液体誘電体評価監視システムの矩形導波管の実例の写真である。
【符号の説明】
1 矩形導波管
1a、1b、1c、1d、1e 矩形導波管の部分
2 輸液ポンプ
3 貯液槽
4 温度調整器
5 弁
6 温度測定器
7 ネットワークアナライザ
8 コンピュータ
9 混合調整器
10、11、12 原料
15 管
16 貫通孔
20 液体放出用の配管
21 配管
22、23 導管
24、25、26、27、28 配管
31、32、33、34 配線
40、41 シールド線
50 液体誘電体評価監視システム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid dielectric evaluation and monitoring system capable of measuring the complex permittivity and the complex permeability of an enclosed liquid or a flowing liquid, and adjusts its electric characteristics by having a liquid mixing function. The present invention relates to a liquid dielectric manufacturing apparatus capable of manufacturing a mixed liquid while producing the mixed liquid.
[0002]
[Prior art]
As is well known, there are two types of spectroscopy from ultra-short wave band to microwave band of a material, in which a frequency is swept and a magnetic field intensity is swept. When the frequency is swept, the measurement sample is not placed inside the waveguide because the frequency must be changed. However, when sweeping the magnetic field, the measurement sample may be placed inside the waveguide because the frequency can be fixed. An example of this is the spectroscopy known as ESR (Electron Spin Resonance). In this case, a waveguide having a circulator and a short-circuit end is used, and the measurement sample is placed near the short-circuit end of the waveguide and near a position where the magnetic field component of the microwave becomes maximum. On the other hand, in the present invention, the position of the measurement sample in the waveguide is the position where the microwave electric field is maximized.
[0003]
Further, a dielectric probe kit 85070C manufactured by Hewlett-Packard Company is used for measuring the dielectric properties of a liquid in the ultrashort wave band to the microwave band. In this method, a probe having an open end portion of a coaxial cable is put in a liquid, a reflection coefficient at a used frequency is measured, and a complex permittivity is calculated based on the measurement.
[0004]
However, in this case, the container containing the liquid sample is ideally assumed to be of infinite size. In practice, it is intended to measure liquid samples filled in sufficiently large containers. Further, since the probe directly contacts the liquid, it is necessary to use an electrode having a small contact potential difference or an electrode which does not react with the liquid, and further, it is necessary to prevent bubbles from adhering to the electrode. Since it is an open type measurement device, it is naturally not suitable for measurement of volatile substances.
[0005]
[Problems to be solved by the invention]
As described above, in the conventional liquid dielectric evaluation apparatus, it is necessary to prepare a liquid sample filled in a sufficiently large container, and it is necessary to prevent bubbles from adhering to the electrodes. Therefore, the measurement is likely to include an artificial error. It is not suitable for measuring volatile samples.
[0006]
The present invention has been proposed in view of the above, and has a function capable of evaluating the complex permittivity and the complex permeability of a small amount of a liquid sample or a liquid sample having a plurality of compositions and having a fast change after preparation. It is an object to provide a liquid dielectric evaluation monitoring system and a liquid dielectric manufacturing apparatus.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a first invention of the present invention relates to a liquid dielectric evaluation and monitoring system, a container for containing a liquid to be measured, a rectangular waveguide for transmitting an electromagnetic wave having a predetermined frequency, Means for inputting electromagnetic waves to the waveguide, output means for extracting electromagnetic waves from the waveguide, means for deriving electrical parameters from a comparison of output electromagnetic waves with respect to input electromagnetic waves, and the above-mentioned input means and output means And disposing the container at a position where the electric field of the electromagnetic wave is maximized.
[0008]
Further, the second invention of the present invention relates to a liquid dielectric evaluation and monitoring system, which is determined in advance in order to reduce the influence of temperature change even when the temperature of the measurement sample changes due to absorption of the electromagnetic wave to be irradiated. A rectangular waveguide for transmitting an electromagnetic wave having a given frequency, a unit for inputting an electromagnetic wave to the waveguide, an output unit for extracting an electromagnetic wave from the waveguide, and an electric wave obtained by comparing the output electromagnetic wave with the input electromagnetic wave. Means for deriving static parameters, a container of liquid disposed between the input means and the output means, a pipe for introducing liquid to the container, a pipe for discharging liquid from the container, And disposing the container at a position where the electric field of the electromagnetic wave between the input means and the output means is maximized.
[0009]
