JP2005069779A - Complex dielectric constant measuring probe - Google Patents

Complex dielectric constant measuring probe Download PDF

Info

Publication number
JP2005069779A
JP2005069779A JP2003297834A JP2003297834A JP2005069779A JP 2005069779 A JP2005069779 A JP 2005069779A JP 2003297834 A JP2003297834 A JP 2003297834A JP 2003297834 A JP2003297834 A JP 2003297834A JP 2005069779 A JP2005069779 A JP 2005069779A
Authority
JP
Japan
Prior art keywords
sample
measurement
dielectric constant
complex
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003297834A
Other languages
Japanese (ja)
Inventor
Tetsushi Yamamoto
哲士 山本
Yuji Wada
雄二 和田
Shozo Yanagida
祥三 柳田
Yuko Amo
優子 天羽
Yasunori Tominaga
靖徳 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2003297834A priority Critical patent/JP2005069779A/en
Publication of JP2005069779A publication Critical patent/JP2005069779A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring probe suitable for complex dielectric constant measurement by a time region reflection method, which measures up to a high temperature region of about 250°C, by solving the problems wherein a change, deformation or the like of an electrical characteristic of a probe occurs by heat because polyimide, Teflon (R) or the like is filled as a dielectric between an internal conductor and an external conductor in the conventional probe, and thereby high temperature measurement can not be performed. <P>SOLUTION: This complex dielectric constant measuring probe has a constitution wherein SiO<SB>2</SB>powder 26 which is an inorganic dielectric is filled between the internal conductor 23 and the external conductor 24 of a coaxial cable 21, and a connecter 22 to be connected to a measuring device is provided on one end of the coaxial cable 21, and a sample is brought into contact with the coaxial cable end on the opposite side to the connecter 22. Hereby, measurement is performed without occurrence of such a change, deformation or the like of the electrical characteristics in a temperature zone from the room temperature to 250°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複素誘電率の測定、特に時間領域反射法を用いた複素誘電率測定に用いられる測定プローブに関する。   The present invention relates to a measurement probe used for measurement of complex permittivity, particularly, complex permittivity measurement using a time domain reflection method.

化学反応の研究において、反応収率を向上させるため、又は反応時間を短縮させるために、周波数が300MHz〜30GHz(例えば水の場合は2.45GHz)のマイクロ波を照射することにより試料を加熱することが行われている。ここで、化学反応温度を制御するためには照射するマイクロ波の強度を制御する必要がある。このマイクロ波強度と試料温度の関係を決定するパラメータとして、試料の複素誘電率がある。複素誘電率ε*は、ε*=ε'+jε''(jは虚数単位)で表され、実数成分であるε'は誘電率、虚数成分であるε''は誘電損失係数と呼ばれる。誘電損失係数ε''が大きいほど、マイクロ波が試料に照射された際に失われるエネルギーが大きくなる。それに対応して、マイクロ波のエネルギーを吸収することによる試料の温度上昇が大きくなる。従って、試料の温度制御のためには、予め試料の複素誘電率を測定しておく必要がある。更に、複素誘電率は試料の温度によって変化するため、化学反応のための加熱を行う温度範囲全体に亘って複素誘電率を測定しておく必要がある。 In chemical reaction studies, to increase the reaction yield or shorten the reaction time, the sample is heated by irradiating microwaves with a frequency of 300 MHz to 30 GHz (eg 2.45 GHz for water). Has been done. Here, in order to control the chemical reaction temperature, it is necessary to control the intensity of the irradiated microwave. As a parameter for determining the relationship between the microwave intensity and the sample temperature, there is a complex dielectric constant of the sample. The complex permittivity ε * is expressed by ε * = ε ′ + jε ″ (j is an imaginary unit), ε ′ which is a real component is called a dielectric constant, and ε ″ which is an imaginary component is called a dielectric loss coefficient. The greater the dielectric loss coefficient ε ″, the greater the energy lost when the sample is irradiated with microwaves. Correspondingly, the temperature rise of the sample due to absorption of microwave energy increases. Therefore, in order to control the temperature of the sample, it is necessary to measure the complex dielectric constant of the sample in advance. Furthermore, since the complex dielectric constant changes depending on the temperature of the sample, it is necessary to measure the complex dielectric constant over the entire temperature range in which heating for chemical reaction is performed.

複素誘電率を測定する方法には以下の2つがある。1つの方法は周波数領域反射法(Frequency Domain Reflectometry。以下、「FDR法」とする)と呼ばれるものであり、ベクトルネットワークアナライザにより試料に高周波電場を印加して、測定される反射係数及び位相から複素誘電率を求める。この方法では、印加する高周波電場を周波数掃引することにより、複素誘電率の周波数特性を測定する。もう1つの方法は時間領域反射法(Time Domain Reflectometry、以下、「TDR法」とする)と呼ばれるものであり、試料にパルス状の電場を印加して試料により反射される反射波の波形を測定し、得られた反射波に対してフーリエ変換その他の所定の信号処理を行うことにより、複素誘電率の周波数特性を得る。前者の方法では高周波電場の周波数掃引を行うため測定に時間を要するのに対して、TDR法では短時間で複素誘電率の周波数特性を得ることができる。   There are the following two methods for measuring the complex dielectric constant. One method is called Frequency Domain Reflectometry (hereinafter referred to as “FDR method”). A high frequency electric field is applied to a sample by a vector network analyzer, and the measured reflection coefficient and phase are complex. Obtain the dielectric constant. In this method, the frequency characteristic of the complex dielectric constant is measured by sweeping the frequency of the applied high-frequency electric field. Another method is called Time Domain Reflectometry (hereinafter referred to as “TDR method”), which measures the waveform of the reflected wave reflected by the sample by applying a pulsed electric field to the sample. The frequency characteristics of the complex dielectric constant are obtained by subjecting the obtained reflected wave to Fourier transform or other predetermined signal processing. In the former method, since the frequency sweep of the high-frequency electric field is performed, it takes time to measure, whereas in the TDR method, the frequency characteristic of the complex dielectric constant can be obtained in a short time.

