JP2004044660A - Construction of toothing for one-way torque transmission - Google Patents

Construction of toothing for one-way torque transmission Download PDF

Info

Publication number
JP2004044660A
JP2004044660A JP2002201505A JP2002201505A JP2004044660A JP 2004044660 A JP2004044660 A JP 2004044660A JP 2002201505 A JP2002201505 A JP 2002201505A JP 2002201505 A JP2002201505 A JP 2002201505A JP 2004044660 A JP2004044660 A JP 2004044660A
Authority
JP
Japan
Prior art keywords
teeth
screw
rotation
pressure angle
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201505A
Other languages
Japanese (ja)
Other versions
JP3718188B2 (en
Inventor
Kazuhiro Kodate
小舘 一浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2002201505A priority Critical patent/JP3718188B2/en
Publication of JP2004044660A publication Critical patent/JP2004044660A/en
Application granted granted Critical
Publication of JP3718188B2 publication Critical patent/JP3718188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2519Design of extruder parts, e.g. by modelling based on mathematical theories or experiments by modelling of mechanical strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/252Drive or actuation means; Transmission means; Screw supporting means
    • B29C48/2522Shaft or screw supports, e.g. bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction of toothing for one-way torque transmission or a screw of a biaxial resin kneading extruder capable of transmitting large torque in spite of being machineable at a relatively low cost. <P>SOLUTION: Toothing 3 for one-way torque transmission or the screw of the biaxial resin kneading extruder is formed in a shape which has an involute curve surface or a curved surface according to an involute curve on a front surface 4 in a side where force acts in turning and has a roughly straight back surface 5 in a side where force does not act. Pressure angles α of the back surface side are larger than pressure angles β of the front surface side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、回転駆動部材の歯と回転従動部材の歯とが噛み合い、前記回転駆動部材の一方向の回転力が前記歯を介して前記回転従動部材の方へ伝達されるようになっている一方向回転力伝達用歯の構造および二軸樹脂混練押出機における歯の構造に関するものである。
【0002】
【従来の技術】
一方向の回転力を伝達する装置の1つに二軸樹脂混練押出機が知られている。二軸樹脂混練押出機は、従来周知のように2本のスクリュからなり、その一部分が図3の(ロ)の平面図に示されている。スクリュ20は、スクリュ軸22と、スクリュセグメント30とからなり、スクリュ軸22の外周部には回転力をスクリュセグメント30に伝達する複数個の歯23、23、…が形成されている。これらの歯23、23、…には、インボリュートスプラインが使用されている。一方、スクリュセグメント30は、回転時に樹脂と接して樹脂に主として軸方向の推力を及ぼす作用面31と、組み立て時に隣接するスクリュセグメント30に接する接触面32とからなっている。そして、中心部にはスクリュ軸22の歯23、23、…に噛み合う、同様な歯形をした歯が形成されている。したがって、所定長さのスクリュ軸22に複数個のスクリュセグメント30、30、…を装着するとスクリュ20が構成され、これを図3の(ロ)に示されているように、シリンダバレル35内に所定の間隔に平行に配置すると、二軸樹脂混練押出機が構成される。なお、図3の(ロ)における他の符号36はニーディングディスクを示している。上記のように配置されている2本のスクリュ軸22、22を同方向あるいは異方向に回転駆動すると、スクリュ軸22、22の回転力が歯23、23、…を介してスクリュセグメント30、30、…に伝達され、スクリュセグメント30、30、…は回転駆動される。樹脂をシリンダバレル35の一方から供給すると、他方の端部に移送される間に従来周知のように溶融混練され、そして端部から押し出される。
