JP2004044629A - Positioning device and countervailing method coping with its irregularities - Google Patents

Positioning device and countervailing method coping with its irregularities Download PDF

Info

Publication number
JP2004044629A
JP2004044629A JP2002199720A JP2002199720A JP2004044629A JP 2004044629 A JP2004044629 A JP 2004044629A JP 2002199720 A JP2002199720 A JP 2002199720A JP 2002199720 A JP2002199720 A JP 2002199720A JP 2004044629 A JP2004044629 A JP 2004044629A
Authority
JP
Japan
Prior art keywords
process chamber
positioning device
valve
negative pressure
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002199720A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
中村 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002199720A priority Critical patent/JP2004044629A/en
Publication of JP2004044629A publication Critical patent/JP2004044629A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid
    • F16C33/748Sealings of sliding-contact bearings by means of a fluid flowing to or from the sealing gap, e.g. vacuum seals with differential exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positioning device and a method for coping with its irregularities capable of avoiding or lessening the influence of its irregularities even though any trouble occurrs in a source of exhaust. <P>SOLUTION: When any irregularity occurrs in an exhaust pump P2, a pipe 14 is blocked with a valve V2 before fluid sucking powers of the exhaust pump P2 are completely lost. Therefore, external air is not entered into a differential pressure chamber 11c through the pipe 14 even though the positioning device is exposed to external air via the exhaust pump 2. A drastic decrease of sealing performance of a differential exhaust seal is effectively controlled accordingly. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば外部環境から隔離された室内でワークを移動可能な位置決め装置及びその異常時対象方法に関する。
【0002】
【従来の技術】
半導体製造装置などにおいては、真空や特殊ガス雰囲気に維持したプロセス室内で、ワークをステージに載置して移動させて加工処理することが行われている。ここで、プロセス室内に位置決め装置を設けると、その可動部に補給する潤滑剤などが飛散してプロセス室内を汚染するおそれがある。
【0003】
このような問題に対して、たとえば米国特許第4191385号には、一体型負圧密封式ガス軸受組立体が開示されている。かかる従来技術においては、軸受ブロック上に2次元方向に移動可能な可動部を設け、さらに軸受ブロックと可動部との間にプロセス室を形成し、差動排気シールによりプロセス室と外部とを密封することによって、プロセス室を負圧環境に維持したまま、その内部で可動部上に載置したワークの処理を行えるようにしている。従って、ワークを駆動する駆動部をプロセス室外に設置することができ、それによりプロセス室の汚染を抑止でき、また駆動部のメンテナンスも容易に行えるようになっている。
【0004】
【発明が解決しようとする課題】
ところで、かかる構成においては、差動排気シールを動作させるための排気ポンプや配管に何らかのトラブルが生じると、プロセス室内に大気が侵入して気圧が増大するなどの問題が生じ、処理中の対象物が不良品となってしまう恐れがある。
【0005】
そこで本発明は、かかる従来技術の問題点に鑑み、排気源に何らかのトラブルが生じても、その影響を回避もしくは軽微にすることができる位置決め装置及びその異常時対処方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、第1の本発明の位置決め装置は、
減圧下に曝されるプロセス室内に連通する開口と、案内面とを備えた筐体と、
前記案内面に対して所定の隙間を介して対向した状態で、少なくとも一方向に移動可能に設けられた移動ブロックと、
前記筐体と前記移動ブロックとの間に設けられ、前記プロセス室内と、前記プロセス室内よりも高圧のプロセス室外との間をシールする差動排気シールと、
前記差動排気シールと負圧源とを連通する配管を、開放もしくは閉止するバルブと、
前記バルブを駆動する駆動装置とを有し、
前記駆動装置は、前記負圧源の異常を検出することにより、前記負圧源の流体吸引動作が停止する前に前記バルブを駆動して、前記配管を閉止するようになっていることを特徴とする。
【0007】
第2の本発明の位置決め装置の異常時対処方法は、
減圧下に曝されるプロセス室内に連通する開口と、案内面とを備えた筐体と、前記案内面に対して所定の隙間を介して対向した状態で、少なくとも一方向に移動可能に設けられた移動ブロックと、前記筐体と前記移動ブロックとの間に設けられ、前記プロセス室内と、前記プロセス室内よりも高圧のプロセス室外との間をシールする差動排気シールとを有する位置決め装置の異常時対処方法において、