TDR法による測定は、例えば図1の概略構成図に示すような測定システムにより行われる。測定装置11には、測定プローブ13を介して所定の電気信号を試料に送信すると共に試料により反射された電気信号を受信する送受信部12が設けられる。測定プローブ13は同軸ケーブルから成り、その一方の端部に設けたコネクタ14により送受信部12に接続される。測定プローブ13のコネクタ14とは反対側の端部(試料側端部)は、平面状の開放端となっており、この端部が試料15と接する。試料15は容器16に入れられ、試料側端部に接触する位置に配置される。試料15は容器16に設けたヒータにより加熱され、その温度が制御される。測定装置11はGPIB等のインターフェイスを介してパーソナルコンピュータ(PC)17に接続され、このPC17により測定に関する制御が行われる。   The measurement by the TDR method is performed, for example, by a measurement system as shown in the schematic configuration diagram of FIG. The measurement apparatus 11 is provided with a transmission / reception unit 12 that transmits a predetermined electrical signal to the sample via the measurement probe 13 and receives the electrical signal reflected by the sample. The measurement probe 13 is formed of a coaxial cable and is connected to the transmission / reception unit 12 by a connector 14 provided at one end thereof. The end of the measurement probe 13 opposite to the connector 14 (sample-side end) is a flat open end, and this end is in contact with the sample 15. The sample 15 is put in the container 16 and is arranged at a position where it contacts the sample side end. The sample 15 is heated by a heater provided in the container 16 and its temperature is controlled. The measuring device 11 is connected to a personal computer (PC) 17 through an interface such as GPIB, and control related to measurement is performed by the PC 17.

測定の際には、測定装置11は送受信部12からパルス電場を送信する。このパルス電場は、送受信部12に接続されたコネクタ14から測定プローブ13の同軸ケーブルを伝播して試料側端部に達し、試料15により反射される。この反射された電場(反射波)は測定プローブ13の同軸ケーブルを戻って送受信部12に受信され、測定装置11により測定される。この反射波をフーリエ変換することにより試料15の複素誘電率を求める。   At the time of measurement, the measurement device 11 transmits a pulse electric field from the transmission / reception unit 12. This pulse electric field propagates from the connector 14 connected to the transmission / reception unit 12 through the coaxial cable of the measurement probe 13, reaches the sample side end, and is reflected by the sample 15. The reflected electric field (reflected wave) returns through the coaxial cable of the measurement probe 13, is received by the transmission / reception unit 12, and is measured by the measurement device 11. The complex dielectric constant of the sample 15 is obtained by Fourier transforming this reflected wave.

非特許文献1及び2に記載されているように、反射波の波形から、試料の複素誘電率は以下のように求められる。測定対象の試料により反射される反射波の波形の信号Rx(t)と、既知の周波数スペクトルεs *(ω)を有する標準試料(例えば、空気)を用いて予め測定された反射波の波形の信号Rs(t)から、測定対象試料の複素誘電率の周波数スペクトルεx *(ω)は以下の式を用いて求めることができる。 As described in Non-Patent Documents 1 and 2, the complex dielectric constant of the sample is obtained as follows from the waveform of the reflected wave. Waveform signal R x (t) of the reflected wave reflected by the sample to be measured and a reflected wave measured in advance using a standard sample (for example, air) having a known frequency spectrum ε s * (ω) From the waveform signal R s (t), the frequency spectrum ε x * (ω) of the complex dielectric constant of the sample to be measured can be obtained using the following equation.

Figure 2005069779
Figure 2005069779

ここで、dはプローブの長さ、γdはプローブの試料側端部から試料内に拡がる電場の距離を含めたプローブの電気的な長さ(電気長)、cは真空中の光速、ωはマイクロ波の角周波数である。また、Vx(ω)及びVs(ω)は、それぞれRx(t)及びRs(t)のフーリエ変換である。式(1)をεx *(ω)について解くことにより、測定対象の試料の複素誘電率の周波数スペクトルを求めることができる。 Where d is the length of the probe, γd is the electrical length (electric length) of the probe including the distance of the electric field extending from the sample side end of the probe into the sample, c is the speed of light in vacuum, and ω is It is the angular frequency of the microwave. V x (ω) and V s (ω) are Fourier transforms of R x (t) and R s (t), respectively. By solving Equation (1) for ε x * (ω), the frequency spectrum of the complex dielectric constant of the sample to be measured can be obtained.

R. H. Cole 他, ザ ジャーナル オブ フィジカル ケミストリー, (米国), アメリカ化学会, 1980年, 第84巻, 786〜793ページ(R. H. Cole et al., "Evaluation of Dielectric Behavior by Time Domain Spectroscopy. 3. Precision Difference Methods", The Journal of Physical Chemistry, (US), American Chemical Society, 1980, vol. 84, pp. 786-793)RH Cole et al., The Journal of Physical Chemistry, (USA), American Chemical Society, 1980, 84, 786-793 (RH Cole et al., "Evaluation of Dielectric Behavior by Time Domain Spectroscopy. 3. Precision Difference Methods ", The Journal of Physical Chemistry, (US), American Chemical Society, 1980, vol. 84, pp. 786-793) S. Mashimo 他, ザ ジャーナル オブ ケミカル フィジックス, (米国), アメリカン インスティテュート オブ フィジックス, 1989年, 第90巻, 3292〜3294ページ(S. Mashimo et al., "The dielectric relaxation of mixtures of water and primary alcohol", The Journal of chemical physics, (US), American Institute of Physics, 1989, vol. 90, pp. 3292-3294)S. Mashimo et al., The Journal of Chemical Physics, (USA), American Institute of Physics, 1989, Vol. 90, pages 3292-3294 (S. Mashimo et al., "The dielectric relaxation of mixtures of water and primary alcohol ", The Journal of chemical physics, (US), American Institute of Physics, 1989, vol. 90, pp. 3292-3294)

従来の測定プローブでは、外側の導体と内側の導体の間にテフロン(登録商標)、ダイフロン、ポリイミド等の誘電体が充填されている。そのため、試料の温度を約60℃よりも高くすると測定プローブの電気的特性が変化してしまい、更には、金属と誘電体との熱膨張率の違いから測定プローブが変形してしまうこともある。そのため、従来の測定プローブでは高温での正確な複素誘電率測定を行うことができなかった。   In a conventional measurement probe, a dielectric such as Teflon (registered trademark), Daiflon, or polyimide is filled between an outer conductor and an inner conductor. Therefore, when the temperature of the sample is higher than about 60 ° C., the electrical characteristics of the measurement probe change, and furthermore, the measurement probe may be deformed due to the difference in thermal expansion coefficient between the metal and the dielectric. . For this reason, the conventional measurement probe cannot accurately measure the complex dielectric constant at a high temperature.