【0003】
一方、主として一方向に回転力を伝達する歯車も、例えば特開2001−165280と特開平7−259872号とにより提案されている。前者の特開2001−165280に示されている歯形は、回転時に力が作用する歯の前面側とその背面側はインボリュート歯形になり、背面側の基準圧力角は前面側の基準圧力角よりも大きくなっている。また、後者の特開平7−259872号に記載されている歯は、回転時に力が作用する側の前面の湾曲の曲率は比較的小さく、背面は外側に凸で穏やかな湾曲を呈している。
【0004】
【発明が解決しようとする課題】
上記した従来の二軸樹脂混練押出機のスクリュ軸22の歯23は、インボリュート歯形をしているので、加工精度が比較的高く、また歯が均一に噛み合うという特徴を有する。しかしながら、二軸樹脂混練押出機のように、大きな回転トルクを一方向にのみ伝達する歯形としては、必ずしも適した歯形とはいえない。さらにその理由を説明する。図4の(イ)は、前述したインボリュート歯形を模式的に示す図であるが、同図に示されていえるように、回転時に力が作用する歯の前面24と背面25は、同じインボリュート曲線で、前面側と背面側の基準圧力角a、aも同じ大きさになっている。したがって、正逆同じように回転トルクを伝えることはできる利点はある。しかしながら、大きな力が前面24に作用すると、歯23が変形する。その様子が図4の(ロ)に示されている。図4の(ロ)は、実際の使用条件を想定した荷重(前面24と背面25は共にインボリュート曲線で、圧力角aが20度)で強度計算をした結果を示す図であるが、同図においてA部分には大きな引っ張り力が作用し、そしてB部分には圧縮力が作用していることが分かる。このような大きな応力が作用する結果、歯23は図4の(ロ)に示されているように変形し、そして破損する。
【0005】
特開2001−165280に示されている歯は、歯の前面と背面がインボリュート歯形になっているので、両方向に回転トルクを伝えることができる利点があり、また歯形が非対称形に形成され、背面側の基準圧力角が前面側の基準圧力角よりも大きくなっているので、比較的大きな回転トルクを伝達できる利点も認められる。しかしながら、両面がインボリュート歯形になっているので、両面を異なる曲面に加工する工作費が嵩む恐れがり、一方向にのみ回転力を伝達する歯形としては必ずしも適しているとはいえない。また、特開平7−259872号に示されている歯形も、非対称形に形成されているので、比較的大きな回転トルクを伝達できる利点も認められるが、同様に加工の点に問題がある。また、雌軸の歯形は、図5の(イ)に模式的に示されているように、力が作用する前面26は略直線状に形成され、背面27は内側に凹になるように湾曲して薄くなっている。したがって、前面26に大きな力が作用すると、図5の(ロ)においてA’で示す部分には引っ張り力が、そしてB’で示す部分には圧縮力が作用する。その結果、図5の(ロ)に示されているように歯は、容易に変形し破損する。
本発明は、上記したような従来の歯形の欠点あるいは問題点を解決した歯の構造を提供することを目的とし、具体的には比較的安価に加工することができるにも拘わらず、大きな回転力を伝達することができる一方向回転力伝達用歯の構造および高トルク、高強度の二軸樹脂混練押出機を得ることができるスクリュ軸あるいはスクリュセグメントの歯の構造を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、回転方向に着目した構成を採ることにより、上記目的を達成しようとするものである。すなわち、一方向にのみ回転力を伝達する歯は、回転時に力が作用する前面側と、その反対の背面側とを同じ形状あるいは対称形に構成する必要はなく、前面側は歯の噛み合いを考慮し、背面側は強度および加工性に重きをおいた構造に構成することにより達成される。噛み合いを考慮すれば、前面の形状はインボリュート曲線が望ましい。しかしながら、インボリュート曲線に準じた曲線例えばサイクロイド曲線でも滑らかに噛み合い、本発明の目的は達成される。歯の強度および加工性に重きをおいた構造は、略直線を呈する形状である。直線は曲線に比較して加工は容易である。また、歯の強度を向上させるために、背面側の圧力角は前面側の圧力角よりも大きく構成される。大きくすることにより、歯の根元部分の厚みが増し、圧縮応力に耐えるようになる。
かくして、請求項1に記載の発明は、上記目的を達成するために、回転駆動部材の歯と回転従動部材の歯とが噛み合い、前記回転駆動部材の一方向の回転力が前記歯を介して前記回転従動部材の方へ伝達されるようになっている一方向回転力伝達用歯の構造であって、前記歯は、回転時に力が作用する側の前面はインボリュート曲線もしくはインボリュート曲線に準じた曲線状に、そして非作用側の背面は略直線状に形成されていると共に、前記背面側の圧力角は前記前面側の圧力角よりも大きいように構成されている。
請求項2に記載の発明は、スクリュ軸と、該スクリュ軸の外周部に形成されている歯に噛み合う歯を有するスクリュセグメントとからなるスクリュが、平行に配置され、そして前記スクリュ軸の同方向あるいは異方向の一方向の回転力が、前記歯を介して前記スクリュセグメントの方へ伝達されるようになっている二軸樹脂混練押出機における歯の構造であって、前記歯は、回転時に力が作用する側の前面はインボリュート曲線もしくはインボリュート曲線に準じた曲線状に、そして非作用側の背面は略直線状に形成されていると共に、前記背面側の圧力角は前記前面側の圧力角よりも大きいように構成されている。
【0007】
【発明の実施の形態】
以下、図1、2により本発明の実施の形態を、二軸樹脂混練押出機に適用した例について説明する。二軸樹脂混練押出機は、従来周知のように、概略的には軸方向に所定長さのシリンダバレルと、このシリンダバレル内に所定の間隔をおいて設けられている2本のスクリュとからなっている。そして、これらのスクリュは回転駆動装置により、同方向あるいは異方向に回転駆動されるようになっている。このようなスクリュ1の、本発明の実施の形態が図1の(イ)に示されている。すなわち、スクリュ1はスクリュ軸2と、このスクリュ軸2に装着される複数個のスクリュセグメント10とからなっている。