Further, a third invention according to the present invention relates to a liquid dielectric manufacturing apparatus using the second invention, and in order to be able to accurately manage the temperature of the liquid to be measured even when the ambient temperature changes, the third invention is described. In addition to the second aspect of the invention, the apparatus is further characterized by further comprising an infusion pump for giving a flow to the liquid, and a temperature measuring means for measuring the temperature of the liquid.
[0010]
Further, a fourth invention according to the present invention relates to a liquid dielectric manufacturing apparatus using the third invention, and relates to a liquid dielectric manufacturing apparatus in which two kinds of liquids are mixed and the characteristics thereof change quickly with time. However, in order to be able to measure the liquid immediately after mixing, a liquid mixing means for mixing liquids having different molecular structures or physical states, and the mixed liquid were arranged between the input means and the output means. And a configuration for guiding the liquid to a liquid flow path.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
To investigate the effect of the mobile phone's transmitted radio waves on the human head, a liquid material having characteristics that are electrically equivalent to the tissue of the head is placed in a phantom shell having the shape of a human head, and The effect on the human head has been investigated by measuring the electric field in the liquid medicine when radio waves are applied. The human head is composed of various tissues, and the electrical characteristics when using an equivalent homogeneous liquid are internationally defined. The electrical characteristics differ depending on the frequency. For example, at 900 MHz or 1450 MHz, the values are as shown in Table 1. To achieve this property, a mixed liquid having the composition shown in Table 1 is prepared. The composition and the concentration differ depending on the frequency band, and in the low frequency band or the high frequency band, a mixed liquid different from that in Table 1 is used. Such a mixed liquid is not suitable for use over a long period of time because its electrical characteristics change over time. The present invention is supposed to be used as an example in a device for adjusting the electric characteristics so as to be kept constant.
[0012]
[Table 1]
Figure 2004045287
[0013]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a liquid dielectric evaluation and monitoring system with a rectangular waveguide 1 into which the liquid to be measured is inserted. With respect to the electrical characteristics of the inside of the rectangular waveguide 1, the reflection and output with respect to the input are measured by the shield lines 40 and 41 electromagnetically coupled inside the waveguide and the network analyzer 7, and the S (scattering) parameter is evaluated therefrom. Is done. Also, a liquid sealing tube 15 is arranged in the rectangular waveguide 1. Tube 15 is continuous with conduits 22,23. This tube 15 is desirably provided near the position where the electric field inside the waveguide is maximized, and needs to be changed according to the propagation mode of the electromagnetic wave.
[0014]
Due to such a configuration, the liquid and the probe do not come into contact with each other unlike the dielectric probe kit described above. For this reason, there is no error due to the interaction between the electrode and the liquid or the adhesion of air bubbles to the electrode, and it is clear that the measurement can be performed accurately even with a volatile liquid because the sample is sealed.
[0015]
FIG. 5 shows an example of a rectangular waveguide for measuring 2000 to 3000 MHz. In this example, as shown in FIG. 5A, the rectangular waveguide is composed of five parts 1a, 1b, 1c, 1d, and 1e. The size of this waveguide is about 30 cm × 12 cm × 80 cm. A shield line is connected to the portions 1a and 1e, and this is used as a feed line from a network analyzer. Further, as shown in FIG. 5C, a 6 mm through hole for passing a pipe is provided in the portion 1c. It is desirable that the diameter of the through hole be as small as possible so that disturbance to the electromagnetic field in the waveguide is reduced. Further, as shown in FIG. 5B or 5D, a glass tube having an inner diameter of 4 mm is passed through this through hole.
[0016]
The tube 15 is desirably made of a material having a lower dielectric constant than the liquid sample. However, since a liquid used for a phantom (simulated human body) generally has a high dielectric constant and a high loss, a glass tube does not pose a problem in practical use. A material that can achieve high dimensional accuracy and can be applied even when the sample is chemically active is preferable, and a Teflon (R) tube or the like can be recommended in addition to the glass material. The reason for using a rectangular waveguide and a cylindrical tube is that it is easy to evaluate scattering by a waveguide wall or a glass tube by numerical analysis, but they can be evaluated in advance even with other shapes. Anything can be used. By subtracting the effect of scattering by the waveguide wall or the glass tube from the measurement result, it is possible to obtain the S parameter due to the scattering of the liquid. From the S parameter, the electrical properties of the liquid, that is, its complex permittivity and complex permeability can be obtained by numerical analysis.
