JP2004045048A - Physical quantity detector - Google Patents

Physical quantity detector Download PDF

Info

Publication number
JP2004045048A
JP2004045048A JP2002199130A JP2002199130A JP2004045048A JP 2004045048 A JP2004045048 A JP 2004045048A JP 2002199130 A JP2002199130 A JP 2002199130A JP 2002199130 A JP2002199130 A JP 2002199130A JP 2004045048 A JP2004045048 A JP 2004045048A
Authority
JP
Japan
Prior art keywords
strain
physical quantity
insulating film
quantity detector
generating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002199130A
Other languages
Japanese (ja)
Inventor
Shoichi Abe
阿部 正一
Hiroshi Nagasaka
長坂 宏
Akira Shoji
東海林 昭
Katsumi Ose
小瀬 勝美
Akira Tominaga
富永 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Keiki Co Ltd
Aoyama Seisakusho Ibaraki Plant Co Ltd
Original Assignee
Nagano Keiki Co Ltd
Aoyama Seisakusho Ibaraki Plant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Keiki Co Ltd, Aoyama Seisakusho Ibaraki Plant Co Ltd filed Critical Nagano Keiki Co Ltd
Priority to JP2002199130A priority Critical patent/JP2004045048A/en
Publication of JP2004045048A publication Critical patent/JP2004045048A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/003Selecting material
    • B21J1/006Amorphous metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Force In General (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a physical quantity detector which can realize miniaturization and high precision of a pressure sensor. <P>SOLUTION: In the physical quantity detector, a strain generating part (2) as a diaphragm is formed, by forging alloy of composition for forming metal glass which has a supercooled liquid region whose main component is Zr or Ti or Pd, in the supercooled liquid region. An insulating film (7) is formed on the surface of the strain generating part (2). A strain gauge (8) of a metal or semiconductor thin film is formed on the insulating film (7). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流体圧又は荷重を測定するための物理量検出器に関する。
【0002】
【従来の技術】
物理量検出器である圧力センサは、円筒部の一端を起歪部で閉じたセンサ部材を備え、起歪部をダイアフラムとして使用するようになっている。
【0003】
この圧力センサは次のような工程で作られる。
【0004】
まず、耐食性が良好で弾性限界が高いSUS630等の金属材料を切削等の機械加工をすることによりセンサ部材を形成する。
【0005】
この機械加工したセンサ部材のダイアフラムの上面をポリッシングにより鏡面仕上げする。
【0006】
ポリッシングしたダイアフラムの上面に絶縁膜をCVD法又はスパッタリング法により成膜し、絶縁膜の上に半導体歪みゲージをCVD法又はスパッタリング法により成膜する。
【0007】
この半導体歪みゲージをフォトリソグラフィにより所定の形状にパターンエッチングする。
【0008】
歪みゲージの上に、回路に接続するための電極を金、アルミニウム等で形成し、さらに歪みゲージを水蒸気等から保護するためのSiN等の保護膜を形成する。
【0009】
以上のようにして作られた圧力センサは所定の圧力測定箇所に設置され、ダイアフラムの歪みゲージと反対側の面にガス等の流体が導入される。流体圧によりダイアフラムに歪みが生じると、その歪みは絶縁膜を介して歪みゲージに伝えられる。歪みゲージが歪むと、その抵抗値が変化する。これにより、圧力センサは圧力の変化を抵抗の変化に変換して出力する。
【0010】
【発明が解決しようとする課題】
従来、圧力センサの量産性を良くするため、センサ部材の外径寸法を同じにしてダイアフラムの厚さを変えることにより各種圧力レンジに対応できるようにしている。このセンサ部材には析出硬化型のステンレス鋼SUS630が多く使用されているが、この材料を使用するとダイアフラムの厚さが薄くなるに従って加工精度の確保が困難になり、またダイアフラムの径を大きくしても直線性等の特性が悪化するため、最小の圧力レンジは0.3MPaが限界とされる。また、センサ部材を所定の形状に仕上げるためには、機械加工、ラッピング加工が必要であることから、加工コストが高くなる。また、センサ部材を鍛造加工で成形する場合、圧力センサを小さくするべく円筒部の中心穴径を小さくすると、この中心穴を加工するためのピン型の押し出し用パンチが細くなって変形しやすくなり、このパンチの変形により中心穴深さ、円筒部の内外径の同心度等の精度が低下するおそれがある。さらに、SUS630は塩素を含む酸等に対し耐食性が低いので、測定対象の選択に制限がある。
【0011】
本発明は、上記諸問題点を解決することができる物理量検出器を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造して起歪部(2)を形成し、この起歪部(2)の表面に絶縁膜(7)を形成し、この絶縁膜(7)上に金属又は半導体薄膜の歪みゲージ(8)を形成した物理量検出器を採用する。
【0013】
この請求項1に係る発明によれば、流体圧により起歪部(2)に歪みが生じると、その歪みは絶縁膜(7)を介して歪みゲージ(8)に伝えられ、歪みゲージ(8)はその歪みにより抵抗値を変え、ブリッジ回路を歪みゲージで構成することにより圧力、荷重の変化を電圧変化として出力する。この起歪部(2)は、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造することにより形成するので、起歪部(2)を薄肉化又は小径化することができる。従って、起歪部(2)の径を同じにした場合に起歪部(2)の厚さを様々に変えて各種の圧力レンジに対応することができ、最小の圧力レンジも低下させることができる。また、起歪部(2)の径を大きくしても直線性等の特性を維持することができる。また、殊に塩素を含む酸、アルカリ等の流体に対し耐食性が高く、腐食性流体を測定対象とするセンサとして使用可能である。また、起歪部(2)はその上の歪みゲージ(8)と熱膨張係数が近いので熱安定性に優れ、従って種々の温度領域において圧力、荷重を精度良く測定することができる。さらに、起歪部(2)の鍛造加工に要する力が小さくて済むので、小荷重の鍛造装置で加工することができ、従って設備費及び加工費を低減することができる。
