JP2004044026A - Acrylonitrile-based filament and method for producing the same - Google Patents

Acrylonitrile-based filament and method for producing the same Download PDF

Info

Publication number
JP2004044026A
JP2004044026A JP2002204578A JP2002204578A JP2004044026A JP 2004044026 A JP2004044026 A JP 2004044026A JP 2002204578 A JP2002204578 A JP 2002204578A JP 2002204578 A JP2002204578 A JP 2002204578A JP 2004044026 A JP2004044026 A JP 2004044026A
Authority
JP
Japan
Prior art keywords
acrylonitrile
filament
fiber
weight
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204578A
Other languages
Japanese (ja)
Inventor
Wataru Kinouchi
木野内 渡
Moichi Miyazaki
宮崎 茂一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002204578A priority Critical patent/JP2004044026A/en
Publication of JP2004044026A publication Critical patent/JP2004044026A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylonitrile-based filament having many microvoids, excellent bulkiness and feeling accompanying dry feeling; and to provide a method for producing the filament. <P>SOLUTION: The acrylonitrile-based filament has two or more huge voids partially opened in the side surface of the filament, distributed in streak shapes in the filament axis direction, and having ≥2 μm diameter per cross section of the filament, and further has ≥2.5 cm<SP>3</SP>/g bulkiness, ≥25% water retention, ≥1.5 g/dtex strength, ≥10% elongation and ≥3 dtex single fiber size. The acrylonitrile-based filament is obtained by extruding a solution of an acrylonitrile-based polymer having 16-20 wt.% concentration of the acrylonitrile-based polymer from a nozzle having circular extruding holes with 0.16-0.30 mm diameters to a coagulation bath having 45-60 wt.% solvent concentration at ≥0.9 ratio of a take-up velocity to an extruding linear velocity to form the polymer into the filament. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、繊維表面に部分的に開口し、かつ繊維軸方向に筋状に分布した直径2μm以上の巨大なボイド(以下マクロボイドという)を複数個有するアクリロニトリル系フィラメントであって、優れた嵩高性を有し、ドライ感のある風合いを有するアクリロニトリル系フィラメントに関するものである。
【0002】
【従来の技術】
アクリロニトリル系フィラメントは風合いや光沢、発色性に優れるため、主に衣料用途に利用されている。しかし、最近の消費者ニーズは多様化しており、消費者に受け入れられる繊維素材を提供するためには、差別化風合いの付与、特殊機能の付加が必要不可欠である。このような背景に基づき、繊維の断面形状や表面形態の変化等の各種手段を用いて、風合いの改良がなされており、特に繊維の軽量化は、風合いの改良に大きく関与する手段として用いられている。