一方、誘電体として石英ガラスを用いた同軸ケーブル型のプローブで、高温でも使用可能な測定プローブも市販されているが、これはFDR法用のものである。仮にこの測定プローブをTDR法に用いたとしても、長さが数cmでしかないため、反射波がプローブと送受信部との接続部において反射されて再度試料に反射されることによりわずかに生じる多重反射波が短い時間で送受信部に到達する。そのため、時間的な拡がりを有する反射波の波形の一部に該多重反射波が重なってしまい、十分な精度で測定を行うことができない。特に、測定しようとする周波数領域が低くなる程、長い時間領域の反射波形が必要となるため、多重反射波の影響が大きくなる。また、この測定プローブと測定装置の送受信部の間に同軸ケーブルを介挿してパルスの伝播経路を長くしたとしても、測定プローブと同軸ケーブルの間の接続部において反射が生じるため、やはり十分な精度で測定を行うことができない。更に、高温の測定を長時間行うと、接続された同軸ケーブルの温度が上昇して変形する恐れがある。   On the other hand, a coaxial cable type probe using quartz glass as a dielectric and a measurement probe that can be used even at high temperature is commercially available, but this is for the FDR method. Even if this measurement probe is used in the TDR method, the length is only a few centimeters, so the reflected wave is reflected at the connection between the probe and the transmitter / receiver and reflected back to the sample again. The reflected wave reaches the transmission / reception unit in a short time. Therefore, the multiple reflected wave overlaps a part of the waveform of the reflected wave having time spread, and measurement cannot be performed with sufficient accuracy. In particular, the lower the frequency region to be measured, the longer the reflected waveform in the time region is required, so the influence of multiple reflected waves increases. Even if a coaxial cable is inserted between the measuring probe and the transmitter / receiver of the measuring device to increase the pulse propagation path, reflection occurs at the connection between the measuring probe and the coaxial cable. Measurement cannot be performed with. Furthermore, if the high temperature measurement is performed for a long time, the temperature of the connected coaxial cable may increase and deform.

以上のように、約60℃以上の温度領域においてTDR法を用いて複素誘電率を測定することができる測定プローブは、これまで存在しなかった。   As described above, there has been no measurement probe that can measure the complex dielectric constant using the TDR method in a temperature range of about 60 ° C. or higher.

本発明が解決しようとする課題は、約250℃という高温領域まで測定可能な、時間領域反射法による複素誘電率測定に適した測定プローブを提供することである。   The problem to be solved by the present invention is to provide a measurement probe suitable for complex permittivity measurement by the time domain reflection method capable of measuring up to a high temperature region of about 250 ° C.

上記課題を解決するために成された本発明に係る複素誘電率測定プローブは、一方の端部をパルス電場送受信装置に接続し、他方の端部を試料に接触させて両者の間でパルス電場を伝播させ、時間領域反射法により複素誘電率の測定を行うためのプローブであって、
a)外部導体と内部導体との間に無機誘電体を充填した、長さが0.3m〜5mである同軸ケーブルと、
b)前記同軸ケーブルの一方の端部に接続された、前記パルス電場送受信装置に接続するためのコネクタと、
を備えることを特徴とする。
The complex dielectric constant measuring probe according to the present invention, which has been made to solve the above-mentioned problems, has one end connected to a pulse electric field transmitting / receiving device and the other end in contact with a sample so that the pulse electric field is between them. Is a probe for measuring complex permittivity by time domain reflection method,
a) a coaxial cable having a length of 0.3 m to 5 m, filled with an inorganic dielectric between the outer conductor and the inner conductor;
b) a connector connected to one end of the coaxial cable for connecting to the pulsed electric field transmitting / receiving device;
It is characterized by providing.

発明の実施の形態及び効果Embodiments and effects of the invention

本発明に係る複素誘電率測定プローブは、外部導体と内部導体との間に無機誘電体を充填した同軸ケーブルを主体とする。パルス電場送受信装置(又は複素誘電率測定装置のパルス電場送受信部)に本発明に係る測定プローブのコネクタを接続し、測定プローブの他方の端部を試料に接触させる。この状態でパルス電場送受信装置(又はパルス電場送受信部)よりパルス電場を測定プローブに発信すると、パルス電場は同軸ケーブルを伝播して試料に達し、試料との界面で反射される。その際、試料の物性に応じて反射波の波形が変化する。反射波は再び同軸ケーブルを伝播してパルス電場送受信装置(又はパルス電場送受信部)に戻り、複素誘電率測定装置においてその波形が解析されて、試料の複素誘電率が算出される。   The complex dielectric constant measurement probe according to the present invention is mainly a coaxial cable in which an inorganic dielectric is filled between an outer conductor and an inner conductor. The connector of the measurement probe according to the present invention is connected to the pulse electric field transmission / reception device (or the pulse electric field transmission / reception unit of the complex dielectric constant measurement device), and the other end of the measurement probe is brought into contact with the sample. In this state, when a pulse electric field is transmitted from the pulse electric field transmitter / receiver (or pulse electric field transmitter / receiver) to the measurement probe, the pulse electric field propagates through the coaxial cable and reaches the sample, and is reflected at the interface with the sample. At that time, the waveform of the reflected wave changes according to the physical properties of the sample. The reflected wave propagates again through the coaxial cable and returns to the pulse electric field transmitting / receiving device (or pulse electric field transmitting / receiving unit), and the complex dielectric constant measuring device analyzes the waveform to calculate the complex dielectric constant of the sample.