【0014】
また、請求項2の発明は、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造して起歪部(2)を形成し、この起歪部(2)の表面に絶縁膜(7)を形成し、この絶縁膜(7)上に第一の導体薄膜(11)を形成すると共に第二の導体薄膜(12)を第一の導体薄膜(11)に対向配置した物理量検出器を採用する。
【0015】
この請求項2に係る発明によれば、流体圧により起歪部(2)に弾性変形が生じ、起歪部(2)上に形成されている絶縁膜(7)と第一の導体薄膜(11)も共に変形する。第一の導体薄膜(11)の変形により第一と第二の導体薄膜(11,12)間の距離(A)が変化して静電容量が増減し、この静電容量の変化により圧力、荷重の変化が出力される。この起歪部(2)は、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造することにより形成するので、起歪部(2)を薄肉化又は小径化することができる。従って、起歪部(2)の径を同じにした場合に起歪部(2)の厚さを様々に変えて各種の圧力レンジに対応することができ、最小の圧力レンジも低下させることができる。また、起歪部(2)の径を大きくしても直線性等の特性を維持することができる。また、殊に塩素を含む酸、アルカリ等の流体に対し耐食性が高く、腐食性流体を測定対象とするセンサとしても使用可能である。また、起歪部(2)の鍛造加工に要する力が小さくて済むので、小荷重の鍛造装置で加工することができ、従って設備費及び加工費を低減することができる。
【0016】
また、請求項3の発明は、請求項1又は請求項2に記載の物理量検出器において、絶縁膜(7)を形成する起歪部(2)の表面(2a)は、表面粗さが0.2μm以下の成形型(6)の表面(6a)を鍛造により転写して形成した物理量検出器を採用する。
【0017】
この請求項3に係る発明によれば、過冷却液体領域で鍛造により起歪部(2)の表面(2a)に成形型(6)の表面(6a)が転写されることにより、起歪部(2)の表面(2a)が成形型の表面(6a)の表面粗さとなり、従って起歪部(2)に対する切削加工、ラッピング加工等の後加工が不要となり加工コストを削減することができる。
【0018】
また、請求項4の発明は、請求項1乃至請求項3のいずれかに記載の物理量検出器において、筒部(3)の一端を上記起歪部(2)で閉塞するセンサ部材(1)を備え、このセンサ部材(1)を上記合金により一体成形した物理量検出器を採用する。
【0019】
この請求項4に係る発明によれば、筒部(3)を形成するためのパンチ(5)を細くしても成形に要する荷重が小さくて済むためパンチ(5)が変形し難く、筒部(3)の中心穴(3a)の深さ、内外径の同心度等の精度が向上し、従って物理量検出器の小型化が可能になる。また、一工程でセンサ部材を形成することができるので、加工コストを低減することができる。
【0020】
【発明の実施の形態】
次に、本発明の実施の形態を図面を参照して説明する。
【0021】
<実施の形態1>
図1に示すように、この物理量検出器である圧力センサは、後述する材料及び製造方法により作られるセンサ部材1をセンサ本体として備える。
【0022】
センサ部材1は、ダイアフラム2である起歪部のみを備えたものであってもよいが、望ましくは図1に示すようにダイアフラム2である起歪部で一端が閉塞される筒部3を備えたキャップとして形成される。起歪部は図示例では板状の平面部として形成されるが、片方の面を円錐状に形成したものであってもよい。また、筒部3は円筒が多く用いられるが、角筒であってもよい。
【0023】
このセンサ部材1は、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金で形成される。この合金としては、Zrが55%、Alが20%、Niが25%の組成のZr基金属ガラス、Zrが60%、Alが10%、Niが10%、Cuが15%、Pbが5%の組成のZr基金属ガラス、Pdが40%、Cuが30%、Niが10%、Pが20%のPd基金属ガラス、Ti基金属ガラス等を用いることができる。
【0024】
センサ部材1は、上記合金を過冷却液体領域で鍛造することにより形成される。
【0025】
この鍛造は、図2に示す成形型を用いて行われる。
成形型は、図2(A)に示すように、凹部4aを有する金型4と、凹部4aに対し出入りするピン型のパンチ5とを備える。凹部4a内にはパンチ5と対向するようにメコマ6が収納される。メコマ6のパンチ5に対峙する表面6aはセンサ部材1の起歪部であるダイアフラム2に対応し、例えば表面粗さが0.2μm以下の平滑な表面に形成される。凹部4aの内面はセンサ部材1の筒部3の外周面に対応し、メコマ6の表面よりも粗い表面として形成される。
【0026】
図2(A)に示すように、この金型4の凹部4a内に上記合金のバルク1aを挿入し、過冷却液体領域まで加熱し、次いで同図(B)に示すようにパンチ5を凹部4a内に押し込んでバルク1aを鍛造加工する。
【0027】
バルク1aとして上述のZr55%、Al20%、Ni25%の合金を用いるものとすると、この合金はガラス遷移温度Tgが約470℃、結晶化温度Txが約540℃で、TgとTxの間すなわち470℃から540℃の間に過冷却液体領域があり、この領域では10MPa程度の応力で変形する。この変形応力は、従来の金属材料の冷間鍛造における変形応力の1/10〜1/100であり、従って小さい鍛造力でセンサ部材1を成形することができる。このように成形に必要な力が低減することにより、センサ部材1を鍛造する際のパンチ5の変形が小さくなることから、センサ部材1の筒部3における中心穴3aの深さ、内外径の同心度等の精度が向上する。殊に起歪部であるダイアフラム2の厚さを薄くしても出力のばらつきが小さくなるので、感度が高く精度の良い圧力センサを製作することができる。また、加工力が小さくて済むことから、成形型の剛性を低減することができ、鍛造機の強度も低目に設定することができる。
【0028】
ちなみに、このバルク1aの合金の室温でのヤング率は約80GPa、引っ張り強度は約1800MPaであり、一方センサ部材として多く使用されるSUS630のヤング率は約200GPa、引っ張り強度は約1310MPaである。各材料で同一形状のダイアフラム2を作り、このダイアフラム2に最大3000μεの歪みを得る圧力を比較すると、この合金のダイアフラム2に比べSUS630のダイアフラムの場合は約2.5倍の圧力が必要となる。従って、この合金のダイアフラム2によれば1/2.5の圧力レンジの圧力センサを作ることが出来る。この時の応力は歪みにヤング率をかけることにより求められ、従って同じ歪みの場合ダイアフラムにかかる応力は1/2.5となってヒステリシス、最大許容圧力等の特性が優れたセンサとなる。
【0029】
この鍛造により、バルク1aは同図(C)に示すダイアフラム2と筒部3を備えたセンサ部材1として成形され、そのダイアフラム2の表面2aには成形型のメコマ6の表面6aが転写される。金型4から取り出されたセンサ部材1のダイアフラム2の表面2aはメコマ6の表面6aの表面粗さと同程度になっており、ダイアフラム2に切削加工、ラップ加工等の後加工を行うことなく成膜処理をすることができる。すなわち、上記合金は過冷却液体領域で鍛造加工すると転写性が良いため、成形型のメコマ6の表面粗さが例えば0.2μm以下に仕上げてあるとダイアフラム2はその表面粗さで仕上げられ、従ってダイアフラム2に半導体歪みゲージをCVD法で形成するに先立ってダイアフラム2の表面2aに切削加工、砥粒加工等を施す必要がない。
【0030】
上記のように成形されたセンサ部材1の起歪部であるダイアフラム2の表面2aには、図1に示すように、絶縁膜7、金属又は半導体薄膜の歪みゲージ8、電極9、保護膜10等が積層形成される。
【0031】
これらの各層は次に述べるような工程で形成される。
【0032】
まず、上述の鍛造したセンサ部材1のダイアフラム2の表面2aをポリッシングにより鏡面に仕上げる。
【0033】
ポリッシングしたダイアフラム2の表面2aにSiOの絶縁膜7をCVD法により成膜し、絶縁膜7の上にP−Si半導体歪みゲージ8をCVD法により成膜する。
【0034】
この半導体歪みゲージ8の膜をフォトリソグラフィにより所定の形状にパターンエッチングする。
【0035】
歪みゲージ8の上に、回路に接続するための電極9を金、アルミニウム等で形成する。