[0017]
FIG. 2 shows a liquid dielectric manufacturing apparatus using the liquid dielectric evaluation and monitoring system. In FIG. 2, liquid is supplied from raw materials 10, 11, and 12 to pipes 26, 27 and 28 to a mixing regulator 9 controlled by a computer 8. Here, mixing of three types of liquids is shown for convenience. In the case of mixing more kinds of liquids, the same operation may be performed. The mixed liquid is supplied to the liquid storage tank 3 installed on the temperature controller 4 via the pipe 25. Here, when the mixed liquid changes quickly, it is desirable to supply the liquid to the infusion pump 2 instead of supplying it to the liquid storage tank 3.
[0018]
The liquid is supplied from the liquid storage tank 3 to the liquid dielectric evaluation and monitoring system 50 using the pipe 21 and the infusion pump 2. The temperature of the liquid flowing out of the liquid dielectric evaluation and monitoring system 50 via the pipe 23 is measured by the temperature measuring device 6 and returns to the liquid storage tank 3. The water tank 3 is preferably a closed type, but an open type can be adjusted with high accuracy. Here, information from the network analyzer 7 of the liquid dielectric evaluation and monitoring system 50 is sent to the computer 8, and the mixing regulator 9 is controlled based on this information. The information of the temperature measuring device 6 is sent to the computer 8, and the temperature controller 4 is controlled based on this information. The temperature controller 4 adjusts the temperature of the liquid in the water storage tank 3. The computer also controls the valve 5 provided on the liquid discharge pipe 20 to adjust the liquid amount. The pipe 20 is also used when supplying the liquid whose electric characteristics have been adjusted from the liquid storage tank 3 to some other system (not shown). This is also used to supply liquid to the phantom described above.
[0019]
FIG. 3 shows a measurement example using the apparatus shown in FIG. FIG. 3 shows the lapse of time between the real part and the imaginary part of the relative permittivity. At first, the real part of the relative permittivity is reduced by adding salt, and after increasing the imaginary part, sugar (sucrose) is added. To reduce the real part and the imaginary part of the relative permittivity. It can be seen that the complex permittivity can be easily controlled by changing the composition ratio of the liquid as described above.
[0020]
In the above description, the case where one tube is provided in the rectangular waveguide of the liquid dielectric evaluation and monitoring system has been described. However, in order to introduce as much liquid as possible into the waveguide, the waveguide is required. In order to reduce the provided through hole, a tube having a larger inner diameter is used as shown in FIG. 4A, or a plurality of tubes are provided as shown in FIG. 4B or 4C. These arrangements are desirably in a range sufficiently smaller than the wavelength used.
[0021]
【The invention's effect】
Since the present invention has the above-described configuration, the following effects can be obtained.
[0022]
In the first aspect of the present invention, since the liquid sample is measured using the waveguide as a probe, the measurement is performed in a closed system, and the measurement of a volatile sample is also possible. Can be prevented.
[0023]
Further, in the second invention of the present invention, the liquid sample is exchanged. Therefore, even if the measurement sample absorbs the radiated electromagnetic wave and its temperature changes, or the ambient temperature changes, the temperature change is not affected. The effect is reduced.
[0024]
In the third aspect of the present invention, since the temperature is controlled by circulating the liquid sample, the temperature of the liquid to be measured can be accurately measured even when a heating phenomenon due to microwaves occurs or the ambient temperature changes. Can be managed.
[0025]
Further, according to the fourth aspect of the present invention, it becomes possible to automatically monitor the electric constants of the liquid and to automatically perform the adjustment up to the adjustment.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a liquid dielectric evaluation and monitoring system.
FIG. 2 is a block diagram showing a liquid dielectric manufacturing apparatus.
FIG. 3 is a diagram showing a measurement example using a liquid dielectric manufacturing apparatus.
FIG. 4 is a diagram showing a configuration example of a tube provided in a rectangular waveguide of the liquid dielectric evaluation and monitoring system.
FIG. 5 is a photograph of an example of a rectangular waveguide of a liquid dielectric evaluation and monitoring system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rectangular waveguide 1a, 1b, 1c, 1d, 1e Rectangular waveguide part 2 Infusion pump 3 Reservoir 4 Temperature regulator 5 Valve 6 Temperature measuring device 7 Network analyzer 8 Computer 9 Mixing regulator 10, 11, DESCRIPTION OF SYMBOLS 12 Raw material 15 Pipe 16 Through hole 20 Liquid discharge pipe 21 Pipe 22, 23 Pipe 24, 25, 26, 27, 28 Pipe 31, 32, 33, 34 Wiring 40, 41 Shield wire 50 Liquid dielectric evaluation and monitoring system