測定プローブとパルス電場送受信装置(又は複素誘電率測定装置のパルス電場送受信部)との接続部において反射波が反射され、再度試料に反射されることによりわずかに生じる多重反射波の影響を避けるために、測定プローブの長さは所定値以上とする。これにより、多重反射波の信号が短い時間で送受信部に到達して反射波の波形に重なることを防ぎ、十分な測定精度を得ることができる。化学反応温度を制御するために用いられるマイクロ波の周波数領域(300MHz〜30GHz)において、このような多重反射波の信号の影響を受けることなく測定を行うためには、測定プローブの長さは30cm以上とすることが望ましい。一方、測定プローブが長すぎると、同軸ケーブル内での伝播損失により測定精度(S/N比)が低下する。従って、長さは最大でも5mとすることが望ましい。   In order to avoid the influence of multiple reflected waves that are slightly generated when reflected waves are reflected at the connection between the measurement probe and the pulse electric field transmitting / receiving device (or the pulse electric field transmitting / receiving unit of the complex dielectric constant measuring device) and reflected again on the sample. In addition, the length of the measurement probe is set to a predetermined value or more. Thereby, it is possible to prevent the signal of the multiple reflected wave from reaching the transmitting / receiving unit in a short time and overlapping the waveform of the reflected wave, and to obtain sufficient measurement accuracy. In order to perform measurement without being affected by such multiple reflected wave signals in the microwave frequency range (300 MHz to 30 GHz) used to control the chemical reaction temperature, the length of the measurement probe is 30 cm. It is desirable to set it above. On the other hand, if the measurement probe is too long, the measurement accuracy (S / N ratio) decreases due to propagation loss in the coaxial cable. Therefore, it is desirable that the length is at most 5 m.

前記無機誘電体には、プローブを使用する温度範囲内で、温度変化による変形や誘電率の変化がほとんど生じない、又はそれらが実用上無視できる程度に小さいものを用いる。このような無機誘電体として、SiO2やAl2O3を好適に用いることができる。これらの材料を用いると、室温から250℃までの温度範囲において実用上十分な精度で測定を行うことができる。 As the inorganic dielectric, a material that hardly deforms or changes in dielectric constant due to a temperature change within a temperature range in which the probe is used or that is small enough to be ignored in practical use is used. As such an inorganic dielectric, SiO 2 or Al 2 O 3 can be suitably used. When these materials are used, measurement can be performed with a practically sufficient accuracy in a temperature range from room temperature to 250 ° C.

この無機誘電体には粉末状のものを用いることが望ましい。このように粉末状の無機誘電体を用いると、プローブが可撓性を有するようになるため、誘電率測定装置本体と試料との位置関係を比較的自由に設定することができるようになる。なお、もちろんバルクの無機誘電体を用いても、本発明の効果に変わりはない。   It is desirable to use a powdery inorganic dielectric. When the powdery inorganic dielectric is used in this way, the probe has flexibility, so that the positional relationship between the dielectric constant measuring device body and the sample can be set relatively freely. Of course, even if a bulk inorganic dielectric is used, the effect of the present invention is not changed.

ケーブル内部で誘電体分布の疎密が生じないようにするために、粉末の粒径はできるだけ細かい方が望ましい。粉末の無機誘電体を用いる場合には、無機誘電体がプローブ外に漏れ出したり、逆に測定時に試料が無機誘電体を充填した空間に浸入することを防ぐために、試料側端部の無機誘電体の露出部をシール材でシールする。シール材にはセラミックガラス、該粉末誘電体と同じ材料の固体、その他の無機誘電体の固体等を用いることができる。あるいは、端部の無機誘電体粉末を溶融固化することによりシールしてもよい。   It is desirable that the particle diameter of the powder be as fine as possible in order to prevent the dielectric distribution from becoming dense and dense inside the cable. When using a powdered inorganic dielectric, the inorganic dielectric at the end of the sample side is used to prevent the inorganic dielectric from leaking out of the probe or conversely entering the space filled with the inorganic dielectric during measurement. The exposed part of the body is sealed with a sealing material. As the sealing material, ceramic glass, solid of the same material as the powder dielectric, solid of other inorganic dielectric, or the like can be used. Or you may seal by melt-solidifying the inorganic dielectric powder of an edge part.

上記のようにシールを行う場合には、シール材を設けたケーブル端部の位置と無機誘電体の位置のケーブルにおいて、それぞれ内部導体及び外部導体の径を適切な値とすることにより、両者の特性インピーダンスを等しくすることが望ましい。この場合、内部導体及び外部導体の径はケーブル端部とそれ以外の位置では異なり、そのため、径が変更される位置に段差が存在する。   When sealing is performed as described above, in the cable at the end of the cable provided with the sealing material and the cable at the position of the inorganic dielectric, the diameters of the inner conductor and the outer conductor are set to appropriate values, respectively. It is desirable to make the characteristic impedances equal. In this case, the diameters of the inner conductor and the outer conductor are different at the cable end and other positions, and therefore there is a step at a position where the diameter is changed.

更に、シール材を設けたケーブル端部の位置と無機誘電体の位置の間に、特性インピーダンスの高い領域を設けることが望ましい。このような高インピーダンス領域を設けることにより、シール材を設けた領域と無機誘電体を充填した領域の境界において信号の反射が生じないようにすることができる。前記段差を設けるケーブル長手方向の位置を内部導体の段差と外部導体の段差との間でずらすことにより、これら2つの段差の間の領域を高インピーダンス領域とすることができる。この両者のずれの大きさは、外部導体のうち太い方の径の約1/8とすることが望ましい。   Furthermore, it is desirable to provide a region having a high characteristic impedance between the position of the cable end portion where the sealing material is provided and the position of the inorganic dielectric. By providing such a high impedance region, signal reflection can be prevented from occurring at the boundary between the region provided with the sealing material and the region filled with the inorganic dielectric. By shifting the position in the longitudinal direction of the cable where the step is provided between the step of the inner conductor and the step of the outer conductor, the region between these two steps can be made a high impedance region. The magnitude of the difference between the two is preferably about 1/8 of the diameter of the outer conductor which is thicker.