【0003】
フィラメントの軽量化に対する従来の手法については、仮撚り加工による捲縮を付与する手法が種々提案され工業化されている。しかし、製造工程の増加によるコストアップが避けられないため、軽量糸の製造法として十分満足されるものではない。
【0004】
仮撚り加工によらない原糸段階での軽量化の手法としては、異形断面化による嵩高性向上による手法が提案されている。例えば、特開平2−169710号公報では、台形形状のスリットを配置したノズルにより三葉型の異形断面糸を得る方法が提案されている。しかしこの手法では、風合いが硬くなるといった問題があった。
【0005】
また、多孔質化による嵩高性向上の手法も種々提案されている。例えば、特開昭62−78210号公報では、低沸点物質を紡糸原液に添加し熱処理を施すことで多孔質繊維を得ているが、低沸点物質を添加した紡糸原液は通常のアクリロニトリル系重合体単独の紡糸原液に比較して原液安定性及び紡糸性に課題があった。また、特開平3−161506号公報では、十字形状のノズル口金を使用することで複数のボイドを含有する繊維を得ているが、異孔形ノズルを用いていることからノズル加工費がかかり、紡出性も低くなるため最終紡糸速度は高々数十m/minが限界となり、孔数増加による生産性の向上が可能であるステープルの製造法としては適しているが、品種により孔数が制限されるフィラメントの製造法としては満足されるものではない。以上の様に、嵩高性アクリロニトリル系フィラメントの要求が強まる中で、十分な繊維性能を満たしつつ、工業的に成り立ちうる生産性を有した嵩高性アクリロニトリル系フィラメントの開発はなされていないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、繊維表面に部分的に開口し、かつ繊維軸方向に筋状に分布した巨大なボイドを複数個有することで嵩高性とドライ感のある風合いを有し、同時に後加工性に優れた繊維物性を有するアクリロニトリル系フィラメント及びその製造法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の第1の要旨は、50重量%以上のアクリロニトリルを含有する重合体で構成され、繊維側面に部分的に開口し、かつ繊維軸方向に筋状に分布した直径2μm以上の巨大なボイドを繊維横断面あたり2個以上有した繊維であって、嵩高度が2.5cm/g以上、保水率が25%以上、強度が1.5g/dtex以上、伸度が10%以上、及び単繊維繊度が3dtex以上であることを特徴とするアクリロニトリル系フィラメントにあり、第2の要旨とするところは、アクリロニトリル系重合体の濃度が16〜20重量%であるアクリロニトリル系重合体溶液を、直径が0.16〜0.30mmである丸型の吐出孔を有するノズルより、溶剤濃度が45〜60重量%である凝固浴中に、引き取り速度と吐出線速度の比が0.9以上で吐出し、繊維賦形を行うことを特徴とする特許請求項1記載のアクリロニトリル系フィラメントの製造方法にある。
【0008】
【発明の実施の形態】
本発明によるアクリロニトリル系フィラメントの最大の特徴は、繊維表面に部分的に開口して、かつ筋状に分布したマクロボイドを複数個有している点にある。マクロボイドを複数個有することで、見かけの嵩密度が低くなり軽量感に優れた繊維を得ることが可能となる。また、ボイドが筋状に分布し且つ繊維表面に開口していることで、繊維内部への液体の吸収を早めることが可能となる。これにより繊維が優れた保水性と吸水性を有することとなり、サラッとしたドライな風合いが得られる。
【0009】
また、本発明のアクリロニトリル系フィラメントの単繊維繊度は3dtex以上である必要がある。単繊維繊度が3dtex未満では紡糸性が不良となり、本発明の物性を備えた繊維を得ることが困難となる。単繊維繊度の上限は特に限定しないが、20dtexを越えると繊維の風合いが硬くなり問題となる場合があるため、3〜20dtexの範囲にあることが好ましい。
【0010】
このような形態を有する本発明のアクリロニトリル系フィラメントは、後に示す評価法により嵩高度が2.5cm/g以上、好ましくは2.5〜4.0cm/gであり、保水率が25%以上のものである。これらの性能を満たすことにより、優れた嵩高性とサラッとしたドライな風合いを有することが可能となる。
【0011】
また本発明のアクリロニトリル系フィラメントの機械的物性は、繊維強度1.5g/dtex以上、繊維伸度10%以上のものである。これらの性能を満たす繊維であって初めて撚糸工程等の後加工を通過することが可能となる。
【0012】