前記差動排気シールに接続された配管を介して流体を吸引する負圧源に異常が生じた場合、前記負圧源の流体吸引動作が停止する前に前記配管を閉止することを特徴とする。
【0008】
【作用】
第1の本発明の位置決め装置は、減圧下に曝されるプロセス室内に連通する開口と、案内面とを備えた筐体と、前記案内面に対して所定の隙間を介して対向した状態で、少なくとも一方向に移動可能に設けられた移動ブロックと、前記筐体と前記移動ブロックとの間に設けられ、前記プロセス室内と、前記プロセス室内よりも高圧のプロセス室外との間をシールする差動排気シールと、前記差動排気シールと負圧源とを連通する配管を、開放もしくは閉止するバルブと、前記バルブを駆動する駆動装置とを有し、前記駆動装置は、前記負圧源の異常を検出することにより、前記負圧源の流体吸引動作が停止する前に前記バルブを駆動して、前記配管を閉止するようになっているので、前記負圧源に異常が生じた場合、前記プロセス室の気圧が上昇する時間を遅らせることで、例えば処理中の処理対象物を密封するなどの措置をとることができ、処理対象物が受けるダメージを抑制できる。
【0009】
更に、前記差動排気シールは複数設けられており、前記バルブは、前記プロセス室に近い側の前記差動排気シールに接続された配管に対して設けられていると、コストを抑えつつも、前記負圧源の異常に対処できるので好ましい。
【0010】
又、流体吸引動作が停止する前に、前記負圧源の異常を検出して信号を出力する検出装置を有し、前記検出装置からの信号に応じて、前記駆動装置は前記バルブを駆動すると好ましい。
【0011】
第2の本発明の位置決め装置の異常時対処方法は、減圧下に曝されるプロセス室内に連通する開口と、案内面とを備えた筐体と、前記案内面に対して所定の隙間を介して対向した状態で、少なくとも一方向に移動可能に設けられた移動ブロックと、前記筐体と前記移動ブロックとの間に設けられ、前記プロセス室内と、前記プロセス室内よりも高圧のプロセス室外との間をシールする差動排気シールとを有する位置決め装置の異常時対処方法において、前記差動排気シールに接続された配管を介して流体を吸引する負圧源に異常が生じた場合、前記負圧源の流体吸引動作が停止する前に前記配管を閉止するので、前記負圧源に異常が生じた場合、前記プロセス室の気圧が上昇する時間を遅らせることで、例えば処理中の処理対象物を密封するなどの措置をとることができ、処理対象物が受けるダメージを抑制できる。
【0012】
本明細書中で用いる差動排気シールとは、例えば対向する2面間の微小な間隙にある気体を排気することにより、非接触の状態で、対向面を挟む両側の雰囲気(例えば大気圧と高真空)を一定の状態に保つように機能するものをいう。以下に述べる実施の形態においては、排気面を有する部材を差動排気シールという。
【0013】
【発明の実施の形態】
以下、図面を参照し、比較例と対比しながら本発明の好適な実施の形態について説明する。図1は、比較例として示す位置決め装置の概略断面図であり、図2は、本実施の形態の位置決め装置の概略断面図である。
【0014】
図2(a)に示すように、本実施の形態の位置決め装置10は、プロセス室Pを内包し、又プロセス室Pとその外部とを連通する円筒状の開口11aを有する筐体11と、開口11aに挿通され、矢印方向に移動可能となっている移動ブロックすなわち軸12とを有している。尚、軸12は、不図示のガイドにより開口11aの内周面に対して微小隙間を維持した状態で支持されている。又、プロセス室Pは、不図示のターボ分子ポンプにより吸引され真空に近い負圧となっている。
【0015】
更に、筐体11の開口11aの内周面(案内面)には、3つの周溝(差圧室)11b、11c、11dが形成されている。差圧室11b、11c、11dは、それぞれ配管13,14,15により、負圧源である外部の排気ポンプP1,P2,P3に接続されている。プロセス室Pに近い側の差圧室11b、11cに連通する配管13、14にはバルブV1,V2が配置されている。
【0016】
駆動装置16は、排気ポンプP1,P2を駆動制御すると共に、バルブV1,V2を駆動制御して配管13,14を個々に開放もしくは閉止させる機能を有する。検出装置17は、排気ポンプP1、P2を監視する機能を有し、その異常を発見すると駆動装置16に信号を送信するようになっている。尚、排気ポンプの異常は、排気ポンプを冷却する冷却水の温度上昇や減少、パージ用気体(N)の供給停止、ロータの負荷増大、ポンプ本体の異常発熱などの情報を単独もしくは組み合わせて判断できる。それらの情報は、例えばロータの負荷増大は、ロータへの供給電力の変化を監視することでリアルタイムで得られ、又、異常発熱は、ポンプ各部に熱電対などを設置することで同様にリアルタイムで得ることができる。更に、配管13,14におけるバルブV1,V2と排気ポンプP1,P2との間の部位に気体漏れが生じた場合にも、検出装置17は異常と検出して信号を出力することもできる。
【0017】
尚、図1(a)に示す比較例は、図2(a)の実施形態に対して、バルブV1,V2、駆動装置16,検出装置17を設けていない点のみが異なり、それ以外の点は共通するため、同一の符号を付して説明を省略する。
【0018】
本実施の形態の動作について、図3のフローチャートを更に参照して説明する。不図示の駆動源の駆動力が、軸12に伝達されると、軸12は図2に示す矢印方向に移動(又は回転)するので、軸12の奥端にワークを取り付けていれば、かかるワークを任意の位置に移動(又は回転)させ、プロセス室内の真空雰囲気内での処理を行うことができる。又、このとき駆動装置16は、バルブV1,V2を開放しているため、差圧室11b、11c、11dは、それぞれ配管13,14,15を介して排気ポンプP1,P2,P3に吸引されており、従って筐体11の外部が大気圧であったとしても、軸12の移動に関わらず、プロセス室Pの真空度は維持されるようになっている。
【0019】
ところで、図1(a)に示す比較例において、排気ポンプP2に異常が発生し、最終的に流体吸引能力を喪失したとすると、排気ポンプP2を介して差圧室11cに外部の空気が流入するので、差圧室11c内の気圧は急速に大気圧に近づく。かかる場合、排気ポンプP3が正常に動作していたとしても、それはプロセス室Pの真空度を維持することに貢献せず、図1(b)に示す位置決め装置と等価な状態となる。かかる場合、プロセス室の真空度を維持するには、排気ポンプP1の流体吸引応力のみに頼らざるを得なくなるが、そのような不測の事態に備えて排気ポンプP1に余裕を持たせるためには、非常に高性能な排気ポンプを用いる必要がある。以下に説明するように、本実施の形態によれば、このような問題を回避できる。なお、図1では排気ポンプP2が異常で停止する場合について示しているが、排気ポンプP1が異常で停止した場合はさらに大きな問題となる。すなわち、差動排気シールがまったくない状態とほぼ等価な状態となり、プロセス室Pの真空が成り立たなくなる。
【0020】
図3に示す本実施の形態にかかる制御において、ステップS101で、検出装置17は、排気ポンプP1,P2の異常を監視し続ける。ここで、例えば図2(a)のように排気ポンプP2に異常が生じた場合、ステップS102以降の異常時対処方法が実行される。より具体的には、ステップS101で、検出装置17は、排気ポンプP2に閾値を超えた温度上昇などの異常が発生したことを検出した場合、ステップS102で、それを示す信号を駆動装置16に出力する。ステップS103で、駆動装置16は、検出装置17からの信号に応動して、異常が生じた排気ポンプP2に対応するバルブV2を駆動して、配管14を閉止する。