本発明の複素誘電率測定プローブでは、内部導体と外部導体との間に無機誘電体を用いているため、従来のテフロン、ダイフロン、ポリイミド等を用いた測定プローブよりも高温で使用することができる。例えばSiO2やAl2O3を用いた場合、室温から250℃までの温度範囲において、熱による電気的特性の変化や変形を問題とすることなく使用することができるため、そのような温度範囲での試料の複素誘電率の測定を行うことができる。 In the complex dielectric constant measurement probe of the present invention, since an inorganic dielectric is used between the inner conductor and the outer conductor, it can be used at a higher temperature than a conventional measurement probe using Teflon, Daiflon, polyimide, or the like. . For example, when SiO 2 or Al 2 O 3 is used, it can be used in the temperature range from room temperature to 250 ° C without causing problems of changes in electrical characteristics and deformation due to heat. The complex dielectric constant of the sample at can be measured.

なお、本発明に係る測定プローブはTDR法による測定を好適に行うためのものであるが、FDR法による測定に用いることも可能である。   The measurement probe according to the present invention is used for suitably performing the measurement by the TDR method, but can also be used for the measurement by the FDR method.

本発明に係る複素誘電率測定プローブの一実施例を図2に示す。(a)はこのプローブの外観図である。後述のような内部構造を有する同軸ケーブル21の一方の端部に、測定装置の送受信部に設けられたPC3.5雌形コネクタに接続可能なSMA雄形コネクタ22が設けられている。SMA雄形コネクタ22の代わりに、PC3.5雄形コネクタ等、他の高周波用の規格のコネクタを用いることもできる。SMA雄形コネクタ22の反対側の端部が試料側端部である。同軸ケーブル21の長さは、本実施例では1.06m(3.5フィート)とした。   An embodiment of the complex permittivity measuring probe according to the present invention is shown in FIG. (a) is an external view of this probe. An SMA male connector 22 that can be connected to a PC3.5 female connector provided in a transmission / reception unit of the measuring apparatus is provided at one end of a coaxial cable 21 having an internal structure as described below. Instead of the SMA male connector 22, other high frequency standard connectors such as a PC3.5 male connector may be used. The opposite end of the SMA male connector 22 is the sample side end. The length of the coaxial cable 21 is 1.06 m (3.5 feet) in this embodiment.

図2(b)に、試料側端部付近を拡大した、同軸ケーブル21の中心軸を含む断面図を示す。内部導体23と外部導体24との間の全長に亘って、無機誘電体であるSiO2粉末26が充填される。SiO2粉末26が外部に漏れたり、測定時に試料がSiO2粉末26に浸入したりすることを防ぐため、試料側端部のSiO2粉末26の部分にはセラミックガラスから成るシール27が設けられる。内部導体23はCuから成り、外部導体24はステンレス鋼(SUS)製の外被25の内側面に蒸着されたCu膜から成る。 FIG. 2B shows a cross-sectional view including the central axis of the coaxial cable 21, in which the vicinity of the end portion on the sample side is enlarged. Over the entire length between the inner conductor 23 and the outer conductor 24, the SiO 2 powder 26, which is an inorganic dielectric, is filled. In order to prevent the SiO 2 powder 26 from leaking to the outside or the sample from entering the SiO 2 powder 26 at the time of measurement, a seal 27 made of ceramic glass is provided at the portion of the SiO 2 powder 26 at the sample side end. . The inner conductor 23 is made of Cu, and the outer conductor 24 is made of a Cu film deposited on the inner surface of a stainless steel (SUS) jacket 25.

併せて、試料側端部を図2(c)に示すように構成した複素誘電率測定プローブを作製した。このプローブでは、シールを設けた領域31とSiO2粉末を充填した領域33(後述の領域32を除く)の特性インピーダンスが等しくなるように、各領域毎に内部導体23及び外部導体24の径を設定した。そのため、内部導体23及び外部導体24にはそれぞれ段差28及び29が生じる。更に、段差28及び29のケーブル長手方向の位置をずらすことにより、その幾何学的形状により形成される高インピーダンス領域32を領域31と領域33の間に設けた。このように高インピーダンス領域32を設けることにより、シールを設けた領域とSiO2粉末を充填した領域との間で信号の反射が生じることを防ぐことができる。高インピーダンス領域32のケーブル長手方向の長さは、外部導体24の領域33側の径rの約1/8とした。また、高インピーダンス領域32の内部導体23−外部導体24間には誘電体30が充填される。高インピーダンス領域32のインピーダンスは、充填される誘電体30の誘電率により変化するため、充填される誘電体を適宜選択することによりこの領域のインピーダンスを設定することができる。なお、この誘電体30の材料にはSiO2又はシール27の材料を用いてもよい。 In addition, a complex dielectric constant measurement probe having a sample side end portion as shown in FIG. In this probe, the diameters of the inner conductor 23 and the outer conductor 24 are set for each region so that the characteristic impedances of the region 31 provided with the seal and the region 33 filled with SiO 2 powder (excluding the region 32 described later) are equal. Set. Therefore, steps 28 and 29 occur in the inner conductor 23 and the outer conductor 24, respectively. Further, by shifting the positions of the steps 28 and 29 in the cable longitudinal direction, a high impedance region 32 formed by the geometric shape is provided between the region 31 and the region 33. By providing the high impedance region 32 in this way, it is possible to prevent signal reflection between the region where the seal is provided and the region where the SiO 2 powder is filled. The length of the high impedance region 32 in the cable longitudinal direction is set to about 1/8 of the diameter r of the outer conductor 24 on the region 33 side. A dielectric 30 is filled between the inner conductor 23 and the outer conductor 24 in the high impedance region 32. Since the impedance of the high impedance region 32 varies depending on the dielectric constant of the filled dielectric 30, the impedance of this region can be set by appropriately selecting the filled dielectric. The dielectric 30 may be made of SiO 2 or the seal 27.