本発明のアクリロニトリル系フィラメントを製造するための第一の特徴は、吐出孔の孔径が0.16〜0.30mmの丸孔形ノズルより吐出し、繊維賦形を行うことにある。孔径が0.16mm未満だと、得られた繊維は表面に多数の凹凸を有する繊維となるが、マクロボイドが形成されず、十分な嵩高性を得ることができない。逆に0.30mmを越えると優れた嵩高性と保水性は得られるが、マクロボイドが過多に形成することとなり、紡糸性が低下し高速での捲き取りが困難になると共に繊維の機械的物性が損なわれ、繊維強度1.5g/dtex以上、繊維伸度10%以上という本発明の要件を満たすことが困難となる。吐出孔の形状を丸孔形ノズルとすることで、Y字や十字等の異孔形ノズルに比べてノズル加工費が安価で紡出性も向上し高生産性を得ることが可能となる。
【0013】
本発明のアクリロニトリル系フィラメントを製造するための第二の特徴は、JSを0.9以上に設定することである。JSが0.9未満では得られた繊維は表面に多数の凹凸を有する繊維となるが、マクロボイドが形成され難くなり、嵩高性に優れた繊維を得ることができない。また、JSは0.9以上であれば適宜設定可能であるが、紡糸を安定に行う上で、好ましくは0.9〜5.0の範囲である。
【0014】
本発明のアクリロニトリル系フィラメントを製造するための第三の特徴は、アクリロニトリル系重合体の濃度が16〜20重量%の紡糸原液にて吐出するということである。原液濃度が20%を越えるとマクロボイドの形成が抑制され、嵩高度が2.5cm/g未満となり優れた嵩高性を得ることができない。16%未満ではマクロボイドは形成され優れた嵩高性を得ることは可能であるが、単繊維間の接着が増加するため紡糸性が低下するばかりでなく品質上も問題となる。
【0015】
本発明のアクリロニトリル系フィラメントを製造するための第四の特徴は、凝固浴中の溶剤濃度が45〜60重量%の範囲にあることである。凝固浴中の溶剤濃度が45重量%未満では、マクロボイドが形成されず、優れた嵩高性を有する繊維を得ることができない。逆に60重量%を越えると紡糸性が不良となり、本発明の物性を備えた繊維を得ることが困難となる。
【0016】
本発明に使用されるアクリロニトリル系重合体とはアクリロニトリルを50重量%以上含有し、これと共重合可能な不飽和単量体とからなるアクリル系重合体である。共重合可能な不飽和単量体としてはアクリル酸、メタクリル酸、及びそれらの誘導体、酢酸ビニル、アクリルアミド、メタクリルアミド、塩化ビニル、塩化ビニリデン、さらに目的によってはビニルベンゼンスルホン酸ソーダ、メタリルスルホン酸ソーダ、アクリルアミドメチルプロパンスルホン酸ソーダ等のイオン性不飽和単量体を用いることができる。上記アクリロニトリル系重合体の製造方法としては懸濁重合、溶液重合等が選択可能であるが特に限定しない。また、アクリロニトリル系重合体の分子量は通常アクリル繊維の製造に用いられる範囲の分子量であればよく、特に限定しないが、分子量が10万〜100万の範囲にあることが好ましい。
【0017】
本発明に使用される溶剤としては、通常の湿式紡糸に用いられる溶剤であれば特に限定されるものではない。これらの溶剤としては、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、アセトン等の有機溶剤、濃硝酸、ロダン塩水溶液、塩化亜鉛水溶液等の無機系溶媒も使用できるが、ボイド形成の容易性から有機溶媒が有利に使用される。また、凝固浴中に含まれる凝固剤としては、水、アルコール等が使用されるが工業的には、水が最も好ましい。本発明のアクリロニトリル系フィラメントを得るための凝固浴中の溶剤濃度範囲は、有機溶剤−水系の凝固浴の範囲を示したものであり、無機溶剤または水以外の凝固剤を使用する場合にはそれぞれ凝固浴の濃度を設定する必要がある。
【0018】
アクリロニトリル系重合体は溶剤に溶解されて所定の濃度の紡糸原液が得られる。紡糸原液の溶解温度または溶解方式は一般に使用される公知の条件が採用できる。かくして得られた紡糸原液はノズルより吐出し繊維に賦形される。凝固浴中の温度はアクリロニトリル系フィラメントを製造する上で一般的な範囲であれば問題なく、通常15〜50℃が適用される。以上のようにして得られた凝固糸は公知の方法、条件で延伸、洗浄、乾燥された後、用途に応じて熱緩和処理等を施し、バランスのとれた力学特性を付与した嵩高性アクリロニトリル系フィラメントとなる。
【0019】
以上、得られた繊維の嵩高度、保水率は以下の方法で測定した。
【0020】
(嵩高度)
JIS規格(JIS−L1095−9.14嵩高性)の手法により次式から算出した。
【0021】
嵩高度(cm/g)=(A×t)/(W×10)
ここで、A:容器の面積(cm)、t:高さ(mm)、W:糸の重量(g)である。
【0022】
(保水率)
常法により精錬した繊維を水中に24時間浸漬した後、1000Gの加速度のもとで10分間遠心脱水した原糸の重量(W)を測定する。この繊維を110℃で3時間熱風乾燥した後の重量(W)を秤量して以下の式から算出する。
【0023】
保水率(%)=(W−W)/W×100
(強伸度)
JIS規格(JIS−L1013−8.5引っ張り強さ及び伸び率)の手法により求めた。測定は、ORIENTEC社製RTM−100を用いて実施した。