【0036】
最後に、歪みゲージ8を水蒸気等から保護するためのSiN等の保護膜10を形成して圧力センサ、荷重センサ等の物理量検出器として仕上げる。
【0037】
次に、上記構成の物理量検出器としての圧力センサの作用について説明する。
【0038】
この圧力センサはそのセンサ部材1の筒部3が配管等に固定されることにより所望の圧力検出箇所に設置される。
【0039】
ガス、液体等の流体は筒部3の中心穴3aを導入孔としてセンサ部材1内に導入され、ダイアフラム2の裏面に至る。ダイアフラム2が流体の圧力により弾性変形すると、その歪みは絶縁膜7を介して歪みゲージ8に伝えられ、歪みゲージ8はその歪みにより抵抗値を変える。これにより、歪みゲージ8は圧力の変化を抵抗の変化に変換して電気信号として出力する。
【0040】
歪みゲージ8の出力は図示しないボンドワイヤ、中継基板、入出力端子等を経て圧力センサ外に取り出され、流体の圧力情報として所定の制御装置へと送られる。
【0041】
この圧力センサのダイアフラム2はその上の歪みゲージ8と熱膨張係数が近いので熱安定性に優れ、従って種々の温度領域において圧力、荷重を精度良く測定することができる。この圧力センサのセンサ部材1を構成する上記合金の熱膨張係数は8×10−6(1/℃)であり、従来使用されているSUS630の熱膨張係数が11×10−6(1/℃)であるのに比べて、Si単結晶の熱膨張係数である3×10−6(1/℃)により近い値となっている。このため、この圧力センサにおいては歪みゲージ8にかかる熱歪みが低減し、温度安定性が高い。
【0042】
また、この圧力センサは、そのセンサ部材1を構成する合金が酸、アルカリ等の腐食性流体に対し耐食性が高いので、こうした腐食性流体の圧力測定に適する。
【0043】
この圧力センサを構成する上記合金と従来使用されているSUS630の酸、アルカリに対する耐食性を比較した試験結果を表1に示す。
【0044】
【表1】

Figure 2004045048
【0045】
表1から明らかなように、この本発明に係る圧力センサは種々の酸、アルカリに対し優れた耐食性を示し、殊に塩素を含む酸、アルカリ等の流体に対し高い耐食性を示す。
【0046】
<実施の形態2>
図3に示すように、この実施の形態2における物理量検出器である圧力センサは、実施の形態1の圧力センサにおけるセンサ部材1と同様なセンサ部材1を使用するが、その起歪部であるダイアフラム2上に形成する層構成が異なっている。
【0047】
すなわち、このセンサ部材1の起歪部であるダイアフラム2の表面には、絶縁膜7が形成され、この絶縁膜7上に第一の導体薄膜11が形成されると共に第二の導体薄膜12が第一の導体薄膜11に対向配置される。第二の導体薄膜12は絶縁膜7上に固着されるキャップ13の内面に形成される。キャップ13の外面には第二の導体薄膜12に電気的に導通する電極14が形成される。
【0048】
この圧力センサによれば、センサ部材1の中心穴3aに流入した流体の圧力によりダイアフラム2に弾性変形が生じ、ダイアフラム2上に形成された絶縁膜7と第一の導体薄膜11も供に変形する。第一の導体薄膜11の変形により第一と第二の導体薄膜11,12の間隔が変化して静電容量が増減し、この静電容量の変化により圧力、荷重の変化が出力される。第一と第二の導体薄膜11,12はコンデンサを形成し、このコンデンサの静電容量C(F)は次式で表される。
【0049】
C=ε・πD/4A
ただし、εは第一と第二の導体薄膜間に介在する物質の誘電率(F/m)、Dは第一と第二の導体薄膜の直径(m)、Aは第一と第二の導体薄膜の間隔(m)である。
【0050】
センサ部材1の筒部3に流入した流体の圧力がダイアフラム2に作用すると、ダイアフラム2が図3中上方に変形し、第一と第二の導体薄膜11,12の間隔Aが変化する。このため、静電容量Cが変化し、この静電容量Cの変化を測定することにより流体圧を測定することができる。
【0051】
なお、上記各実施の形態では圧力センサを例にとって説明したが、本発明は圧力センサのみならず荷重センサ等他のセンサにも応用することができ、小型、高感度の物理量検出器を得ることができる。
【0052】
【発明の効果】
請求項1に係る発明によれば、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造して起歪部を形成し、この起歪部の表面に絶縁膜を形成し、この絶縁膜上に金属又は半導体薄膜の歪みゲージを形成した物理量検出器であるから、流体圧により起歪部に歪みが生じると、その歪みは絶縁膜を介して歪みゲージに伝えられ、歪みゲージはその歪みにより抵抗値を変え、ブリッジ回路を歪みゲージで構成することにより、圧力、荷重の変化を電圧の変化として出力する。この起歪部は、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造することにより形成するので、起歪部を薄肉化又は小径化することができる。従って、起歪部の径を同じにした場合に起歪部の厚さを様々に変えて各種の圧力レンジに対応することができ、最小の圧力レンジも低下させることができる。また、起歪部の径を大きくしても直線性等の特性を維持することができる。また、殊に塩素を含む酸、アルカリ等の流体に対し耐食性が高く、腐食性流体を測定対象とするセンサとして使用可能である。また、起歪部はその上の歪みゲージと熱膨張係数が近いので熱安定性に優れ、従って種々の温度領域において圧力、荷重を精度良く測定することができる。さらに、起歪部の鍛造加工に要する力が小さくて済むので、小荷重の鍛造装置で加工することができ、従って設備費及び加工費を低減することができる。
【0053】
請求項2に係る発明によれば、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造して起歪部を形成し、この起歪部の表面に絶縁膜を形成し、この絶縁膜上に第一の導体薄膜を形成すると共に第二の導体薄膜を第一の導体薄膜に対向配置した物理量検出器であるから、流体圧により起歪部に変形が生じると、その起歪部上に形成された絶縁膜と第一の導体薄膜も供に変形し、第一の導体薄膜の変形により第一と第二の導体薄膜間の距離が変化して静電容量が増減し、この静電容量の変化により圧力、荷重の変化が出力される。この起歪部は、Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造することにより形成するので、起歪部を薄肉化又は小径化することができる。従って、起歪部の径を同じにした場合に起歪部の厚さを様々に変えて各種の圧力レンジに対応することができ、最小の圧力レンジも低下させることができる。また、起歪部の径を大きくしても直線性等の特性を維持することができる。また、殊に塩素を含む酸、アルカリ等の流体に対し耐食性が高く、腐食性流体を測定対象とするセンサとしても使用可能である。また、起歪部の鍛造加工に要する力が小さくて済むので、小荷重の鍛造装置で加工することができ、従って設備費及び加工費を低減することができる。
【0054】
請求項3に係る発明によれば、請求項1又は請求項2に記載の物理量検出器において、絶縁膜を形成する起歪部の表面は、表面粗さが0.2μm以下の成形型の表面を鍛造により転写して形成した物理量検出器であるから、過冷却液体領域での鍛造により起歪部の表面に成形型の表面が転写されることにより、起歪部の表面が成形型の表面粗さとなり、従って起歪部に対する切削加工、ラッピング加工等の後加工が不要となり加工コストを削減することができる。
【0055】
請求項4に係る発明によれば、請求項1乃至請求項3のいずれかに記載の物理量検出器において、筒部の一端を上記起歪部で閉塞するセンサ部材を備え、このセンサ部材を上記合金により一体成形した物理量検出器であるから、筒部を形成するためのパンチを細くしてもパンチが変形し難くなり、筒部の中心穴深さ、内外径の同心度等の精度が向上し、従って物理量検出器の小型化が可能になる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る物理量検出器の垂直断面図である。
【図2】物理量検出器のセンサ部材の製造工程を示す説明図である。
【図3】本発明の実施の形態2に係る物理量検出器の垂直断面図である。
【符号の説明】
1:センサ部材
2:ダイアフラム
2a:ダイアフラムの表面
3:筒部
6:成形型
6a:成形型の表面
7:絶縁膜
8:歪みゲージ
11:第一の導体薄膜