Claims (4)

測定する液体を入れる容器と、予め決められた周波数の電磁波を伝搬させる矩形導波管と、導波管に電磁波を入力するための手段と、導波管から電磁波を取り出すための出力手段と、入力電磁波に対する出力電磁波の比較から電気的パラメータを導く手段と、上記の入力手段と出力手段との間の電磁波の電場が最大となる位置に上記の容器を配置する構成と、を備えることを特徴とする液体誘電体評価監視システム。A container for containing a liquid to be measured, a rectangular waveguide for transmitting an electromagnetic wave having a predetermined frequency, a unit for inputting the electromagnetic wave to the waveguide, and an output unit for extracting the electromagnetic wave from the waveguide, Means for deriving an electrical parameter from a comparison of an output electromagnetic wave to an input electromagnetic wave, and a configuration in which the container is arranged at a position where the electric field of the electromagnetic wave between the input means and the output means is maximized. Liquid dielectric evaluation and monitoring system. 予め決められた周波数の電磁波を伝搬させる矩形導波管と、前記導波管に電磁波を入力するための手段と、導波管から電磁波を取り出すための出力手段と、入力電磁波に対する出力電磁波の比較から電気的パラメータを導く手段と、上記の入力手段と出力手段との間に配置された液体の容器と、前記の容器に液体を導入する管と、前記の容器から液体を排出する管と、上記の入力手段と出力手段との間の電磁波の電場が最大となる位置に上記の容器を配置する構成と、を備えることを特徴とする液体誘電体評価監視システム。Comparison of a rectangular waveguide for transmitting an electromagnetic wave having a predetermined frequency, a unit for inputting an electromagnetic wave to the waveguide, an output unit for extracting an electromagnetic wave from the waveguide, and an output electromagnetic wave with respect to the input electromagnetic wave Means for deriving electrical parameters from, a liquid container disposed between the input means and the output means, a pipe for introducing liquid into the container, and a pipe for discharging liquid from the container, A configuration in which the container is disposed at a position where the electric field of the electromagnetic wave between the input means and the output means is maximized. 液体に流れを与える輸液ポンプと、液体の温度を測定する温度測定手段とをさらに備えることを特徴とする、請求項2に記載の液体誘電体評価監視システムを用いた液体誘電体製造装置。The liquid dielectric manufacturing apparatus using the liquid dielectric evaluation and monitoring system according to claim 2, further comprising: an infusion pump that gives a flow to the liquid; and a temperature measuring unit that measures the temperature of the liquid. 分子構造あるいは物理的状態の異なる液体を混合する液体混合手段と、混合された液体を上記の入力手段と出力手段との間に配置された液体の流路に導く構成とを、さらに備えることを特徴とする請求項3に記載の液体誘電体製造装置。Liquid mixing means for mixing liquids having different molecular structures or physical states, and a configuration for guiding the mixed liquid to a liquid flow path arranged between the input means and the output means, further comprising: The liquid dielectric manufacturing apparatus according to claim 3, wherein:
JP2002204687A 2002-07-12 2002-07-12 System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric Pending JP2004045287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204687A JP2004045287A (en) 2002-07-12 2002-07-12 System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204687A JP2004045287A (en) 2002-07-12 2002-07-12 System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric

Publications (1)

Publication Number Publication Date
JP2004045287A true JP2004045287A (en) 2004-02-12

Family

ID=31710222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204687A Pending JP2004045287A (en) 2002-07-12 2002-07-12 System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric

Country Status (1)

Country Link
JP (1) JP2004045287A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127606A (en) * 2005-11-07 2007-05-24 National Institute Of Information & Communication Technology Device and method for measuring complex permittivity
US7281414B2 (en) 2004-11-30 2007-10-16 Hyundai Motor Company Apparatus, a method, and measuring sensors for scanning states of engine oil
JP2008145387A (en) * 2006-12-13 2008-06-26 Ntt Docomo Inc Apparatus for measuring complex dielectric constant, and method for measuring complex dielectric constant
WO2011031625A3 (en) * 2009-09-08 2011-07-14 California Institute Of Technology New technique for performing dielectric property measurements at microwave frequencies
CN103308778A (en) * 2013-07-03 2013-09-18 四川大学 Dielectric constant measuring device
JP2020126059A (en) * 2014-06-06 2020-08-20 シーティーエス・コーポレーションCts Corporation Radio frequency state variable measurement system and method
CN115586375A (en) * 2022-09-05 2023-01-10 安徽师范大学 Mutual coupling annular seam-based 5G plane electromagnetic sensor and measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281414B2 (en) 2004-11-30 2007-10-16 Hyundai Motor Company Apparatus, a method, and measuring sensors for scanning states of engine oil
JP2007127606A (en) * 2005-11-07 2007-05-24 National Institute Of Information & Communication Technology Device and method for measuring complex permittivity
JP2008145387A (en) * 2006-12-13 2008-06-26 Ntt Docomo Inc Apparatus for measuring complex dielectric constant, and method for measuring complex dielectric constant
WO2011031625A3 (en) * 2009-09-08 2011-07-14 California Institute Of Technology New technique for performing dielectric property measurements at microwave frequencies
US8653819B2 (en) 2009-09-08 2014-02-18 California Institute Of Technology Technique for performing dielectric property measurements at microwave frequencies
CN103308778A (en) * 2013-07-03 2013-09-18 四川大学 Dielectric constant measuring device
JP2020126059A (en) * 2014-06-06 2020-08-20 シーティーエス・コーポレーションCts Corporation Radio frequency state variable measurement system and method
CN115586375A (en) * 2022-09-05 2023-01-10 安徽师范大学 Mutual coupling annular seam-based 5G plane electromagnetic sensor and measuring method
CN115586375B (en) * 2022-09-05 2023-07-04 安徽师范大学 5G plane electromagnetic sensor based on mutual coupling circumferential seams and measuring method

Similar Documents

Publication Publication Date Title
Gregory et al. A review of RF and microwave techniques for dielectric measurements on polar liquids
Athey et al. Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part I
Sha et al. A review of dielectric properties of normal and malignant breast tissue
US5782897A (en) Microwave heating apparatus for rapid tissue fixation
Popovic et al. Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies
Fukunaga et al. Dielectric properties of tissue-equivalent liquids and their effects on specific absorption rate
TWI244552B (en) Method of measuring relative dielectric constant of dielectric substance of powders, cavity resonator used in the same, and application apparatus
Maode et al. An improved open-ended waveguide measurement technique on parameters/spl epsiv//sub/spl gamma//and/spl mu//sub/spl gamma//of high-loss materials
Kaatze et al. A new automated waveguide system for the precise measurement of complex permittivity of low-to-high-loss liquids at microwave frequencies
JP2004045287A (en) System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric
JP6608174B2 (en) Sensor, measuring device, and measuring method
Pettinelli et al. Time domain reflectrometry: Calibration techniques for accurate measurement of the dielectric properties of various materials
US20110006785A1 (en) Analyzing method using a processing structure as a probe
US20110043223A1 (en) Non invasive method for monitoring the curing process of a thermoset plastic material through the use of microwaves and microwave device for the application thereof
Duhamel et al. Measurements of complex permittivity of biological and organic liquids up to 110 GHz
JP2005069779A (en) Complex dielectric constant measuring probe
Shibata Calibration of a Coaxial-Loaded Stepped Cut-Off Circular Waveguide and Related Application of Dielectric Measurement for Liquids
Swicord et al. Energy absorption from small radiating coaxial probes in lossy media
Kaatze et al. Dielectric spectroscopy on CiEj/water mixtures as a function of composition
Hoppe et al. Density-independent moisture metering in fibrous materials using a double-cutoff Gunn oscillator
Gabriel The dielectric properties of biological materials
RU2012119574A (en) METHOD FOR MEASURING COMPLEX DIELECTRIC PERMEABILITY OF LIQUID AND BULK SUBSTANCES
Anderson Cavity method suitable for measurement of high electron densities in plasmas
Mirjahanmardi et al. Highly accurate liquid permittivity measurement using coaxial lines
Jin et al. Iron-oxide nanoparticles as a contrast agent in thermoacoustic tomography

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607