本実施例の測定プローブ20を図1に示すように測定装置11に取り付け、測定システムを構成する。この測定システムでは、測定装置11の送受信部12に設けたPC3.5雌形コネクタに、測定プローブ20のSMA雄形コネクタ22が接続される。測定の際には、測定装置11の送受信部12からパルス電場が送信され、このパルス電場がPC3.5雌形コネクタ及びSMA雄形コネクタ22を介して測定プローブ20に導入される。パルス電場は同軸ケーブル21を伝播して試料15に達し、同軸ケーブルの端面と試料15との界面で反射される。この反射波は同軸ケーブル21を再び伝播して戻り、送受信部12により受信される。こうして受信された反射波の波形から、上記(1)式を用いて試料15の複素誘電率を求める。   As shown in FIG. 1, the measurement probe 20 of this embodiment is attached to the measurement apparatus 11 to constitute a measurement system. In this measurement system, the SMA male connector 22 of the measurement probe 20 is connected to the PC3.5 female connector provided in the transmission / reception unit 12 of the measurement apparatus 11. At the time of measurement, a pulse electric field is transmitted from the transmission / reception unit 12 of the measurement apparatus 11, and this pulse electric field is introduced into the measurement probe 20 via the PC3.5 female connector and the SMA male connector 22. The pulse electric field propagates through the coaxial cable 21 to reach the sample 15 and is reflected at the interface between the end face of the coaxial cable and the sample 15. The reflected wave propagates again through the coaxial cable 21 and is received by the transmission / reception unit 12. From the waveform of the reflected wave thus received, the complex dielectric constant of the sample 15 is obtained using the above equation (1).

以下に、測定結果の一例として、1,5-pentanediolを測定した結果を示す。測定は、電圧200mV、立ち上がり時間35ピコ秒のパルス電場を用いて、室温(21℃)から231℃の温度範囲において行った。また、上記同様の条件で空気に対する測定を行った結果を標準試料のデータとして用いた。   The results of measuring 1,5-pentanediol are shown below as an example of the measurement results. The measurement was performed in a temperature range from room temperature (21 ° C.) to 231 ° C. using a pulse electric field having a voltage of 200 mV and a rise time of 35 picoseconds. In addition, the result of measurement with respect to air under the same conditions as described above was used as data of the standard sample.

図3〜図5に測定結果を示す。図3は、各測定温度における、測定対象試料の信号から標準試料の信号を差し引いた信号を示すグラフである。このグラフの横軸は、パルス電場が測定装置11より送信されてから、試料により反射され、該反射波が測定装置11に受信されるまでの時間を示す。図中に示した温度は、括弧のないものが測定対象試料の温度であり、括弧付きのものが標準試料の測定温度である。室温では緩和時間が長いため、時間経過に伴う値の減少は緩やかであるが、温度が上昇するに従って緩和時間が短くなり、時間経過に伴う値の減少が速くなる。図には示していないが、150℃以上の温度では、測定した温度のいずれにおいても、ほぼ同じ波形を示した。   The measurement results are shown in FIGS. FIG. 3 is a graph showing a signal obtained by subtracting the signal of the standard sample from the signal of the measurement target sample at each measurement temperature. The horizontal axis of this graph indicates the time from when the pulse electric field is transmitted from the measuring device 11 until it is reflected by the sample and received by the measuring device 11. In the figure, the temperature without brackets is the temperature of the sample to be measured, and the temperature with brackets is the measurement temperature of the standard sample. Since the relaxation time is long at room temperature, the value decrease with time elapses gradually, but as the temperature rises, the relaxation time becomes shorter and the value decrease with time elapses faster. Although not shown in the figure, at the temperature of 150 ° C. or higher, almost the same waveform was shown at any of the measured temperatures.

図4に、図3の測定結果から上記式(1)〜(3)を用いて誘電率及び誘電損失係数の周波数スペクトルε'(f)及びε''(f)を求めた結果を示す。ここでfは周波数(f=ω/2π)である。また、図4の横軸は周波数fの対数である。このうち、実線で結んだデータが誘電損失係数ε''(f)である。実験目的である試料に応じて、それに対応する加熱周波数(例えば、水溶液の場合2.45GHz)における誘電損失係数ε''(f)の温度変化をこのようにして求めておけば、温度に応じてマイクロ波の強度を制御することにより、その試料の化学反応の温度制御を正確に行うことができる。   FIG. 4 shows the results of obtaining the frequency spectra ε ′ (f) and ε ″ (f) of the dielectric constant and dielectric loss coefficient from the measurement results of FIG. 3 using the above equations (1) to (3). Here, f is a frequency (f = ω / 2π). Also, the horizontal axis of FIG. 4 is the logarithm of the frequency f. Among these, the data connected by the solid line is the dielectric loss coefficient ε ″ (f). If the temperature change of the dielectric loss coefficient ε '' (f) at the corresponding heating frequency (e.g. 2.45 GHz in the case of an aqueous solution) is determined in this way, depending on the sample that is the purpose of the experiment, depending on the temperature By controlling the intensity of the microwave, the temperature of the chemical reaction of the sample can be accurately controlled.

熱による測定プローブの電気的特性の変化や変形の影響を調べるため、室温で空気により反射される信号を測定し、次にプローブを一旦200℃まで加熱した後に室温に戻して再び空気により反射される信号を測定した。この2つの測定により得られた信号の差を図5に示す。パルスの立ち上がりの位置に見られるわずかなピークを除いて、両信号の間の差はほとんど見られない。これは、加熱の前後において、熱による測定プローブの電気的特性の変化や変形がほとんど生じていないことを意味している。   In order to investigate the influence of changes in the electrical characteristics of the measurement probe and deformation due to heat, the signal reflected by the air is measured at room temperature, then the probe is heated to 200 ° C and then returned to room temperature and reflected again by air. Signal was measured. The difference between the signals obtained by these two measurements is shown in FIG. There is little difference between the two signals, except for a few peaks seen at the rising edge of the pulse. This means that there is almost no change or deformation of the electrical characteristics of the measurement probe due to heat before and after heating.