12:第二の導体薄膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a physical quantity detector for measuring a fluid pressure or a load.
[0002]
[Prior art]
The pressure sensor, which is a physical quantity detector, includes a sensor member in which one end of a cylindrical portion is closed by a strain generating portion, and the strain generating portion is used as a diaphragm.
[0003]
This pressure sensor is manufactured by the following steps.
[0004]
First, a sensor member is formed by machining a metal material such as SUS630 having good corrosion resistance and a high elastic limit, such as cutting.
[0005]
The upper surface of the diaphragm of the machined sensor member is mirror-finished by polishing.
[0006]
An insulating film is formed on the polished diaphragm by a CVD method or a sputtering method, and a semiconductor strain gauge is formed on the insulating film by a CVD method or a sputtering method.
[0007]
This semiconductor strain gauge is pattern-etched into a predetermined shape by photolithography.
[0008]
An electrode for connecting to a circuit is formed of gold, aluminum, or the like on the strain gauge, and a protective film of SiN or the like for protecting the strain gauge from water vapor or the like is formed.
[0009]
The pressure sensor manufactured as described above is installed at a predetermined pressure measurement point, and a fluid such as gas is introduced into the surface of the diaphragm opposite to the strain gauge. When distortion occurs in the diaphragm due to the fluid pressure, the distortion is transmitted to the strain gauge via the insulating film. When the strain gauge is distorted, its resistance value changes. As a result, the pressure sensor converts a change in pressure into a change in resistance and outputs it.
[0010]
[Problems to be solved by the invention]
Conventionally, in order to improve the mass productivity of a pressure sensor, it is possible to cope with various pressure ranges by changing the thickness of the diaphragm while keeping the outer diameter of the sensor member the same. For this sensor member, precipitation hardening type stainless steel SUS630 is often used. However, when this material is used, it becomes difficult to secure processing accuracy as the thickness of the diaphragm becomes thinner, and the diameter of the diaphragm is increased. Also, since the characteristics such as linearity deteriorate, the minimum pressure range is limited to 0.3 MPa. Further, in order to finish the sensor member into a predetermined shape, machining and lapping are required, so that the processing cost increases. When the sensor member is formed by forging, if the diameter of the center hole of the cylindrical portion is reduced to reduce the size of the pressure sensor, the pin-type extrusion punch for processing the center hole becomes thinner and easily deformed. Due to the deformation of the punch, the accuracy such as the depth of the center hole and the concentricity of the inner and outer diameters of the cylindrical portion may be reduced. Furthermore, since SUS630 has low corrosion resistance to acids containing chlorine and the like, there is a limitation in selecting a measurement target.
[0011]
An object of the present invention is to provide a physical quantity detector that can solve the above problems.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is characterized in that an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for producing metallic glass is forged in the supercooled liquid region to generate strain. A physical quantity detection in which a portion (2) is formed, an insulating film (7) is formed on the surface of the strain generating portion (2), and a metal or semiconductor thin film strain gauge (8) is formed on the insulating film (7) Adopt a container.