【0021】
更に駆動装置16は、ステップS104で、バルブ閉止から所定時間経過するまで待ち、所定時間経過後に、ステップS105で排気ポンプP2の動作を停止させる。
【0022】
本実施の形態によれば、排気ポンプP2の流体吸引能力が完全に失われる前に、バルブV2で配管14を閉止するので、その後排気ポンプP2を介して大気に開放されたとしても、配管14から差圧室11cに外部の空気が流入することはなくなるため、差動排気シールにおけるシール性能の急激な低下を抑えることができる。かかる効果は、差圧室11c及び差圧室11cからバルブV2までの空間に、本来排気ポンプP2により吸引されるべき気体が満たされて平衡状態になるまで続く。尚、平衡状態になった後には、本実施の形態においては、図2(b)に示す位置決め装置と等価な状態となり、すなわち排気ポンプP1のみならず排気ポンプP3も、有効に外部からの空気がプロセス室Pに侵入することを抑制するように機能しており、シール性能の低下は最小限に抑えられることとなるため、例えばこの状態のまま排気ポンプP2の修理を行ったり、或いは排気ポンプP2を修理する時間の間、軸12に取り付けたワークを密封するなどの措置をとることができる。
【0023】
尚、図2から明らかであるが、排気ポンプP1に異常が生じた場合、同様にバルブV1で配管13を閉止すればよい。これによって、比較例の場合で排気ポンプP1に異常が生じた際のように、プロセス室Pの真空破壊が起こることが防止される。本実施の形態においては、プロセス室Pから遠い側の配管15にバルブを設けていないのは、それに通じる差圧室11dが、大気に隣接しているため、たとえ排気ポンプP3に異常が生じて配管15を閉止したとしても、差圧室11dの気圧がすぐに大気圧に近づくため、効果がさほど高くなく、コストとの兼合いを考慮して省いたものである。更に、本実施の形態では3段の(差圧室が3つ配置されている)差動排気シールについて説明したが、2段もしくは4段以上の差動排気シールにも同様に適用できるし、軸12と開口11aとの隙間が十分小さければ、プロセス室Pの気圧上昇を遅らせる点で効果があるため、1段の差動排気シールにも適用できる。なお、上述のように、本実施の形態では排気ポンプP3の配管15にはバルブを設けていないが、バルブを設けない場合と比べると設けた方が多少は効果があるため、及びポンプからのグリース等の逆拡散が防止できるため、配管15にもバルブを設け、P3の異常検出及びバルブ閉止等を行えるようすると、より好ましい。
【0024】
図4は、第2の実施の形態にかかる位置決め装置の概略断面図である。本実施の形態においては、筐体と移動ブロックの形状、及び差動排気シールを2段とした点のみが異なるので、構成が共通する点については同一の符号を付して説明を省略する。
【0025】
図4において、内部にプロセス室Pを有する筐体11’は底壁がなく、ここは板状の移動ブロック12’により、微小隙間をあけてふさがれている。移動ブロック12’は、不図示のガイドに支持されて、図で左右方向及び紙面に垂直方向に移動可能となっている。
【0026】
筐体11’の側壁が開口を形成し、その端面が案内面11a’となっている。かかる案内面11a’には、2つの周溝(差圧室)11c、11dが形成されている。差圧室11c、11dは、それぞれ配管14,15により、負圧源である外部の排気ポンプP2,P3に接続されている。プロセス室Pに近い側の差圧室11cに連通する配管14にはバルブV2が配置されている。
【0027】
駆動装置16は、排気ポンプP2を駆動制御すると共に、バルブV2を駆動制御して配管14を個々に開放もしくは閉止させる機能を有する。検出装置17は、排気ポンプP2を監視する機能を有し、その異常を発見すると駆動装置16に信号を送信するようになっている。
【0028】
本実施の形態においても、排気ポンプP2に異常が生じた場合、排気ポンプP2の流体吸引能力が完全に失われる前に、バルブV2で配管14を閉止するので、その後排気ポンプP2を介して大気に開放されたとしても、配管14から差圧室11cに外部の空気が流入することはなくなるため、差動排気シールにおけるシール性能の急激な低下を抑えることができる。
【0029】
以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。例えば、排気ポンプの異常を検出装置で検出し、それに応じて自動的に駆動装置が、異常の生じた排気ポンプに対応するバルブを閉止するようにしているが、計器類から作業者が排気ポンプの異常を検出し、排気ポンプが流体吸引応力を失う前に、対応するバルブを閉止するようにしても良い。
【0030】
【発明の効果】
第1の本発明の位置決め装置は、減圧下に曝されるプロセス室内に連通する開口と、案内面とを備えた筐体と、前記案内面に対して所定の隙間を介して対向した状態で、少なくとも一方向に移動可能に設けられた移動ブロックと、前記筐体と前記移動ブロックとの間に設けられ、前記プロセス室内と、前記プロセス室内よりも高圧のプロセス室外との間をシールする差動排気シールと、前記差動排気シールと負圧源とを連通する配管を、開放もしくは閉止するバルブと、前記バルブを駆動する駆動装置とを有し、前記駆動装置は、前記負圧源の異常を検出することにより、前記負圧源の流体吸引動作が停止する前に前記バルブを駆動して、前記配管を閉止するようになっているので、前記負圧源に異常が生じた場合、前記プロセス室の気圧が上昇する時間を遅らせることで、例えば処理中の処理対象物を密封するなどの措置をとることができ、処理対象物が受けるダメージを抑制できる。
【0031】
第2の本発明の位置決め装置の異常時対処方法は、減圧下に曝されるプロセス室内に連通する開口と、案内面とを備えた筐体と、前記案内面に対して所定の隙間を介して対向した状態で、少なくとも一方向に移動可能に設けられた移動ブロックと、前記筐体と前記移動ブロックとの間に設けられ、前記プロセス室内と、前記プロセス室内よりも高圧のプロセス室外との間をシールする差動排気シールとを有する位置決め装置の異常時対処方法において、前記差動排気シールに接続された配管を介して流体を吸引する負圧源に異常が生じた場合、前記負圧源の流体吸引動作が停止する前に前記配管を閉止するので、前記負圧源に異常が生じた場合、前記プロセス室の気圧が上昇する時間を遅らせることで、例えば処理中の処理対象物を密封するなどの措置をとることができ、処理対象物が受けるダメージを抑制できる。
【図面の簡単な説明】
【図1】比較例にかかる位置決め装置の概略構成図である。
【図2】本実施の形態にかかる位置決め装置の概略構成図である。
【図3】本実施の形態にかかる制御フローチャートである。
【図4】第2の実施の形態にかかる位置決め装置の概略構成図である。
【符号の説明】
11、11’ 筐体
12 軸
12’ 移動ブロック
13,14,15 配管
16 駆動装置
17 検出装置
V1,V2 バルブ
P1,P2,P3 排気ポンプ
P プロセス室