【0008】
スクリュ軸2の外周部には複数個の歯3、3、…が軸方向に形成されている。歯3は、図1の(ロ)において実線で示されているように、回転時に、詳しくは後述するスクリュセグメント10の歯に直接伝達力が作用する前面4と、この前面4の反対側の伝達力が作用しない背面5と、前面4と背面5とを結んでいる頂面6とからなっている。前面の側面形状は、従来周知のインボリュート曲線あるいはインボリュート曲線に準じた曲線となっている。そして、背面5は、本実施の形態によると、略直線になっている。このように直線になっている背面5側の圧力角αは、前面4側の圧力角βよりも、0〜70度大きくなっている。本実施の形態によると、背面5は直線状に、そしてその圧力角は大きくなっているので、歯の加工は容易で、歯の根元は厚くなり強度は大きくなっている。
【0009】
スクリュセグメント10の外形は、従来周知のように、回転駆動されるときに樹脂と接するフライト面11と、組み立てたとき隣接する他のスクリュセグメントに接する接触面12とからなっている。そして、中心部には前述したスクリュ軸2に挿通される孔が設けられ、この孔の内周部に、前述したスクリュ軸2の歯3、3、…に噛み合う複数個の歯13、13、…が形成されている。これらの歯13、13、…は、図1の(ロ)において点線で示されているように、スクリュ軸2の歯3と相似形になっている。
【0010】
上記のように構成されているスクリュ軸2に複数個のスクリュセグメント10、10、…を装着すると、軸方向に所定長さのスクリュ1が構成される。2本のスクリュ1、1を、図3の(ロ)に示されているように、シリンダバレル35内に所定の間隔に平行に配置すると、二軸樹脂混練押出機が構成される。したがって、2本のスクリュ軸2、2を同方向あるいは異方向に回転駆動すると、スクリュ軸2、2の回転力が歯3、3、…13、13、…を介してスクリュセグメント10、10、…に伝達され、スクリュセグメント10、10、…は回転駆動される。樹脂をシリンダバレル35の一方から供給すると、スクリュフライト面11の表面の樹脂は、互いのスクリュフライト面11により掻き取られながら他方の端部に移送される。その間に従来周知のように溶融混練され、そして端部から押し出される。
【0011】
実施例:前面4をインボリュート曲線、背面5を直線、前面側の圧力角βを20度、背面側の圧力角αを55度として実際の使用条件を想定した荷重で強度計算をした結果を、図2の(ロ)に模式的に示す。本実施の形態によると、応力の集中が避けられ、引っ張り力aも圧縮力bも小さく、図4の(イ)に示されている歯形の強度に比較して約6.3%、図5の(イ)に示されている歯形の強度に対しては約20%以上も向上した。
【0012】
なお、格別に説明はされていないが、本発明は上記実施の形態に限定されることなく、一方向に回転力を伝達する一般的なスプラインについても、同様に実施できることは明らかである。
【0013】
【発明の効果】
以上のように、本発明によると、回転駆動部材の歯と回転従動部材の歯とが噛み合い、前記回転駆動部材の一方向の回転力が前記歯を介して前記回転従動部材の方へ伝達されるようになっている一方向回転力伝達用歯の構造が、あるいは2本のスクリュが平行に配置されてスクリュ軸の同方向あるいは異方向の一方向の回転力が、前記歯を介して前記スクリュセグメントの方へ伝達されるようになっている二軸樹脂混練押出機における歯の構造が、回転時に力が作用する側の前面はインボリュート曲線もしくはインボリュート曲線に準じた曲線状に、そして非作用側の背面は略直線状に形成されていると共に、前記背面側の圧力角は前記前面側の圧力角よりも大きいように構成されているので、すなわち前面はインボリュート曲線もしくはインボリュート曲線に準じた曲線状になっているので、機械加工精度が良く、回転駆動時には力が歯に均一に作用する効果が得られる。そして、本発明によると、非作用側の背面は略直線状に形成されていると共に、背面側の圧力角は前面側の圧力角よりも大きいように構成されているので、歯の機械加工は容易で、しかも歯の根元側の厚みが増し歯の強度は大きいという本発明に特有の効果が得られる。また、このように歯の機械加工は容易で歯の強度は高いので、高トルクに耐える高能力の二軸樹脂混練押出機を安価に得ることができる効果も得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す図で、その(イ)は、スクリュの実施の形態を示す斜視図、その(ロ)は歯の実施の形態を拡大してその一部を示す正面図である。
【図2】本発明の実施の形態に係わる歯の構造を示す図で、その(イ)は1本の歯を模式的に示す展開図、その(ロ)はその強度計算の結果を示す図である。
【図3】従来例を示す図で、その(イ)はスクリュの斜視図、その(ロ)は二軸樹脂混練押出機の一部を示す平面図である。
【図4】図3に示す従来の歯の構造を示す図で、その(イ)は1本の歯を模式的に示す展開図、その(ロ)はその強度計算の結果を示す図である。
【図5】さらに他の従来の歯の構造を示す図で、その(イ)はその1本の歯を模式的に示す展開図、その(ロ)はその強度計算の結果を示す図である。
【符号の説明】
1    スクリュ     2   スクリュ軸
3    歯        4   前面
5    背面      10   スクリュセグメント
13    歯        α   背面側の圧力角
β    前面側の圧力角
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, the teeth of the rotation driving member and the teeth of the rotation driven member mesh with each other, and the rotational force in one direction of the rotation driving member is transmitted to the rotation driven member via the teeth. The present invention relates to a structure of teeth for transmitting one-way rotational force and a structure of teeth in a biaxial resin kneading extruder.