[0013]
According to the first aspect of the present invention, when a strain is generated in the strain generating portion (2) by the fluid pressure, the strain is transmitted to the strain gauge (8) via the insulating film (7), and the strain gauge (8) is formed. ) Changes the resistance value due to the strain, and outputs a change in pressure or load as a voltage change by forming a bridge circuit with a strain gauge. Since the strain-generating portion (2) is formed by forging an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for generating metallic glass in the supercooled liquid region, The portion (2) can be made thinner or smaller in diameter. Therefore, when the diameter of the strain-generating portion (2) is the same, the thickness of the strain-generating portion (2) can be variously changed to cope with various pressure ranges, and the minimum pressure range can be reduced. it can. Further, even if the diameter of the strain generating portion (2) is increased, characteristics such as linearity can be maintained. In addition, it has high corrosion resistance particularly to fluids such as acids and alkalis containing chlorine, and can be used as a sensor for measuring corrosive fluids. Further, since the strain-generating portion (2) has a thermal expansion coefficient close to that of the strain gauge (8) on the strain-generating portion (2), it has excellent thermal stability, and therefore can accurately measure pressure and load in various temperature ranges. Further, since the force required for forging the strain generating portion (2) is small, the forging can be performed by a forging device having a small load, so that the equipment cost and the processing cost can be reduced.
[0014]
In addition, the invention according to claim 2 forges an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for generating metallic glass in the supercooled liquid region to form the strain-generating portion (2). An insulating film (7) is formed on the surface of the strain-generating portion (2), and a first conductive thin film (11) and a second conductive thin film (12) are formed on the insulating film (7). Is adopted as a physical quantity detector arranged to face the first conductive thin film (11).
[0015]
According to the second aspect of the present invention, elastic deformation occurs in the strain generating portion (2) due to the fluid pressure, and the insulating film (7) formed on the strain generating portion (2) and the first conductive thin film ( 11) also deforms. Due to the deformation of the first conductive thin film (11), the distance (A) between the first and second conductive thin films (11, 12) changes to increase or decrease the capacitance. The change in load is output. Since the strain-generating portion (2) is formed by forging an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for generating metallic glass in the supercooled liquid region, The portion (2) can be made thinner or smaller in diameter. Therefore, when the diameter of the strain-generating portion (2) is the same, the thickness of the strain-generating portion (2) can be variously changed to cope with various pressure ranges, and the minimum pressure range can be reduced. it can. Further, even if the diameter of the strain generating portion (2) is increased, characteristics such as linearity can be maintained. In addition, it has high corrosion resistance especially to fluids such as acids and alkalis containing chlorine, and can be used as a sensor for measuring corrosive fluids. In addition, since the force required for forging the strain generating portion (2) is small, the forging can be performed by a forging device with a small load, and thus the equipment cost and the processing cost can be reduced.
[0016]
According to a third aspect of the present invention, in the physical quantity detector according to the first or second aspect, the surface (2a) of the strain generating portion (2) forming the insulating film (7) has a surface roughness of zero. A physical quantity detector formed by transferring the surface (6a) of a mold (6) having a size of 2 μm or less by forging is adopted.
[0017]
According to the third aspect of the present invention, the surface (6a) of the mold (6) is transferred to the surface (2a) of the strain-generating portion (2) by forging in the supercooled liquid region, thereby forming the strain-generating portion. The surface (2a) of (2) becomes the surface roughness of the surface (6a) of the molding die, so that post-processing such as cutting and lapping of the strain-generating portion (2) becomes unnecessary, and the processing cost can be reduced. .
[0018]
According to a fourth aspect of the present invention, in the physical quantity detector according to any one of the first to third aspects, the sensor member (1) for closing one end of the cylindrical portion (3) with the strain generating portion (2). And a physical quantity detector in which the sensor member (1) is integrally formed from the above alloy is adopted.
[0019]
According to the fourth aspect of the present invention, even if the punch (5) for forming the cylindrical portion (3) is made thin, the load required for molding is small, so that the punch (5) is hardly deformed, Accuracy such as the depth of the center hole (3a) and the concentricity of the inner and outer diameters of (3) is improved, and thus the physical quantity detector can be downsized. Further, since the sensor member can be formed in one step, the processing cost can be reduced.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0021]
<Embodiment 1>
As shown in FIG. 1, the pressure sensor as the physical quantity detector includes a sensor member 1 made of a material and a manufacturing method described later as a sensor main body.
[0022]
The sensor member 1 may include only the strain-generating portion that is the diaphragm 2, but preferably includes the cylindrical portion 3 whose one end is closed by the strain-generating portion that is the diaphragm 2, as shown in FIG. Formed as a cap. Although the strain generating portion is formed as a plate-shaped flat portion in the illustrated example, it may be formed such that one surface is formed in a conical shape. Further, the cylinder 3 is often a cylinder, but may be a square cylinder.
[0023]
The sensor member 1 is formed of an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for generating metallic glass. The alloy is a Zr-based metallic glass having a composition of 55% Zr, 20% Al, and 25% Ni, 60% Zr, 10% Al, 10% Ni, 15% Cu, and 5% Pb. % Of Zr-based metallic glass, Pd of 40%, Cu of 30%, Ni of 10%, P of 20%, Pd-based metallic glass, Ti-based metallic glass or the like can be used.
[0024]
The sensor member 1 is formed by forging the above alloy in a supercooled liquid region.
[0025]
This forging is performed using a mold shown in FIG.
As shown in FIG. 2A, the molding die includes a mold 4 having a concave portion 4a, and a pin-shaped punch 5 that enters and exits the concave portion 4a. In the recess 4a, a frame 6 is stored so as to face the punch 5. The surface 6a of the MECOMA 6 facing the punch 5 corresponds to the diaphragm 2 which is a strain generating portion of the sensor member 1, and is formed on a smooth surface having a surface roughness of 0.2 μm or less, for example. The inner surface of the concave portion 4a corresponds to the outer peripheral surface of the cylindrical portion 3 of the sensor member 1, and is formed as a surface that is rougher than the surface of the MECOMA 6.
[0026]
As shown in FIG. 2A, the bulk 1a of the alloy is inserted into the recess 4a of the mold 4 and heated to the supercooled liquid region. Then, as shown in FIG. The bulk 1a is forged by being pushed into the inside 4a.