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positioning device capable of moving a work in a room isolated from an external environment, for example, and a method applicable to an abnormal condition thereof.
[0002]
[Prior art]
2. Description of the Related Art In a semiconductor manufacturing apparatus and the like, a work is performed by mounting and moving a work on a stage in a process chamber maintained in a vacuum or a special gas atmosphere. Here, when the positioning device is provided in the process chamber, there is a possibility that lubricant or the like supplied to the movable portion may scatter and contaminate the process chamber.
[0003]
To address this problem, for example, U.S. Pat. No. 4,191,385 discloses an integrated negative pressure sealed gas bearing assembly. In such a conventional technique, a movable portion movable in a two-dimensional direction is provided on a bearing block, a process chamber is formed between the bearing block and the movable portion, and the process chamber and the outside are sealed by a differential exhaust seal. By doing so, it is possible to process a workpiece placed on a movable part inside the process chamber while maintaining the process chamber in a negative pressure environment. Therefore, the drive unit for driving the work can be installed outside the process chamber, whereby the contamination of the process chamber can be suppressed, and the drive unit can be easily maintained.
[0004]
[Problems to be solved by the invention]
By the way, in such a configuration, if any trouble occurs in an exhaust pump or a pipe for operating the differential exhaust seal, a problem such as an increase in the atmospheric pressure due to the intrusion of the atmosphere into the process chamber occurs, and May be defective.
[0005]
Therefore, the present invention has been made in view of the problems of the related art, and has as its object to provide a positioning device capable of avoiding or minimizing the influence of any trouble in an exhaust source and a method of coping with the abnormality when the trouble occurs. I do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a positioning device according to a first aspect of the present invention includes:
An opening communicating with the process chamber exposed to the reduced pressure, and a housing having a guide surface;
A moving block provided so as to be movable in at least one direction, in a state facing the guide surface via a predetermined gap,
A differential exhaust seal provided between the housing and the moving block, for sealing between the process chamber and the outside of the process chamber at a higher pressure than the process chamber,
A valve that opens or closes a pipe that communicates the differential exhaust seal with the negative pressure source,
A driving device for driving the valve,
The drive device detects the abnormality of the negative pressure source, drives the valve before the fluid suction operation of the negative pressure source stops, and closes the pipe. And
[0007]
The second method of coping with an abnormality of the positioning device of the present invention is as follows.