[0002]
[Prior art]
A biaxial resin kneading extruder is known as one of the devices for transmitting the rotational force in one direction. The twin-screw kneading extruder is composed of two screws as is well known in the art, and a part thereof is shown in the plan view of FIG. The screw 20 includes a screw shaft 22 and a screw segment 30, and a plurality of teeth 23, 23,... For transmitting a rotational force to the screw segment 30 are formed on an outer peripheral portion of the screw shaft 22. An involute spline is used for these teeth 23, 23,.... On the other hand, the screw segment 30 is composed of an operating surface 31 that comes into contact with the resin during rotation and exerts mainly axial thrust on the resin, and a contact surface 32 that comes into contact with the adjacent screw segment 30 during assembly. In the center, teeth having the same tooth shape are formed so as to mesh with the teeth 23 of the screw shaft 22. Therefore, when a plurality of screw segments 30, 30,... Are mounted on the screw shaft 22 having a predetermined length, the screw 20 is formed, and the screw 20 is inserted into the cylinder barrel 35 as shown in FIG. When they are arranged in parallel at predetermined intervals, a biaxial resin kneading extruder is constituted. The other reference numeral 36 in FIG. 3B indicates a kneading disk. When the two screw shafts 22, 22 arranged as described above are rotationally driven in the same direction or in different directions, the rotational force of the screw shafts 22, 22 is transmitted through the teeth 23, 23,. , And the screw segments 30, 30,... Are rotationally driven. When the resin is supplied from one of the cylinder barrels 35, it is melt-kneaded as is well known in the art while being transferred to the other end, and extruded from the end.
[0003]
On the other hand, gears that mainly transmit rotational force in one direction have also been proposed in, for example, JP-A-2001-165280 and JP-A-7-259872. The tooth profile shown in the former Japanese Patent Application Laid-Open No. 2001-165280 has an involute tooth profile on the front side and the rear side of the tooth on which force acts during rotation, and the reference pressure angle on the rear side is larger than the reference pressure angle on the front side. It is getting bigger. Further, the tooth described in the latter Japanese Patent Application Laid-Open No. 7-259872 has a relatively small curvature of the front surface on the side on which a force acts during rotation, and the rear surface has a gentle outward curvature.