[0027]
Assuming that the above-mentioned alloy of 55% of Zr, 20% of Al and 25% of Ni is used as the bulk 1a, this alloy has a glass transition temperature Tg of about 470 ° C., a crystallization temperature Tx of about 540 ° C., and is between Tg and Tx, ie, 470 ° C. There is a supercooled liquid region between 540 ° C. and 540 ° C. In this region, the region is deformed by a stress of about 10 MPa. This deformation stress is 1/10 to 1/100 of the deformation stress in the conventional cold forging of a metal material, so that the sensor member 1 can be formed with a small forging force. Since the deformation of the punch 5 at the time of forging the sensor member 1 is reduced by reducing the force required for molding in this manner, the depth of the center hole 3a in the cylindrical portion 3 of the sensor member 1, and the inner and outer diameters are reduced. Accuracy such as concentricity is improved. In particular, even if the thickness of the diaphragm 2, which is the strain-generating portion, is reduced, variation in output is reduced, so that a pressure sensor with high sensitivity and high accuracy can be manufactured. In addition, since a small working force is required, the rigidity of the mold can be reduced, and the strength of the forging machine can be set to a low value.
[0028]
The bulk 1a alloy has a Young's modulus at room temperature of about 80 GPa and a tensile strength of about 1800 MPa, while SUS630, which is often used as a sensor member, has a Young's modulus of about 200 GPa and a tensile strength of about 1310 MPa. When a diaphragm 2 having the same shape is made of each material, and a pressure at which a maximum strain of 3000 με is obtained from the diaphragm 2 is compared, a diaphragm of SUS630 requires about 2.5 times as much pressure as the diaphragm 2 of this alloy. . Therefore, according to the diaphragm 2 of this alloy, a pressure sensor having a pressure range of 1 / 2.5 can be manufactured. The stress at this time is obtained by multiplying the strain by the Young's modulus. Therefore, in the case of the same strain, the stress applied to the diaphragm becomes 1 / 2.5, and a sensor having excellent characteristics such as hysteresis and maximum allowable pressure is obtained.
[0029]
By this forging, the bulk 1a is formed as the sensor member 1 having the diaphragm 2 and the cylindrical portion 3 shown in FIG. 3C, and the surface 6a of the forming die 6 is transferred to the surface 2a of the diaphragm 2. . The surface 2a of the diaphragm 2 of the sensor member 1 taken out of the mold 4 is substantially the same as the surface roughness of the surface 6a of the mecoma 6, so that the diaphragm 2 can be formed without performing post-processing such as cutting and lapping. Film treatment can be performed. That is, since the above alloy has good transferability when forged in a supercooled liquid region, if the surface roughness of the mold 6 is finished to, for example, 0.2 μm or less, the diaphragm 2 is finished with the surface roughness, Therefore, it is not necessary to perform a cutting process, an abrasive process, or the like on the surface 2a of the diaphragm 2 before forming the semiconductor strain gauge on the diaphragm 2 by the CVD method.
[0030]
As shown in FIG. 1, an insulating film 7, a metal or semiconductor thin film strain gauge 8, an electrode 9, and a protective film 10 are formed on the surface 2 a of the diaphragm 2, which is a strain generating portion of the sensor member 1 formed as described above. Are laminated.
[0031]
These layers are formed in the following steps.
[0032]
First, the surface 2a of the diaphragm 2 of the forged sensor member 1 is mirror-finished by polishing.
[0033]
An insulating film 7 of SiO 2 is formed on the polished surface 2a of the diaphragm 2 by a CVD method, and a P-Si semiconductor strain gauge 8 is formed on the insulating film 7 by a CVD method.
[0034]
The film of the semiconductor strain gauge 8 is patterned into a predetermined shape by photolithography.
[0035]
An electrode 9 for connecting to a circuit is formed of gold, aluminum or the like on the strain gauge 8.
[0036]
Finally, a protective film 10 of SiN or the like for protecting the strain gauge 8 from water vapor or the like is formed, and finished as a physical quantity detector such as a pressure sensor or a load sensor.
[0037]
Next, the operation of the pressure sensor as the physical quantity detector having the above configuration will be described.
[0038]
This pressure sensor is installed at a desired pressure detection location by fixing the cylindrical portion 3 of the sensor member 1 to a pipe or the like.
[0039]
Fluid such as gas and liquid is introduced into the sensor member 1 through the central hole 3a of the cylindrical portion 3 as an introduction hole, and reaches the back surface of the diaphragm 2. When the diaphragm 2 is elastically deformed by the pressure of the fluid, the strain is transmitted to the strain gauge 8 via the insulating film 7, and the strain gauge 8 changes the resistance value by the strain. Thereby, the strain gauge 8 converts a change in pressure into a change in resistance and outputs it as an electric signal.
[0040]
The output of the strain gauge 8 is taken out of the pressure sensor via a not-shown bond wire, relay board, input / output terminal, and the like, and sent to a predetermined control device as fluid pressure information.
[0041]
Since the diaphragm 2 of this pressure sensor has a thermal expansion coefficient close to that of the strain gauge 8 thereon, it has excellent thermal stability, and therefore can accurately measure pressure and load in various temperature ranges. The thermal expansion coefficient of the alloy constituting the sensor member 1 of the pressure sensor is 8 × 10 −6 (1 / ° C.), and the thermal expansion coefficient of the conventionally used SUS630 is 11 × 10 −6 (1 / ° C.). ) Is closer to the thermal expansion coefficient of 3 × 10 −6 (1 / ° C.) of the Si single crystal. For this reason, in this pressure sensor, thermal strain applied to the strain gauge 8 is reduced, and the temperature stability is high.
[0042]
Further, this pressure sensor is suitable for pressure measurement of such a corrosive fluid since the alloy constituting the sensor member 1 has high corrosion resistance to corrosive fluids such as acids and alkalis.
[0043]
Table 1 shows the test results of comparing the corrosion resistance of the above-mentioned alloy constituting the pressure sensor and the conventionally used SUS630 to acid and alkali.
[0044]
[Table 1]
Figure 2004045048
[0045]
As apparent from Table 1, the pressure sensor according to the present invention exhibits excellent corrosion resistance to various acids and alkalis, and particularly exhibits high corrosion resistance to fluids such as acids and alkalis containing chlorine.