An opening communicating with the process chamber exposed to the reduced pressure; a housing having a guide surface; and a housing provided to be movable in at least one direction in a state facing the guide surface with a predetermined gap therebetween. Abnormality of a positioning device that is provided between the movable block and the casing and the movable block, and has a differential exhaust seal that seals between the process chamber and the outside of the process chamber having a higher pressure than the process chamber. When dealing with
When an abnormality occurs in a negative pressure source that sucks fluid through a pipe connected to the differential exhaust seal, the pipe is closed before the fluid suction operation of the negative pressure source stops. .
[0008]
[Action]
A positioning device according to a first aspect of the present invention includes a housing including an opening communicating with a process chamber exposed to a reduced pressure, a guide surface, and a housing facing the guide surface via a predetermined gap. A moving block provided so as to be movable in at least one direction, a difference provided between the housing and the moving block, and sealing between the process chamber and the outside of the process chamber at a higher pressure than the process chamber. A dynamic exhaust seal, a valve that opens or closes a pipe that communicates the differential exhaust seal with the negative pressure source, and a driving device that drives the valve; and the driving device includes a driving device for the negative pressure source. By detecting the abnormality, the valve is driven before the fluid suction operation of the negative pressure source stops, and the pipe is closed, so when an abnormality occurs in the negative pressure source, The pressure in the process chamber is By delaying the time to rise, for example, the processing object in the process can take measures such as sealing, it is possible to suppress the damage that the processing object is subjected.
[0009]
Furthermore, a plurality of the differential exhaust seals are provided, and when the valve is provided for a pipe connected to the differential exhaust seal on the side close to the process chamber, while reducing costs, This is preferable because abnormality in the negative pressure source can be dealt with.
[0010]
In addition, before the fluid suction operation is stopped, the device has a detection device that detects an abnormality of the negative pressure source and outputs a signal, and the driving device drives the valve according to a signal from the detection device. preferable.
[0011]
According to a second aspect of the present invention, there is provided a method for coping with an abnormality of a positioning device, comprising: an opening communicating with a process chamber exposed to a reduced pressure; a housing having a guide surface; and a predetermined gap with respect to the guide surface. A moving block provided so as to be movable in at least one direction, and provided between the housing and the moving block, the process chamber and the outside of the process chamber having a higher pressure than the process chamber. In a method for coping with an abnormality of a positioning device having a differential exhaust seal that seals a gap, when an abnormality occurs in a negative pressure source that sucks fluid through a pipe connected to the differential exhaust seal, the negative pressure Since the pipe is closed before the fluid suction operation of the source is stopped, when an abnormality occurs in the negative pressure source, by delaying the time during which the pressure in the process chamber rises, for example, the processing target being processed is To seal What measures can take, it is possible to suppress the damage that the processing object is subjected.
[0012]
The differential exhaust seal used in this specification refers to, for example, exhausting a gas in a minute gap between two opposing surfaces so that, in a non-contact state, the atmosphere on both sides sandwiching the opposing surfaces (for example, atmospheric pressure and (High vacuum) to maintain a constant state. In the embodiment described below, a member having an exhaust surface is referred to as a differential exhaust seal.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in comparison with comparative examples with reference to the drawings. FIG. 1 is a schematic sectional view of a positioning device shown as a comparative example, and FIG. 2 is a schematic sectional view of a positioning device of the present embodiment.
[0014]
As shown in FIG. 2A, a positioning device 10 according to the present embodiment includes a housing 11 including a process chamber P and having a cylindrical opening 11a communicating the process chamber P with the outside thereof. It has a moving block, that is, a shaft 12, which is inserted through the opening 11a and is movable in the direction of the arrow. The shaft 12 is supported by a guide (not shown) while maintaining a small gap with respect to the inner peripheral surface of the opening 11a. The process chamber P is suctioned by a turbo molecular pump (not shown) and has a negative pressure close to vacuum.
[0015]
Further, three peripheral grooves (differential pressure chambers) 11b, 11c, and 11d are formed on the inner peripheral surface (guide surface) of the opening 11a of the housing 11. The differential pressure chambers 11b, 11c, and 11d are connected to external exhaust pumps P1, P2, and P3, which are negative pressure sources, by pipes 13, 14, and 15, respectively. Valves V1 and V2 are arranged in pipes 13 and 14 communicating with the differential pressure chambers 11b and 11c on the side closer to the process chamber P.
[0016]
The driving device 16 has a function of controlling the driving of the exhaust pumps P1 and P2 and controlling the valves V1 and V2 to open or close the pipes 13 and 14 individually. The detection device 17 has a function of monitoring the exhaust pumps P1 and P2, and transmits a signal to the drive device 16 when an abnormality is detected. In addition, the abnormality of the exhaust pump is determined by combining information such as temperature rise or decrease of the cooling water for cooling the exhaust pump, supply of the purge gas (N 2 ), increase of the load on the rotor, and abnormal heat generation of the pump body. I can judge. Such information can be obtained in real time, for example, by increasing the load on the rotor by monitoring changes in the power supplied to the rotor, and abnormal heat can also be generated in real time by installing thermocouples, etc., at each part of the pump. Obtainable. Further, when gas leaks occur in the portions of the pipes 13 and 14 between the valves V1 and V2 and the exhaust pumps P1 and P2, the detection device 17 can also output a signal by detecting an abnormality.
[0017]
Note that the comparative example shown in FIG. 1A is different from the embodiment of FIG. 2A only in that the valves V1 and V2, the driving device 16, and the detecting device 17 are not provided. Since they are common, the same reference numerals are given and the description is omitted.