[0004]
[Problems to be solved by the invention]
Since the teeth 23 of the screw shaft 22 of the above-described conventional twin-screw kneading extruder have an involute tooth profile, they are characterized by relatively high processing accuracy and uniform meshing of the teeth. However, such a tooth profile that transmits a large rotational torque only in one direction, such as a biaxial resin kneading extruder, is not necessarily a suitable tooth profile. The reason will be further described. FIG. 4A is a diagram schematically showing the above-described involute tooth profile. As can be seen from FIG. 4, the front surface 24 and the rear surface 25 of the tooth on which a force acts during rotation have the same involute curve. Thus, the reference pressure angles a, a on the front side and the back side are also the same. Therefore, there is an advantage that the rotational torque can be transmitted in the same way as the forward and reverse directions. However, when a large force acts on the front face 24, the teeth 23 deform. This is shown in FIG. FIG. 4B is a diagram showing the result of strength calculation performed under a load (the front surface 24 and the back surface 25 are both involute curves and the pressure angle a is 20 degrees) assuming actual use conditions. It can be seen that a large tensile force is acting on portion A and a compressive force is acting on portion B. As a result of the application of such a large stress, the teeth 23 are deformed and broken as shown in FIG.
[0005]
The teeth disclosed in Japanese Patent Application Laid-Open No. 2001-165280 have the advantage of being able to transmit rotational torque in both directions because the front and back surfaces of the teeth are involute teeth. Since the reference pressure angle on the side is larger than the reference pressure angle on the front side, there is also an advantage that a relatively large rotational torque can be transmitted. However, since both surfaces have involute teeth, there is a possibility that machining costs for machining both surfaces into different curved surfaces may increase, and it is not always suitable as a tooth profile that transmits rotational force only in one direction. Further, the tooth profile disclosed in Japanese Patent Application Laid-Open No. 7-259872 is also formed to be asymmetrical, and thus has an advantage that a relatively large rotational torque can be transmitted. However, there is also a problem in processing. Further, as schematically shown in FIG. 5 (a), the tooth profile of the female shaft is formed so that the front surface 26 on which the force acts is formed substantially linearly, and the rear surface 27 is curved so as to be concave inward. And it's getting thinner. Therefore, when a large force acts on the front surface 26, a tensile force acts on a portion indicated by A 'and a compressive force acts on a portion indicated by B' in FIG. As a result, the teeth are easily deformed and broken as shown in FIG.
SUMMARY OF THE INVENTION An object of the present invention is to provide a tooth structure that solves the above-mentioned disadvantages or problems of the conventional tooth profile. It is an object of the present invention to provide a structure of teeth for transmitting unidirectional rotational force capable of transmitting a force and a structure of a tooth of a screw shaft or a screw segment capable of obtaining a high-torque, high-strength biaxial resin kneading extruder. I have.
[0006]
[Means for Solving the Problems]
The present invention achieves the above object by adopting a configuration focusing on the rotation direction. In other words, the teeth that transmit rotational force in only one direction need not have the same or symmetrical configuration on the front side where the force acts during rotation and the opposite back side, and the front side engages with the teeth. In consideration of this, the rear side is achieved by configuring the structure with an emphasis on strength and workability. In consideration of the engagement, the shape of the front surface is desirably an involute curve. However, even a curve similar to the involute curve, for example, a cycloid curve meshes smoothly, and the object of the present invention is achieved. The structure that emphasizes the strength and workability of the teeth has a shape that exhibits a substantially straight line. Straight lines are easier to process than curves. Further, in order to improve the strength of the teeth, the pressure angle on the back side is configured to be larger than the pressure angle on the front side. Increasing the thickness increases the thickness of the root portion of the tooth and allows it to withstand compressive stress.
Thus, according to the first aspect of the present invention, in order to achieve the above object, the teeth of the rotation drive member and the teeth of the rotation follower mesh with each other, and the rotational force in one direction of the rotation drive member is transmitted through the teeth. A structure of a one-way rotational force transmitting tooth configured to be transmitted toward the rotation driven member, wherein the tooth has a front surface on a side on which a force acts during rotation conforms to an involute curve or an involute curve. The back surface on the non-working side is formed in a curved line, and the pressure angle on the back surface is larger than the pressure angle on the front surface.