[0046]
<Embodiment 2>
As shown in FIG. 3, a pressure sensor as a physical quantity detector according to the second embodiment uses the same sensor member 1 as the sensor member 1 in the pressure sensor according to the first embodiment, but is a strain-causing portion. The layer configuration formed on the diaphragm 2 is different.
[0047]
That is, the insulating film 7 is formed on the surface of the diaphragm 2 which is the strain-generating portion of the sensor member 1, and the first conductive thin film 11 and the second conductive thin film 12 are formed on the insulating film 7. The first conductive thin film 11 is disposed to face the first conductive thin film 11. The second conductor thin film 12 is formed on the inner surface of the cap 13 fixed on the insulating film 7. An electrode 14 electrically connected to the second conductive thin film 12 is formed on the outer surface of the cap 13.
[0048]
According to this pressure sensor, the diaphragm 2 elastically deforms due to the pressure of the fluid flowing into the center hole 3a of the sensor member 1, and the insulating film 7 and the first conductive thin film 11 formed on the diaphragm 2 also deform. I do. The deformation of the first conductive thin film 11 changes the distance between the first and second conductive thin films 11 and 12 to increase or decrease the capacitance, and the change in the capacitance outputs a change in pressure or load. The first and second conductive thin films 11 and 12 form a capacitor, and the capacitance C (F) of the capacitor is expressed by the following equation.
[0049]
C = ε · πD 2 / 4A
Here, ε is the dielectric constant (F / m) of a substance interposed between the first and second conductive thin films, D is the diameter (m) of the first and second conductive thin films, and A is the first and second conductive thin films. This is the distance (m) between the conductor thin films.
[0050]
When the pressure of the fluid flowing into the cylindrical portion 3 of the sensor member 1 acts on the diaphragm 2, the diaphragm 2 is deformed upward in FIG. 3, and the distance A between the first and second conductive thin films 11, 12 changes. Therefore, the capacitance C changes, and the fluid pressure can be measured by measuring the change in the capacitance C.
[0051]
In each of the above embodiments, a pressure sensor has been described as an example. However, the present invention can be applied not only to a pressure sensor but also to other sensors such as a load sensor to obtain a small, highly sensitive physical quantity detector. Can be.
[0052]
【The invention's effect】
According to the invention of claim 1, an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for generating metallic glass is forged in the supercooled liquid region to form a strain-induced portion. Since the physical quantity detector has an insulating film formed on the surface of the strain-generating portion and a strain gauge of a metal or semiconductor thin film formed on the insulating film, if a strain is generated in the strain-generating portion by fluid pressure, the strain Is transmitted to a strain gauge via an insulating film, the strain gauge changes a resistance value by the strain, and a bridge circuit is constituted by the strain gauge, thereby outputting a change in pressure and load as a change in voltage. Since the strain generating portion is formed by forging an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and forming a metallic glass in the supercooled liquid region, the strain generating portion is thin. Or a smaller diameter. Therefore, when the diameter of the strain-generating portion is the same, the thickness of the strain-generating portion can be changed variously to cope with various pressure ranges, and the minimum pressure range can be reduced. Further, even if the diameter of the strain generating portion is increased, characteristics such as linearity can be maintained. In addition, it has high corrosion resistance particularly to fluids such as acids and alkalis containing chlorine, and can be used as a sensor for measuring corrosive fluids. Further, the strain-generating portion has excellent thermal stability because it has a thermal expansion coefficient close to that of the strain gauge on the strain-generating portion. Therefore, it is possible to accurately measure pressure and load in various temperature ranges. Furthermore, since the force required for forging of the strain generating portion is small, the forging can be performed by a forging device with a small load, and thus the equipment cost and the processing cost can be reduced.
[0053]
According to the invention of claim 2, an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for generating metallic glass is forged in the supercooled liquid region to form a strain-induced portion. Since an insulating film is formed on the surface of the strain generating portion, a first conductive thin film is formed on the insulating film, and the second conductive thin film is a physical quantity detector arranged to face the first conductive thin film. When deformation occurs in the strain-generating portion due to the fluid pressure, the insulating film and the first conductor thin film formed on the strain-generating portion also deform, and the first and second conductors are deformed by the deformation of the first conductor thin film. The distance between the thin films changes and the capacitance increases and decreases, and the change in the capacitance outputs changes in pressure and load. Since the strain generating portion is formed by forging an alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and forming a metallic glass in the supercooled liquid region, the strain generating portion is thin. Or a smaller diameter. Therefore, when the diameter of the strain-generating portion is the same, the thickness of the strain-generating portion can be changed variously to cope with various pressure ranges, and the minimum pressure range can be reduced. Further, even if the diameter of the strain generating portion is increased, characteristics such as linearity can be maintained. In addition, it has high corrosion resistance especially to fluids such as acids and alkalis containing chlorine, and can be used as a sensor for measuring corrosive fluids. Further, since the force required for the forging of the strain generating portion is small, the forging can be performed by a forging device with a small load, so that the equipment cost and the processing cost can be reduced.
[0054]
According to the third aspect of the present invention, in the physical quantity detector according to the first or second aspect, the surface of the strain-forming portion forming the insulating film has a surface roughness of 0.2 μm or less. Is a physical quantity detector formed by transferring by forging, the surface of the mold is transferred to the surface of the strain generating part by forging in the supercooled liquid region, and the surface of the strain generating part is the surface of the mold. Therefore, post-processing such as cutting and lapping of the strain-induced portion becomes unnecessary, and the processing cost can be reduced.
[0055]
According to a fourth aspect of the present invention, in the physical quantity detector according to any one of the first to third aspects, the physical quantity detector further includes a sensor member for closing one end of the cylindrical portion with the strain generating portion. Since it is a physical quantity detector molded integrally with an alloy, it is difficult to deform even if the punch for forming the cylinder is made thinner, and the accuracy of the center hole depth of the cylinder, the concentricity of the inner and outer diameters, etc. is improved. Therefore, the physical quantity detector can be downsized.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a physical quantity detector according to Embodiment 1 of the present invention.
FIG. 2 is an explanatory view showing a manufacturing process of a sensor member of the physical quantity detector.
FIG. 3 is a vertical sectional view of a physical quantity detector according to Embodiment 2 of the present invention.