【0024】
【実施例】
以下、本発明の実施例について具体的に説明する。
【0025】
実施例1−5、比較例1−3
アクリロニトリル93重量%、酢酸ビニル6重量%、スチレンスルホン酸ナトリウム1重量%から成り、平均分子量30万の共重合体をジメチルアセトアミドに溶解しアクリロニトリル系重合体濃度18重量%の紡糸原液を得た。これを孔径が0.12〜0.35mmであるノズルより、ジメチルアセトアミド55重量%と水45重量%よりなる溶剤濃度が55重量%である凝固浴に吐出した。この後、水洗、沸水中での3倍延伸、乾燥後更に乾熱状態で2倍延伸を行い、250℃の熱板上にて10%緩和を施して単繊維繊度が5.5dtexであるアクリロニトリル系フィラメントを得た。各フィラメントの嵩高度、保水率、強伸度についてそれぞれ測定した。この結果を表1に示し、実施例5の横断面及び側面の電子顕微鏡写真をそれぞれ図1、2に示す。これらの内、孔径が0.18mm以上であるノズルより吐出したアクリロニトリル系フィラメントは図1、2に示すように繊維表面に開口したマクロボイドを多数有していた。尚、孔径が0.35mmである比較例3は、機械的物性に劣るため工程通過性が非常に悪くなった。
【0026】
【表1】

Figure 2004044026
実施例6、7、比較例4
実施例1と同様の紡糸原液を用いて、JS0.8〜2.4で孔径が0.20mm、孔数が30であるノズルよりジメチルアセトアミド50重量%と水50重量%よりなる溶剤濃度が50重量%である凝固浴に吐出した。その他の条件は実施例1と同様である。得られた繊維の嵩高度、保水率、強伸度をそれぞれ算出した。この結果を表2に示した。
【0027】
【表2】
Figure 2004044026
実施例8、9、比較例5、6
実施例1と同様の共重合体をジメチルアセトアミドに溶解しアクリロニトリル系重合体濃度15〜22重量%の紡糸原液を得た。これらを孔径が0.20mm、孔数が30であるノズルよりJS1.63〜2.39でジメチルアセトアミド55重量%と水45重量%よりなる溶剤濃度が55重量%である凝固浴に吐出した。その他の条件は全て実施例1と同様である。得られた繊維の嵩高度、保水率、強伸度をそれぞれ算出した。この結果を表3に示した。尚、比較例5は単繊維間の接着が多数発生し紡糸性不良であった。
【0028】
【表3】
Figure 2004044026
実施例10−12、比較例7
実施例1と同様の紡糸原液を用いて、孔径が0.25mm、孔数が12であるノズルより、ジメチルアセトアミドの濃度が40〜56重量%である凝固浴中に吐出した。その他の条件は実施例1と同様である。得られた繊維の嵩高度、保水率、強伸度をそれぞれ算出した。この結果を表4に示した。
【0029】
【表4】
Figure 2004044026
実施例13、比較例8、9
実施例1と同様の紡糸原液を用いて、孔形状が丸形(孔径0.2mm)、Y字型(一辺の長さ0.1mm)、十字型(一辺の長さ0.08mm)であり、孔数が30であるノズルより、ジメチルアセトアミドの濃度が56重量%である凝固浴中に吐出した。その他の条件は実施例1と同様である。このときの凝固浴からの最大引き取り速度及び最大捲き取り速度を測定した。この結果を表5に示した。
【0030】
【表5】
Figure 2004044026
【0031】
【発明の効果】
本発明のアクリロニトリル系フィラメントは、繊維内部に複数個のマクロボイドを有していることから嵩高性に優れ、通常のアクリロニトリル系フィラメントに比べ優れた軽量感を有していると共に、保水性と吸水性に優れるため、サラッとしたドライな風合いが得られる。このため、特に夏物衣料用途へのアクリロニトリル系フィラメントの利用を拡大するものである。また、本発明の製造法は特定の添加物を使用していないため、従来のアクリロニトリル系フィラメントの製造工程で生産でき、かつ、高い生産性を確保しているという、工業的意義の大きな発明である。
【図面の簡単な説明】
【図1】本発明繊維の横断面のSEM写真
【図2】本発明繊維の側面のSEM写真[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an acrylonitrile-based filament having a plurality of giant voids having a diameter of 2 μm or more (hereinafter referred to as macrovoids) partially open on the fiber surface and distributed in a streak shape in the fiber axis direction, and having excellent bulkiness. The present invention relates to an acrylonitrile-based filament having properties and a dry feeling.