[0018]
The operation of the present embodiment will be described with further reference to the flowchart of FIG. When the driving force of a driving source (not shown) is transmitted to the shaft 12, the shaft 12 moves (or rotates) in the direction of the arrow shown in FIG. The workpiece can be moved (or rotated) to an arbitrary position to perform processing in a vacuum atmosphere in the process chamber. At this time, since the drive device 16 has opened the valves V1 and V2, the differential pressure chambers 11b, 11c and 11d are sucked by the exhaust pumps P1, P2 and P3 via the pipes 13, 14, and 15, respectively. Therefore, even if the outside of the housing 11 is at atmospheric pressure, the degree of vacuum in the process chamber P is maintained regardless of the movement of the shaft 12.
[0019]
By the way, in the comparative example shown in FIG. 1A, if an abnormality occurs in the exhaust pump P2 and the fluid suction capacity is finally lost, external air flows into the differential pressure chamber 11c via the exhaust pump P2. Therefore, the pressure in the differential pressure chamber 11c quickly approaches the atmospheric pressure. In such a case, even if the exhaust pump P3 operates normally, it does not contribute to maintaining the degree of vacuum in the process chamber P, and is in a state equivalent to the positioning device shown in FIG. 1B. In such a case, in order to maintain the degree of vacuum in the process chamber, it is necessary to rely only on the fluid suction stress of the exhaust pump P1, but in order to allow the exhaust pump P1 to have a margin for such an unexpected situation. It is necessary to use a very high performance exhaust pump. As described below, according to the present embodiment, such a problem can be avoided. Although FIG. 1 shows a case where the exhaust pump P2 stops due to an abnormality, a more serious problem occurs when the exhaust pump P1 stops due to an abnormality. That is, the state becomes substantially equivalent to a state in which there is no differential exhaust seal at all, and a vacuum in the process chamber P cannot be established.
[0020]
In the control according to the present embodiment shown in FIG. 3, in step S101, the detection device 17 continues to monitor the abnormality of the exhaust pumps P1 and P2. Here, for example, when an abnormality occurs in the exhaust pump P2 as shown in FIG. 2A, the abnormality coping method from step S102 is executed. More specifically, in step S101, when the detecting device 17 detects that an abnormality such as a temperature rise exceeding a threshold value has occurred in the exhaust pump P2, a signal indicating the abnormality is sent to the driving device 16 in step S102. Output. In step S103, the driving device 16 drives the valve V2 corresponding to the exhaust pump P2 in which the abnormality has occurred in response to the signal from the detection device 17, and closes the pipe 14.
[0021]
Further, in step S104, the driving device 16 waits until a predetermined time has elapsed since the valve was closed, and after the predetermined time has elapsed, stops the operation of the exhaust pump P2 in step S105.
[0022]
According to the present embodiment, the pipe 14 is closed by the valve V2 before the fluid suction capacity of the exhaust pump P2 is completely lost, so that even if the pipe 14 is opened to the atmosphere via the exhaust pump P2, the pipe 14 is closed. As a result, the outside air does not flow into the differential pressure chamber 11c, so that it is possible to suppress a sharp decrease in the sealing performance of the differential exhaust seal. This effect continues until the differential pressure chamber 11c and the space from the differential pressure chamber 11c to the valve V2 are filled with the gas that should be originally sucked by the exhaust pump P2, and the equilibrium state is reached. After the equilibrium state is reached, in this embodiment, the state becomes equivalent to that of the positioning device shown in FIG. 2B, that is, not only the exhaust pump P1 but also the exhaust pump P3 is effectively made to receive air from the outside. Is prevented from entering the process chamber P, and a decrease in the sealing performance is minimized. For example, the exhaust pump P2 may be repaired in this state, or the exhaust pump P2 may be repaired. During the time for repairing P2, measures such as sealing the work attached to the shaft 12 can be taken.
[0023]
As is apparent from FIG. 2, when an abnormality occurs in the exhaust pump P1, the pipe 13 may be closed by the valve V1. This prevents the vacuum break of the process chamber P from occurring as in the case of the comparative example in which an abnormality occurs in the exhaust pump P1. In the present embodiment, the valve is not provided in the pipe 15 on the side far from the process chamber P because the differential pressure chamber 11d connected to the pipe 15 is adjacent to the atmosphere, and therefore, even if an abnormality occurs in the exhaust pump P3. Even if the pipe 15 is closed, the pressure in the differential pressure chamber 11d immediately approaches the atmospheric pressure, so that the effect is not so high and is omitted in consideration of cost. Further, in the present embodiment, a three-stage differential exhaust seal (in which three differential pressure chambers are arranged) has been described, but the present invention can be similarly applied to a two-stage or four-stage or more differential exhaust seal. If the gap between the shaft 12 and the opening 11a is sufficiently small, there is an effect in delaying the rise in the pressure of the process chamber P, so that the present invention can be applied to a one-stage differential exhaust seal. As described above, in the present embodiment, a valve is not provided in the pipe 15 of the exhaust pump P3. However, the provision of the valve is somewhat more effective than the case where no valve is provided. Since the back diffusion of grease or the like can be prevented, it is more preferable to provide a valve also in the pipe 15 so that P3 abnormality detection and valve closing can be performed.
[0024]
FIG. 4 is a schematic cross-sectional view of the positioning device according to the second embodiment. In the present embodiment, the only difference is the shape of the housing and the moving block, and the point that the differential exhaust seal is provided in two stages.