[Explanation of symbols]
1: Sensor member 2: Diaphragm 2a: Diaphragm surface 3: Cylindrical part 6: Mold 6a: Mold surface 7: Insulating film 8: Strain gauge 11: First conductive thin film 12: Second conductive thin film

Claims (4)

Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造して起歪部を形成し、この起歪部の表面に絶縁膜を形成し、この絶縁膜上に金属又は半導体薄膜の歪みゲージを形成したことを特徴とする物理量検出器。An alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for producing metallic glass is forged in the supercooled liquid region to form a strain-induced portion, and an insulating film is formed on the surface of the strain-induced portion. And a strain gauge of a metal or semiconductor thin film is formed on the insulating film. Zr、TiまたはPdを主成分とした過冷却液体領域を有し金属ガラスを生成する組成の合金を過冷却液体領域で鍛造して起歪部を形成し、この起歪部の表面に絶縁膜を形成し、この絶縁膜上に第一の導体薄膜を形成すると共に第二の導体薄膜を第一の導体薄膜に対向配置したことを特徴とする物理量検出器。An alloy having a supercooled liquid region containing Zr, Ti or Pd as a main component and having a composition for producing metallic glass is forged in the supercooled liquid region to form a strain-induced portion, and an insulating film is formed on the surface of the strain-induced portion. Wherein a first conductive thin film is formed on the insulating film, and a second conductive thin film is arranged to face the first conductive thin film. 請求項1又は請求項2に記載の物理量検出器において、絶縁膜を形成する起歪部の表面は、表面粗さが0.2μm以下の成形型の表面を鍛造により転写して形成したことを特徴とする物理量検出器。3. The physical quantity detector according to claim 1, wherein the surface of the strain-forming portion forming the insulating film is formed by forging a surface of a mold having a surface roughness of 0.2 μm or less by forging. Characteristic physical quantity detector. 請求項1乃至請求項3のいずれかに記載の物理量検出器において、筒部の一端を上記起歪部で閉塞したセンサ部材を備え、このセンサ部材を上記合金により一体成形したことを特徴とする物理量検出器。The physical quantity detector according to any one of claims 1 to 3, further comprising: a sensor member having one end of a cylindrical portion closed by the strain generating portion, wherein the sensor member is integrally formed of the alloy. Physical quantity detector.
JP2002199130A 2002-07-08 2002-07-08 Physical quantity detector Pending JP2004045048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199130A JP2004045048A (en) 2002-07-08 2002-07-08 Physical quantity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199130A JP2004045048A (en) 2002-07-08 2002-07-08 Physical quantity detector

Publications (1)

Publication Number Publication Date
JP2004045048A true JP2004045048A (en) 2004-02-12

Family

ID=31706390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199130A Pending JP2004045048A (en) 2002-07-08 2002-07-08 Physical quantity detector

Country Status (1)

Country Link
JP (1) JP2004045048A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813926A3 (en) * 2006-01-25 2008-12-24 YKK Corporation Method for manufacture of a physical quantity detector
JP6132047B1 (en) * 2016-03-28 2017-05-24 国立大学法人東北大学 Pressure sensor and manufacturing method thereof
CN112236658A (en) * 2018-06-14 2021-01-15 新东工业株式会社 Strain body, method for manufacturing strain body, and physical quantity measuring sensor
JP2021139626A (en) * 2020-03-02 2021-09-16 株式会社レプトリノ Force sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813926A3 (en) * 2006-01-25 2008-12-24 YKK Corporation Method for manufacture of a physical quantity detector
US7708051B2 (en) 2006-01-25 2010-05-04 Ykk Corporation Method for manufacture of a physical quantity detector
JP6132047B1 (en) * 2016-03-28 2017-05-24 国立大学法人東北大学 Pressure sensor and manufacturing method thereof
JP2017181118A (en) * 2016-03-28 2017-10-05 国立大学法人東北大学 Pressure sensor, and manufacturing method for the same
WO2017170456A1 (en) * 2016-03-28 2017-10-05 国立大学法人東北大学 Pressure sensor and method for producing same
US10900854B2 (en) 2016-03-28 2021-01-26 Tohoku University Pressure sensor and method of producing the same
CN112236658A (en) * 2018-06-14 2021-01-15 新东工业株式会社 Strain body, method for manufacturing strain body, and physical quantity measuring sensor
CN112236658B (en) * 2018-06-14 2022-08-09 新东工业株式会社 Strain body, method for manufacturing strain body, and physical quantity measuring sensor
US11733113B2 (en) 2018-06-14 2023-08-22 Sintokogio, Ltd. Strain element, strain element manufacturing method, and physical quantity measuring sensor
JP2021139626A (en) * 2020-03-02 2021-09-16 株式会社レプトリノ Force sensor
JP6998076B2 (en) 2020-03-02 2022-01-18 株式会社レプトリノ Force sensor

Similar Documents

Publication Publication Date Title
JP4463770B2 (en) Manufacturing method of physical quantity detector
US8443676B2 (en) Pressure sensor for hydraulic media in motor vehicle brake systems
Cho et al. Internal stress compensation and scaling in ultrasensitive silicon pressure sensors
JP5883771B2 (en) Pressure sensor
JPH04258176A (en) Semiconductor pressure sensor
US5508676A (en) Strain gauge on a flexible support and transducer equipped with said gauge
JPH04320938A (en) Differential pressure sensor and composite function type differential pressure sensor
US20230184603A1 (en) Temperature coefficient of offset compensation for force sensor and strain gauge
JP2006010623A (en) Pressure sensor
WO2015098324A1 (en) Pressure measurement device
JP2008527313A (en) Force measuring device, in particular pressure gauge and associated manufacturing method
CN101730840A (en) Pressure and mechanical sensors using titanium-based superelastic alloy
JP2008102069A (en) Semiconductor strain-sensitive sensor
US20030024322A1 (en) Sensor device for registering strain
JP2004045048A (en) Physical quantity detector
JPS6135264B2 (en)
JP2002504675A (en) Electrically insulated strain gauge
US20240167896A1 (en) Device for measuring deformations, stresses, forces and/or torques in a plurality of axes
JP2010204014A (en) Pressure sensor, method of manufacturing the same, and steering device
WO2008040656A2 (en) Microelectromechanical system (mems) sensor for extreme ambient conditions
US5672826A (en) Semiconductor pressure sensor
JP2006524795A (en) High-pressure sensor that measures temperature independently of pressure
JP3355341B2 (en) Semiconductor pressure sensor
JP2000315805A (en) Strain detecting element and manufacture of the same
JP2002303504A (en) Stress measurement sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812