[0002]
[Prior art]
Acrylonitrile-based filaments are mainly used for clothing because of their excellent texture, gloss and coloring. However, consumer needs have been diversified in recent years, and in order to provide a fiber material that is acceptable to consumers, it is essential to provide a differentiated texture and to add special functions. Based on such a background, the texture has been improved using various means such as changes in the cross-sectional shape and surface morphology of the fiber, and in particular, weight reduction of the fiber is used as a means greatly involved in the improvement of the texture. ing.
[0003]
Regarding the conventional method for reducing the weight of the filament, various methods for imparting crimp by false twisting have been proposed and industrialized. However, an increase in cost due to an increase in the number of manufacturing steps is unavoidable, so that it is not sufficiently satisfactory as a method for manufacturing a lightweight yarn.
[0004]
As a method of reducing the weight at the yarn stage without using false twisting, a method of improving bulkiness by forming a deformed cross section has been proposed. For example, Japanese Patent Application Laid-Open No. Hei 2-169710 proposes a method for obtaining a three-lobe type irregularly shaped yarn by using a nozzle having trapezoidal slits. However, this method has a problem that the texture becomes hard.
[0005]
Also, various techniques for improving bulkiness by making the material porous have been proposed. For example, in Japanese Patent Application Laid-Open No. 62-78210, a porous fiber is obtained by adding a low-boiling substance to a spinning dope and subjecting it to a heat treatment, but a spinning dope containing a low-boiling substance is a conventional acrylonitrile-based polymer. There were problems with the stock solution stability and spinnability as compared to a single spinning stock solution. In Japanese Patent Application Laid-Open No. Hei 3-161506, a fiber containing a plurality of voids is obtained by using a cross-shaped nozzle base. However, since a different hole type nozzle is used, nozzle processing cost is increased. The final spinning speed is limited to several tens of m / min at the most because the spinning ability is low, and it is suitable as a staple manufacturing method that can improve the productivity by increasing the number of holes, but the number of holes is limited depending on the type. However, it is not satisfactory as a method for producing a filament. As described above, while demands for bulky acrylonitrile-based filaments are increasing, while at the present time, bulky acrylonitrile-based filaments having sufficient productivity and satisfying industrial properties have not been developed yet. is there.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to have a bulky and dry feeling by having a plurality of huge voids partially open on the fiber surface and distributed in a streak shape in the fiber axis direction, and at the same time have a post-processing property. It is an object of the present invention to provide an acrylonitrile-based filament having excellent fiber properties and a method for producing the same.