一方、誘電体としてテフロンを用いた従来の測定プローブにより同様の実験を行うと、熱によりケーブルが変形してしまい、測定ができなかった。また、誘電体としてポリイミドを用いた測定プローブでは変形は見られなかったが、熱によりケーブルの先端部分の電気的特性が変化してしてしまい、パルスの立ち上がりの前後で信号が歪むため測定ができなかった。以上のように、本発明により、従来のプローブでは測定することができなかった高温まで複素誘電率の測定を行うことができた。   On the other hand, when a similar experiment was performed using a conventional measurement probe using Teflon as a dielectric, the cable was deformed by heat, and measurement was not possible. In addition, the measurement probe using polyimide as a dielectric did not show any deformation, but the electrical characteristics of the tip of the cable changed due to heat, and the signal was distorted before and after the rise of the pulse. could not. As described above, according to the present invention, the complex permittivity can be measured up to a high temperature that could not be measured by the conventional probe.

時間領域差分法に用いる測定システムの概略構成図。The schematic block diagram of the measurement system used for the time domain difference method. 本発明に係る複素誘電率測定プローブの一実施例を示す概略図及び断面図。The schematic diagram and sectional drawing which show one Example of the complex-dielectric-constant measuring probe which concerns on this invention. 本発明の複素誘電率測定プローブを用いて測定した1,5-pentanediolの反射信号と空気の反射信号の差を示すグラフ。The graph which shows the difference of the reflected signal of 1, 5-pentanediol and the reflected signal of air measured using the complex-dielectric-constant measuring probe of this invention. 図3の測定結果から求められた1,5-pentanediolの誘電率及び誘電損失係数の周波数スペクトルε'(f)及びε''(f)のグラフ。FIG. 4 is a graph of frequency spectra ε ′ (f) and ε ″ (f) of dielectric constant and dielectric loss coefficient of 1,5-pentanediol determined from the measurement results of FIG. 3. 本発明の複素誘電率測定プローブを加熱する前と後において室温で測定した空気の反射信号の差を示すグラフ。The graph which shows the difference of the reflected signal of the air measured at room temperature before and after heating the complex-dielectric-constant measuring probe of this invention.

符号の説明Explanation of symbols

11…測定装置
12…送受信部
13、20…測定プローブ
14…コネクタ
15…試料
16…容器
17…PC
21…同軸ケーブル
22…SMA雄形コネクタ
23…内部導体
24…外部導体
25…外被
26…SiO2粉末
27…シール
DESCRIPTION OF SYMBOLS 11 ... Measuring apparatus 12 ... Transmission / reception part 13, 20 ... Measurement probe 14 ... Connector 15 ... Sample 16 ... Container 17 ... PC
21 ... coaxial cable 22 ... SMA male connector 23 ... inner conductor 24 ... outer conductor 25 ... jacket 26 ... SiO 2 powder 27 ... seal

Claims (5)

一方の端部をパルス電場送受信装置に接続し、他方の端部を試料に接触させて両者の間でパルス電場を伝播させ、時間領域反射法により複素誘電率の測定を行うためのプローブであって、
a)外部導体と内部導体との間に無機誘電体を充填した、長さが0.3m〜5mである同軸ケーブルと、
b)前記同軸ケーブルの一方の端部に接続された、前記パルス電場送受信装置に接続するためのコネクタと、
を備えることを特徴とする複素誘電率測定プローブ。
This probe connects one end to a pulsed electric field transmitter / receiver and contacts the other end to the sample to propagate the pulsed electric field between them, and measures the complex dielectric constant by the time domain reflection method. And
a) a coaxial cable having a length of 0.3 m to 5 m, filled with an inorganic dielectric between the outer conductor and the inner conductor;
b) a connector connected to one end of the coaxial cable for connecting to the pulsed electric field transmitting / receiving device;
A complex dielectric constant measuring probe comprising:
前記無機誘電体がSiO2又はAl2O3から成ることを特徴とする請求項1に記載の複素誘電率測定プローブ。 The complex dielectric constant measuring probe according to claim 1, wherein the inorganic dielectric is made of SiO 2 or Al 2 O 3 . 前記無機誘電体が粉末状であることを特徴とする請求項1又は2に記載の複素誘電率測定プローブ。   The complex dielectric constant measuring probe according to claim 1, wherein the inorganic dielectric is powdery. 試料に接触させる側の同軸ケーブル端部の無機誘電体の露出面をシール材でシールし、該シール材を設けたケーブル端部の位置と無機誘電体の位置の内部導体及び外部導体の径を、両位置における特性インピーダンスが等しくなるようにしたことを特徴とする請求項1〜3のいずれかに記載の複素誘電率測定プローブ。   The exposed surface of the inorganic dielectric at the end of the coaxial cable on the side in contact with the sample is sealed with a sealing material, and the diameter of the inner conductor and the outer conductor at the position of the cable end provided with the sealing material and the position of the inorganic dielectric is determined. 4. The complex permittivity measuring probe according to claim 1, wherein characteristic impedances at both positions are equal. 前記シール材を設けたケーブル端部の位置と無機誘電体の位置の間に特性インピーダンスの高い領域を設けることを特徴とする請求項4に記載の複素誘電率測定プローブ。   5. The complex dielectric constant measuring probe according to claim 4, wherein a region having a high characteristic impedance is provided between a position of an end of the cable provided with the sealing material and a position of the inorganic dielectric.
JP2003297834A 2003-08-21 2003-08-21 Complex dielectric constant measuring probe Pending JP2005069779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297834A JP2005069779A (en) 2003-08-21 2003-08-21 Complex dielectric constant measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297834A JP2005069779A (en) 2003-08-21 2003-08-21 Complex dielectric constant measuring probe

Publications (1)

Publication Number Publication Date
JP2005069779A true JP2005069779A (en) 2005-03-17

Family

ID=34403552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297834A Pending JP2005069779A (en) 2003-08-21 2003-08-21 Complex dielectric constant measuring probe

Country Status (1)