[0025]
In FIG. 4, a housing 11 'having a process chamber P therein has no bottom wall, and is closed by a plate-shaped moving block 12' with a small gap. The moving block 12 'is supported by a guide (not shown), and is movable in the left-right direction and the direction perpendicular to the plane of the drawing.
[0026]
The side wall of the housing 11 'forms an opening, and its end surface serves as a guide surface 11a'. Two circumferential grooves (differential pressure chambers) 11c and 11d are formed on the guide surface 11a '. The differential pressure chambers 11c and 11d are connected to external exhaust pumps P2 and P3 as negative pressure sources by pipes 14 and 15, respectively. A valve V2 is disposed in the pipe 14 communicating with the differential pressure chamber 11c on the side closer to the process chamber P.
[0027]
The drive device 16 has a function of controlling the drive of the exhaust pump P2 and controlling the drive of the valve V2 to open or close the pipes 14 individually. The detection device 17 has a function of monitoring the exhaust pump P2, and transmits a signal to the drive device 16 when an abnormality is detected.
[0028]
Also in the present embodiment, when an abnormality occurs in the exhaust pump P2, the pipe 14 is closed by the valve V2 before the fluid suction capability of the exhaust pump P2 is completely lost. Even if it is opened to the outside, the outside air does not flow into the differential pressure chamber 11c from the pipe 14, so that a sharp decrease in the sealing performance of the differential exhaust seal can be suppressed.
[0029]
As described above, the present invention has been described with reference to the embodiments. However, the present invention should not be construed as being limited to the above embodiments, and it is needless to say that modifications and improvements can be made as appropriate. For example, an abnormality in the exhaust pump is detected by a detection device, and the driving device automatically closes a valve corresponding to the exhaust pump in which the abnormality has occurred. May be detected, and the corresponding valve may be closed before the exhaust pump loses the fluid suction stress.
[0030]
【The invention's effect】
A positioning device according to a first aspect of the present invention includes a housing including an opening communicating with a process chamber exposed to a reduced pressure, a guide surface, and a housing facing the guide surface via a predetermined gap. A moving block provided so as to be movable in at least one direction, a difference provided between the housing and the moving block, for sealing between the process chamber and the outside of the process chamber at a higher pressure than the process chamber. A dynamic exhaust seal, a valve that opens or closes a pipe that communicates the differential exhaust seal with the negative pressure source, and a driving device that drives the valve; and the driving device includes a driving device for the negative pressure source. By detecting the abnormality, the valve is driven before the fluid suction operation of the negative pressure source stops, and the pipe is closed, so when an abnormality occurs in the negative pressure source, The pressure in the process chamber is By delaying the time to rise, for example, the processing object in the process can take measures such as sealing, it is possible to suppress the damage that the processing object is subjected.
[0031]
According to a second aspect of the present invention, there is provided a method for coping with an abnormality of a positioning device, comprising: a housing provided with an opening communicating with a process chamber exposed to a reduced pressure; a housing provided with a guide surface; A moving block provided so as to be movable in at least one direction, in a state opposed to the processing chamber, provided between the housing and the moving block, and between the process chamber and the outside of the process chamber at a higher pressure than the process chamber. In a method for coping with an abnormality of a positioning device having a differential exhaust seal that seals a gap, when an abnormality occurs in a negative pressure source that sucks a fluid through a pipe connected to the differential exhaust seal, the negative pressure Since the pipe is closed before the fluid suction operation of the source is stopped, if an abnormality occurs in the negative pressure source, by delaying the time during which the pressure in the process chamber rises, for example, the processing target being processed is To seal What measures can take, it is possible to suppress the damage that the processing object is subjected.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a positioning device according to a comparative example.
FIG. 2 is a schematic configuration diagram of a positioning device according to the present embodiment.
FIG. 3 is a control flowchart according to the embodiment.
FIG. 4 is a schematic configuration diagram of a positioning device according to a second embodiment.
[Explanation of symbols]
11, 11 'Housing 12 Axis 12' Moving block 13, 14, 15 Piping 16 Drive 17 Detector V1, V2 Valve P1, P2, P3 Exhaust pump P Process chamber

Claims (4)

減圧下に曝されるプロセス室内に連通する開口と、案内面とを備えた筐体と、
前記案内面に対して所定の隙間を介して対向した状態で、少なくとも一方向に移動可能に設けられた移動ブロックと、
前記筐体と前記移動ブロックとの間に設けられ、前記プロセス室内と、前記プロセス室内よりも高圧のプロセス室外との間をシールする差動排気シールと、
前記差動排気シールと負圧源とを連通する配管を、開放もしくは閉止するバルブと、
前記バルブを駆動する駆動装置とを有し、
前記駆動装置は、前記負圧源の異常を検出することにより、前記負圧源の流体吸引動作が停止する前に前記バルブを駆動して、前記配管を閉止するようになっていることを特徴とする位置決め装置。
An opening communicating with the process chamber exposed to the reduced pressure, and a housing having a guide surface;
A moving block provided so as to be movable in at least one direction, in a state facing the guide surface via a predetermined gap,
A differential exhaust seal provided between the housing and the moving block, for sealing between the process chamber and the outside of the process chamber at a higher pressure than the process chamber,
A valve that opens or closes a pipe that communicates the differential exhaust seal with the negative pressure source,
A driving device for driving the valve,
The drive device detects the abnormality of the negative pressure source, drives the valve before the fluid suction operation of the negative pressure source stops, and closes the pipe. Positioning device.