[0007]
[Means for Solving the Problems]
A first gist of the present invention is a huge void having a diameter of 2 μm or more, which is composed of a polymer containing 50% by weight or more of acrylonitrile, is partially open on the fiber side surface, and is distributed in a streak shape in the fiber axis direction. Having a bulk height of at least 2.5 cm 3 / g, a water retention of at least 25%, a strength of at least 1.5 g / dtex, an elongation of at least 10%, and An acrylonitrile-based filament having a single fiber fineness of 3 dtex or more is a second gist of the invention, wherein an acrylonitrile-based polymer solution having an acrylonitrile-based polymer concentration of 16 to 20% by weight has a diameter of From a nozzle having a round discharge hole of 0.16 to 0.30 mm in a coagulation bath having a solvent concentration of 45 to 60% by weight with a ratio of the take-up speed to the discharge linear speed of 0.9 or more. The method for producing an acrylonitrile-based filament according to claim 1, wherein the acrylonitrile filament is drawn out and subjected to fiber shaping.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The greatest feature of the acrylonitrile filament according to the present invention is that it has a plurality of macrovoids which are partially open on the fiber surface and are distributed in a streak shape. By having a plurality of macrovoids, it becomes possible to obtain fibers having a low apparent bulk density and excellent lightness. In addition, since the voids are distributed in a streak shape and open to the fiber surface, it is possible to accelerate the absorption of the liquid into the fiber. As a result, the fiber has excellent water retention and water absorption, and a smooth dry texture can be obtained.
[0009]
Further, the single fiber fineness of the acrylonitrile-based filament of the present invention needs to be 3 dtex or more. If the single fiber fineness is less than 3 dtex, the spinnability becomes poor, and it becomes difficult to obtain a fiber having the physical properties of the present invention. Although the upper limit of the single fiber fineness is not particularly limited, if it exceeds 20 dtex, the texture of the fiber may become hard and a problem may occur, so that it is preferably in the range of 3 to 20 dtex.
[0010]
The acrylonitrile-based filament of the present invention having such a form has a bulk height of 2.5 cm 3 / g or more, preferably 2.5 to 4.0 cm 3 / g, and a water retention of 25% according to the evaluation method described later. That's all. By satisfying these performances, it is possible to have excellent bulkiness and a smooth dry texture.
[0011]
The mechanical properties of the acrylonitrile filament of the present invention are fiber strength of 1.5 g / dtex or more and fiber elongation of 10% or more. Only a fiber satisfying these performances can pass through post-processing such as a twisting step.
[0012]
The first characteristic for producing the acrylonitrile-based filament of the present invention resides in that a discharge hole is discharged from a round-hole type nozzle having a hole diameter of 0.16 to 0.30 mm to perform fiber shaping. When the pore diameter is less than 0.16 mm, the obtained fiber becomes a fiber having a large number of irregularities on the surface, but a macrovoid is not formed and sufficient bulkiness cannot be obtained. Conversely, when the thickness exceeds 0.30 mm, excellent bulkiness and water retention can be obtained, but macrovoids are excessively formed, and the spinning property is reduced, and it becomes difficult to wind up at high speed. And it becomes difficult to satisfy the requirements of the present invention such that the fiber strength is 1.5 g / dtex or more and the fiber elongation is 10% or more. By making the shape of the discharge hole a round hole type nozzle, the nozzle processing cost is lower, the spinning property is improved, and high productivity can be obtained as compared with a different hole type nozzle such as a Y-shaped or cross-shaped nozzle.
[0013]
The second feature for producing the acrylonitrile-based filament of the present invention is that JS is set to 0.9 or more. When the JS is less than 0.9, the obtained fiber is a fiber having a large number of irregularities on the surface, but it is difficult to form macrovoids and cannot obtain a fiber having excellent bulkiness. The JS can be appropriately set as long as it is 0.9 or more, but is preferably in the range of 0.9 to 5.0 for stable spinning.
[0014]
The third feature for producing the acrylonitrile-based filament of the present invention is that the acrylonitrile-based polymer is discharged as a spinning solution having a concentration of 16 to 20% by weight. If the concentration of the stock solution exceeds 20%, the formation of macrovoids is suppressed, and the bulk height is less than 2.5 cm 3 / g, so that excellent bulkiness cannot be obtained. If it is less than 16%, macrovoids can be formed and excellent bulkiness can be obtained, but the adhesion between single fibers increases, so that not only the spinnability decreases but also the quality becomes a problem.
[0015]
A fourth feature for producing the acrylonitrile filament of the present invention is that the solvent concentration in the coagulation bath is in the range of 45 to 60% by weight. When the solvent concentration in the coagulation bath is less than 45% by weight, macrovoids are not formed, and fibers having excellent bulkiness cannot be obtained. Conversely, if it exceeds 60% by weight, the spinnability becomes poor, and it becomes difficult to obtain the fiber having the physical properties of the present invention.