According to a second aspect of the present invention, there is provided a screw comprising a screw shaft and a screw segment having teeth meshing with teeth formed on an outer peripheral portion of the screw shaft, the screws being arranged in parallel, and in the same direction as the screw shaft. Alternatively, it is a tooth structure in a biaxial resin kneading extruder in which a rotational force in one direction in a different direction is transmitted to the screw segment via the teeth, wherein the teeth are rotated during rotation. The front face on which the force acts is formed in a curved shape according to an involute curve or an involute curve, and the back face on the non-working side is formed substantially linearly, and the pressure angle on the back face is the pressure angle on the front face side. It is configured to be larger than
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example in which the embodiment of the present invention is applied to a biaxial resin kneading extruder will be described with reference to FIGS. As is well known in the art, a twin-screw kneading extruder generally includes a cylinder barrel having a predetermined length in the axial direction and two screws provided at a predetermined interval in the cylinder barrel. Has become. These screws are driven to rotate in the same direction or in different directions by a rotary drive device. An embodiment of the present invention of such a screw 1 is shown in FIG. That is, the screw 1 includes a screw shaft 2 and a plurality of screw segments 10 mounted on the screw shaft 2.
[0008]
A plurality of teeth 3, 3, ... are formed in the outer peripheral portion of the screw shaft 2 in the axial direction. As shown by a solid line in FIG. 1 (b), the teeth 3 have a front surface 4 on which a transmitting force acts directly on the teeth of a screw segment 10 which will be described later in detail during rotation, and an opposite side of the front surface 4. It comprises a back surface 5 on which no transmission force acts and a top surface 6 connecting the front surface 4 and the back surface 5. The shape of the front side surface is a conventionally known involute curve or a curve based on the involute curve. And the back surface 5 is substantially straight according to the present embodiment. The pressure angle α on the back surface 5 side that is linear as described above is larger than the pressure angle β on the front surface 4 side by 0 to 70 degrees. According to this embodiment, since the back surface 5 is linear and the pressure angle is large, the processing of the teeth is easy, the roots of the teeth are thick and the strength is high.
[0009]
As is conventionally known, the outer shape of the screw segment 10 is composed of a flight surface 11 that comes into contact with the resin when driven to rotate, and a contact surface 12 that comes into contact with another adjacent screw segment when assembled. A hole is provided at the center of the screw shaft 2 to be inserted into the screw shaft 2. A plurality of teeth 13, 13, which mesh with the teeth 3, 3,. Are formed. These teeth 13, 13,... Have a similar shape to the teeth 3 of the screw shaft 2, as shown by the dotted line in FIG.
[0010]
When a plurality of screw segments 10, 10,... Are mounted on the screw shaft 2 configured as described above, the screw 1 having a predetermined length in the axial direction is formed. As shown in FIG. 3B, when the two screws 1 and 1 are arranged in the cylinder barrel 35 in parallel at a predetermined interval, a biaxial resin kneading extruder is formed. Therefore, when the two screw shafts 2, 2 are rotationally driven in the same direction or different directions, the rotational force of the screw shafts 2, 2 is transmitted through the teeth 3, 3, ... 13, 13, ... to the screw segments 10, 10,. , And the screw segments 10, 10,... Are rotationally driven. When the resin is supplied from one of the cylinder barrels 35, the resin on the surface of the screw flight surface 11 is transferred to the other end while being scraped off by the screw flight surfaces 11. In the meantime, it is melt-kneaded as is well known in the art and extruded from the end.
[0011]
Example: The results of strength calculation with a load assuming actual use conditions where the front surface 4 is an involute curve, the back surface 5 is a straight line, the front side pressure angle β is 20 degrees, and the back side pressure angle α is 55 degrees, This is schematically shown in FIG. According to the present embodiment, concentration of stress is avoided, and both the tensile force a and the compressive force b are small, which is about 6.3% as compared with the strength of the tooth profile shown in FIG. The strength of the tooth profile shown in (a) was improved by about 20% or more.
[0012]
Although not specifically described, it is apparent that the present invention is not limited to the above-described embodiment, but can be similarly applied to a general spline that transmits a rotational force in one direction.