前記差動排気シールは複数設けられており、前記バルブは、前記プロセス室に近い側の前記差動排気シールに接続された配管に対して設けられていることを特徴とする請求項1に記載の位置決め装置。The said differential exhaust seal is provided with two or more, and the said valve is provided with respect to the piping connected to the said differential exhaust seal near the said process chamber, The Claim 1 characterized by the above-mentioned. Positioning device. 流体吸引動作が停止する前に、前記負圧源の異常を検出して信号を出力する検出装置を有し、前記検出装置からの信号に応じて、前記駆動装置は前記バルブを駆動することを特徴とする請求項1又は2に記載の位置決め装置。Before the fluid suction operation is stopped, it has a detection device that detects an abnormality of the negative pressure source and outputs a signal, and in accordance with a signal from the detection device, the driving device drives the valve. The positioning device according to claim 1 or 2, wherein: 減圧下に曝されるプロセス室内に連通する開口と、案内面とを備えた筐体と、前記案内面に対して所定の隙間を介して対向した状態で、少なくとも一方向に移動可能に設けられた移動ブロックと、前記筐体と前記移動ブロックとの間に設けられ、前記プロセス室内と、前記プロセス室内よりも高圧のプロセス室外との間をシールする差動排気シールとを有する位置決め装置の異常時対処方法において、
前記差動排気シールに接続された配管を介して流体を吸引する負圧源に異常が生じた場合、前記負圧源の流体吸引動作が停止する前に前記配管を閉止することを特徴とする位置決め装置の異常時対処方法。
An opening communicating with the process chamber exposed to the reduced pressure; a housing having a guide surface; and a housing provided to be movable in at least one direction in a state facing the guide surface with a predetermined gap therebetween. Abnormality of a positioning device that is provided between the movable block and the casing and the movable block, and has a differential exhaust seal that seals between the process chamber and the outside of the process chamber having a higher pressure than the process chamber. When dealing with
When an abnormality occurs in a negative pressure source that sucks fluid through a pipe connected to the differential exhaust seal, the pipe is closed before the fluid suction operation of the negative pressure source stops. How to deal with abnormalities of positioning device.
JP2002199720A 2002-07-09 2002-07-09 Positioning device and countervailing method coping with its irregularities Pending JP2004044629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199720A JP2004044629A (en) 2002-07-09 2002-07-09 Positioning device and countervailing method coping with its irregularities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199720A JP2004044629A (en) 2002-07-09 2002-07-09 Positioning device and countervailing method coping with its irregularities

Publications (1)

Publication Number Publication Date
JP2004044629A true JP2004044629A (en) 2004-02-12

Family

ID=31706782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199720A Pending JP2004044629A (en) 2002-07-09 2002-07-09 Positioning device and countervailing method coping with its irregularities

Country Status (1)

Country Link
JP (1) JP2004044629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234828A (en) * 2013-05-30 2014-12-15 日本精工株式会社 Seal unit degradation warning system, transport device, and semiconductor manufacturing apparatus
JP2016116297A (en) * 2014-12-12 2016-06-23 日本精工株式会社 Motor, transfer device, machine tool, flat panel display manufacturing apparatus, and semiconductor manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234828A (en) * 2013-05-30 2014-12-15 日本精工株式会社 Seal unit degradation warning system, transport device, and semiconductor manufacturing apparatus
JP2016116297A (en) * 2014-12-12 2016-06-23 日本精工株式会社 Motor, transfer device, machine tool, flat panel display manufacturing apparatus, and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
KR101224337B1 (en) An integrated high vacuum pumping system
TWI771427B (en) Equipment front end module gas recirculation
US7232286B2 (en) Seal device and method for operating the same and substrate processing apparatus comprising a vacuum chamber
JP2008032335A (en) Mini-environment device, inspection device, manufacturing device, and space cleaning method
US6954009B2 (en) Positioning apparatus
JP2007009939A (en) Positioning device
JP2004044629A (en) Positioning device and countervailing method coping with its irregularities
US8308440B2 (en) Vacuum processing apparatus, method of controlling vacuum processing apparatus, device manufacturing method, and storage medium
US20130312835A1 (en) Method and apparatus for rapid pump-down of a high-vacuum loadlock
JP6011429B2 (en) Drive device, rotation introduction machine, transfer device, and semiconductor manufacturing device
JP3038432B2 (en) Vacuum pump and vacuum device
JP2009195875A (en) Centrifuge
TWI824286B (en) Vacuum sealing device and drive transmission device
JP3930297B2 (en) Turbo molecular pump
US11554493B2 (en) Transfer apparatus
JP2003222132A (en) Exhaust device, its control method and in-vacuum hydrostatic bearing
JP2018066370A (en) Hermetic vacuum pump isolation valve
JP4399727B2 (en) Positioning device
KR20070037880A (en) Vacuum exhausting apparatus
JP2005249079A (en) Sealing unit
JPH0989120A (en) Vacuum device
KR20130074780A (en) Turbo blower&#39;s sealing connection
TWI755929B (en) Seal tightness detection system and seal tightness detection method
WO2020250841A1 (en) Vacuum valve and actuator used in vacuum valve
JPH0524294U (en) Industrial robotic equipment for vacuum chamber