Country Link
JP (1) JP2005069779A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230384B2 (en) * 2005-03-17 2007-06-12 Whittaker Corporation Robust RF interface in a TWT
JP2008111816A (en) * 2006-04-05 2008-05-15 Tokyo Electric Power Co Inc:The Microcell for dielectric constant measurement of liquid, and dielectric constant measuring method
JP2010071975A (en) * 2008-09-16 2010-04-02 Ge-Hitachi Nuclear Energy Americas Llc Nuclear reactor power monitor using highly dielectric insulated coaxial cable
KR101144241B1 (en) 2010-01-26 2012-05-10 서울대학교산학협력단 Measurement method for the dielectric constant by using the open-ended coaxial cable
JP2016203555A (en) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire
JP2017223614A (en) * 2016-06-17 2017-12-21 国立研究開発法人産業技術総合研究所 Dielectric constant estimation method using time domain analysis
CN108226651A (en) * 2017-12-18 2018-06-29 河南师范大学 Measured zone electric-field enhancing type dielectric constant measuring apparatus
KR20190091283A (en) * 2016-12-21 2019-08-05 시티에스 코포레이션 Radio frequency antenna having particulate or particulate insulation and method for manufacturing same
WO2023132034A1 (en) * 2022-01-06 2023-07-13 日本電信電話株式会社 Dielectric spectroscopic sensor
WO2023132027A1 (en) * 2022-01-06 2023-07-13 日本電信電話株式会社 Dielectric spectroscopic sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230384B2 (en) * 2005-03-17 2007-06-12 Whittaker Corporation Robust RF interface in a TWT
JP2008111816A (en) * 2006-04-05 2008-05-15 Tokyo Electric Power Co Inc:The Microcell for dielectric constant measurement of liquid, and dielectric constant measuring method
JP2010071975A (en) * 2008-09-16 2010-04-02 Ge-Hitachi Nuclear Energy Americas Llc Nuclear reactor power monitor using highly dielectric insulated coaxial cable
US9691506B2 (en) 2008-09-16 2017-06-27 General Electric Company High dielectric insulated coax cable for sensitive impedance monitoring
KR101144241B1 (en) 2010-01-26 2012-05-10 서울대학교산학협력단 Measurement method for the dielectric constant by using the open-ended coaxial cable
JP2016203555A (en) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire
JP2017223614A (en) * 2016-06-17 2017-12-21 国立研究開発法人産業技術総合研究所 Dielectric constant estimation method using time domain analysis
KR20190091283A (en) * 2016-12-21 2019-08-05 시티에스 코포레이션 Radio frequency antenna having particulate or particulate insulation and method for manufacturing same
JP2020502917A (en) * 2016-12-21 2020-01-23 シーティーエス・コーポレーションCts Corporation High frequency antenna with granular or powdered insulating material and method of manufacturing the same
JP7107936B2 (en) 2016-12-21 2022-07-27 シーティーエス・コーポレーション High frequency antenna with granular or powdered insulation and method of making same
KR102474315B1 (en) * 2016-12-21 2022-12-07 시티에스 코포레이션 Radio frequency antenna having particulate or particulate insulation and manufacturing method thereof
CN108226651A (en) * 2017-12-18 2018-06-29 河南师范大学 Measured zone electric-field enhancing type dielectric constant measuring apparatus
CN108226651B (en) * 2017-12-18 2023-06-06 河南师范大学 Measurement area electric field enhanced dielectric constant measurement device
WO2023132034A1 (en) * 2022-01-06 2023-07-13 日本電信電話株式会社 Dielectric spectroscopic sensor
WO2023132027A1 (en) * 2022-01-06 2023-07-13 日本電信電話株式会社 Dielectric spectroscopic sensor

Similar Documents

Publication Publication Date Title
Baker-Jarvis et al. Analysis of an open-ended coaxial probe with lift-off for nondestructive testing
CN103674172B (en) Guided wave radar level gauge system and method for determining the filling level of a product in a tank
Shibata Measurement of complex permittivity for liquid materials using the open-ended cut-off waveguide reflection method
JP2005069779A (en) Complex dielectric constant measuring probe
Maode et al. An improved open-ended waveguide measurement technique on parameters/spl epsiv//sub/spl gamma//and/spl mu//sub/spl gamma//of high-loss materials
Shibata et al. Broadband measurement of complex permittivity for liquids via the open-ended cut-off waveguide reflection method using a large-bore connector
Shibata Improvement in liquid permittivity measurement using the cut-off waveguide reflection method
Shibata Broadband measurement of complex permittivity for liquids using the open-ended cut-off circular waveguide reflection method
Shibata et al. Measurement of complex permittivity for liquids using the coaxial line reflection method
Takeda et al. A Method for Measuring High Electron Densities in Plasmas
McLaughlin et al. Miniature open-ended coaxial probes for dielectric spectroscopy applications
Shibata Calibration of a Coaxial-Loaded Stepped Cut-Off Circular Waveguide and Related Application of Dielectric Measurement for Liquids
Parkhomenko et al. Usage and experimental tests of the modified waveguide method for measurement of the complex permittivity and permeability of materials
Green et al. One-port time domain measurement technique for quality factor estimation of loaded and unloaded cavities
Fallon et al. RF testbed for thermoacoustic tomography
Kapilevich et al. Microwave measurements of dielectric properties using a gap-coupled multi-mode coaxial resonator
Liao et al. An accurate equivalent circuit method of open ended coaxial probe for measuring the permittivity of materials
Ghalamkari et al. A closed form formula for determining the depth of a filled rectangular crack
SHIBATA et al. Measurement of complex permittivity for liquid phantom by transmission line method using coaxial line
Li et al. Simultaneous determination of levels and complex permittivities of layered liquids using a five-wire line-based microwave sensor
Basanov et al. Determination of the Complex Permittivity of a Liquid in the Ka Band from the Interference Dependence of the Reflection Coefficient on the Layer Thickness
Hyde IV et al. Broadband, non‐destructive characterisation of PEC‐backed materials using a dual‐ridged‐waveguide probe
Khan A method for measuring dielectric properties of non-magnetic liquids and predicting their contamination level
Huang et al. Permittivity Measurement Using the Normalized Euclidean Distance Based on Dispersion of Spoof Surface Plasmon Polaritons
Sipus et al. Measurements of electromagnetic parameters of soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070327

A521 Written amendment

Effective date: 20070327

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A02