[0013]
【The invention's effect】
As described above, according to the present invention, the teeth of the rotation driving member and the teeth of the rotation driven member mesh with each other, and the rotational force in one direction of the rotation driving member is transmitted to the rotation driven member via the teeth. The structure of the one-way torque transmitting tooth is such that two screws are arranged in parallel, and the one-way rotational force of the screw shaft in the same direction or different direction is transmitted through the teeth. The tooth structure of the twin-screw kneading extruder that is transmitted to the screw segment is such that the front surface on the side where the force acts during rotation has an involute curve or a curve similar to the involute curve, and no action The back side is formed substantially linearly, and the pressure angle on the back side is configured to be larger than the pressure angle on the front side, that is, the front side has an involute curve or an involute curve. Since the turned accordance curvilinear in volute curve, good machining precision, during driving rotation effect of forces act uniformly on the teeth is obtained. According to the present invention, the back surface on the non-working side is formed in a substantially linear shape, and the pressure angle on the back surface is configured to be larger than the pressure angle on the front surface. The effect unique to the present invention is that it is easy, the thickness at the root of the tooth is increased, and the strength of the tooth is large. Further, since the machining of the teeth is easy and the strength of the teeth is high, an effect that a high-capacity biaxial resin kneading extruder capable of withstanding a high torque can be obtained at low cost can be obtained.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of the present invention, in which (a) is a perspective view showing an embodiment of a screw, and (b) is an enlarged view of a part of an embodiment of a tooth and shows a part thereof. It is a front view.
FIG. 2 is a view showing a structure of a tooth according to an embodiment of the present invention, in which (a) is a developed view schematically showing one tooth, and (b) is a view showing a result of strength calculation thereof. It is.
FIG. 3 is a view showing a conventional example, in which (a) is a perspective view of a screw, and (b) is a plan view showing a part of a biaxial resin kneading extruder.
FIG. 4 is a view showing the structure of the conventional tooth shown in FIG. 3, wherein (a) is a developed view schematically showing one tooth, and (b) is a view showing the result of strength calculation. .
FIG. 5 is a view showing still another conventional tooth structure, in which (a) is a developed view schematically showing one tooth, and (b) is a view showing the result of strength calculation. .
[Explanation of symbols]
Reference Signs List 1 screw 2 screw shaft 3 teeth 4 front 5 back 10 screw segment 13 teeth α pressure angle on the back side β pressure angle on the front side

Claims (2)

回転駆動部材の歯と回転従動部材の歯とが噛み合い、前記回転駆動部材の一方向の回転力が前記歯を介して前記回転従動部材の方へ伝達されるようになっている一方向回転力伝達用歯の構造であって、
前記歯は、回転時に力が作用する側の前面はインボリュート曲線もしくはインボリュート曲線に準じた曲線状に、そして非作用側の背面は略直線状に形成されていると共に、前記背面側の圧力角は前記前面側の圧力角よりも大きいように構成されていることを特徴とする一方向動力伝達用歯の構造。
The teeth of the rotation driving member and the teeth of the rotation driven member mesh with each other, and the one-way rotation force of the rotation driving member is transmitted to the rotation driven member via the teeth. The structure of the transmitting teeth,
The tooth has a front surface on the side on which a force acts upon rotation in a curved shape in accordance with an involute curve or an involute curve, and a back surface on a non-working side has a substantially linear shape, and the pressure angle on the back side is The one-way power transmission tooth structure is configured to be larger than the pressure angle on the front side.
スクリュ軸と、該スクリュ軸の外周部に形成されている歯に噛み合う歯を有するスクリュセグメントとからなるスクリュが、平行に配置され、そして前記スクリュ軸の同方向あるいは異方向の一方向の回転力が、前記歯を介して前記スクリュセグメントの方へ伝達されるようになっている二軸樹脂混練押出機における歯の構造であって、
前記歯は、回転時に力が作用する側の前面はインボリュート曲線もしくはインボリュート曲線に準じた曲線状に、そして非作用側の背面は略直線状に形成されていると共に、前記背面側の圧力角は前記前面側の圧力角よりも大きいように構成されていることを特徴とする一方向動力伝達用歯の構造。
A screw composed of a screw shaft and a screw segment having teeth meshing with teeth formed on an outer peripheral portion of the screw shaft is arranged in parallel, and a rotational force of the screw shaft in one direction or another direction in the same direction. Is a tooth structure in a biaxial resin kneading extruder adapted to be transmitted toward the screw segment via the teeth,
The tooth has a front surface on the side on which a force acts upon rotation in a curved shape in accordance with an involute curve or an involute curve, and a back surface on a non-working side has a substantially linear shape, and the pressure angle on the back side is The one-way power transmission tooth structure is configured to be larger than the pressure angle on the front side.
JP2002201505A 2002-07-10 2002-07-10 Teeth structure in biaxial resin kneading extruder Expired - Lifetime JP3718188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201505A JP3718188B2 (en) 2002-07-10 2002-07-10 Teeth structure in biaxial resin kneading extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201505A JP3718188B2 (en) 2002-07-10 2002-07-10 Teeth structure in biaxial resin kneading extruder

Publications (2)

Publication Number Publication Date
JP2004044660A true JP2004044660A (en) 2004-02-12
JP3718188B2 JP3718188B2 (en) 2005-11-16

Family

ID=31708030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201505A Expired - Lifetime JP3718188B2 (en) 2002-07-10 2002-07-10 Teeth structure in biaxial resin kneading extruder

Country Status (1)

Country Link
JP (1) JP3718188B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632331A1 (en) * 2004-09-03 2006-03-08 Leistritz Aktiengesellschaft Extruder screw, extruder and shaft-hub connection
WO2006027096A1 (en) * 2004-09-03 2006-03-16 Leistritz Ag Extruder screw, extruder and shaft-hub connection
JP2014525359A (en) * 2011-09-01 2014-09-29 クラウスマッファイ ベルシュトルフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Extruder screw, extruder and method of manufacturing an extruder screw
CN107953536A (en) * 2016-10-18 2018-04-24 莱芬豪舍机械制造两合公司 The screw rod and extruder used in an extruder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632331A1 (en) * 2004-09-03 2006-03-08 Leistritz Aktiengesellschaft Extruder screw, extruder and shaft-hub connection
WO2006027096A1 (en) * 2004-09-03 2006-03-16 Leistritz Ag Extruder screw, extruder and shaft-hub connection
DE102004042746A1 (en) * 2004-09-03 2006-03-23 Leistritz Ag extruder screw
DE102004042746B4 (en) * 2004-09-03 2008-03-27 Leistritz Ag extruder screw
JP2008511469A (en) * 2004-09-03 2008-04-17 ライストリッツ アーゲー Extruder worm
KR100864105B1 (en) * 2004-09-03 2008-10-16 라이스트리츠 아게 Extruder screw, extruder and shaft-hub connection
US8678637B2 (en) 2004-09-03 2014-03-25 Leistritz Aktiengesellschaft Extruder screw, extruder and shaft-hub connection
JP2014525359A (en) * 2011-09-01 2014-09-29 クラウスマッファイ ベルシュトルフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Extruder screw, extruder and method of manufacturing an extruder screw
US9802352B2 (en) 2011-09-01 2017-10-31 Kraussmaffei Berstorff Gmbh Extruder screw, extruder, and method for producing an extruder screw
EP2750857B1 (en) * 2011-09-01 2018-10-31 KraussMaffei Berstorff GmbH Extruder screw, extruder, and method for producing an extruder screw
CN107953536A (en) * 2016-10-18 2018-04-24 莱芬豪舍机械制造两合公司 The screw rod and extruder used in an extruder
EP3311975A1 (en) * 2016-10-18 2018-04-25 Reifenhäuser GmbH & Co. KG Maschinenfabrik Screw for use in an extruder and extruder

Also Published As

Publication number Publication date
JP3718188B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
US8434928B2 (en) Extruder having parallel shafts with combined elements
JP4566240B2 (en) Extruder worm
JP5000661B2 (en) Multi-screw extruder
US8888374B1 (en) Bearing with antiskid design
TW201333348A (en) Backlash-free gear structure
US20150247563A1 (en) High torque power module
WO2009099072A1 (en) Worm wheel, method of producing injection molding die for worm wheel, and method of producing worm wheel
DE502005000045D1 (en) Gearbox for a twin-screw extruder
WO1987003945A1 (en) Tooth profile in intermeshing mechanism
JP2004044660A (en) Construction of toothing for one-way torque transmission
ATE390266T1 (en) EXTRUDER SCREW, EXTRUDER AND SHAFT-HUB CONNECTION
JP2000152557A5 (en)
JP6640626B2 (en) Drive transmission structure for twin screw extruder
BRPI0823190B1 (en) TORQUE TRANSMISSION SYSTEM
JP2009078361A (en) Segment screw for twin screw extruder
JP4170915B2 (en) Structure with multiple extruders
US856405A (en) Spiral gearing.
JP2007001221A (en) Screw for kneading extruder
CN114857235A (en) Harmonic speed reducer
JP2005534573A (en) Window glass wiper device and wiper arm especially for automobiles
JP3450136B2 (en) Drive of twin screw extruder
EP1141579B1 (en) Eccentric gear
JP2005022091A (en) Screw shaft
JPS58225264A (en) Inverse helical worm and manufacture of the same by way of rolling
WO2012153422A1 (en) Crown gear deceleration apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3718188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term