[0016]
The acrylonitrile polymer used in the present invention is an acrylic polymer containing acrylonitrile in an amount of 50% by weight or more and an unsaturated monomer copolymerizable therewith. Examples of copolymerizable unsaturated monomers include acrylic acid, methacrylic acid, and derivatives thereof, vinyl acetate, acrylamide, methacrylamide, vinyl chloride, vinylidene chloride, and, depending on the purpose, sodium vinyl benzene sulfonate and methallyl sulfonic acid. An ionic unsaturated monomer such as soda and sodium acrylamidomethylpropanesulfonate can be used. As a method for producing the acrylonitrile-based polymer, suspension polymerization, solution polymerization and the like can be selected, but are not particularly limited. The molecular weight of the acrylonitrile-based polymer is not particularly limited as long as it is generally in the range used for the production of acrylic fiber, but is preferably in the range of 100,000 to 1,000,000.
[0017]
The solvent used in the present invention is not particularly limited as long as it is a solvent used in ordinary wet spinning. As these solvents, organic solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide and acetone, and inorganic solvents such as concentrated nitric acid, aqueous solution of rhodanate and aqueous solution of zinc chloride can also be used. It is advantageously used. As the coagulant contained in the coagulation bath, water, alcohol and the like are used, but water is most preferable industrially. The solvent concentration range in the coagulation bath for obtaining the acrylonitrile-based filament of the present invention indicates the range of the organic solvent-water-based coagulation bath, and when using a coagulant other than the inorganic solvent or water, respectively. It is necessary to set the concentration of the coagulation bath.
[0018]
The acrylonitrile-based polymer is dissolved in a solvent to obtain a spinning dope having a predetermined concentration. As the dissolution temperature or the dissolution method of the spinning dope, known conditions generally used can be adopted. The spinning solution thus obtained is discharged from a nozzle and shaped into fibers. The temperature in the coagulation bath is not problematic as long as it is within a general range for producing an acrylonitrile filament, and usually 15 to 50 ° C. is applied. The coagulated yarn obtained as described above is stretched, washed and dried under known methods and conditions, and then subjected to a heat relaxation treatment or the like according to the application to give a bulky acrylonitrile-based material having balanced mechanical properties. It becomes a filament.
[0019]
As described above, the bulk height and water retention of the obtained fiber were measured by the following methods.
[0020]
(Bulk height)
It was calculated from the following equation by the method of JIS standard (JIS-L1095-9.14 bulkiness).
[0021]
Bulk altitude (cm 3 / g) = (A × t 0 ) / (W × 10)
Here, A: area of container (cm 3 ), t 0 : height (mm), W: weight of thread (g).
[0022]
(Water retention rate)
After the fiber refined by a conventional method is immersed in water for 24 hours, the weight (W 1 ) of the raw yarn centrifugally dehydrated for 10 minutes at an acceleration of 1000 G is measured. The weight (W 2 ) after drying the fiber with hot air at 110 ° C. for 3 hours is weighed and calculated from the following equation.
[0023]
Water retention rate (%) = (W 1 −W 2 ) / W 2 × 100
(Strong elongation)
It was determined by the method of JIS standard (JIS-L1013-8.5 tensile strength and elongation). The measurement was performed using RTM-100 manufactured by ORIENTEC.
[0024]
【Example】
Hereinafter, examples of the present invention will be specifically described.
[0025]
Example 1-5, Comparative Example 1-3
A copolymer consisting of 93% by weight of acrylonitrile, 6% by weight of vinyl acetate and 1% by weight of sodium styrenesulfonate and having an average molecular weight of 300,000 was dissolved in dimethylacetamide to obtain a spinning dope having an acrylonitrile-based polymer concentration of 18% by weight. This was discharged from a nozzle having a pore diameter of 0.12 to 0.35 mm into a coagulation bath comprising 55% by weight of dimethylacetamide and 45% by weight of water and having a solvent concentration of 55% by weight. After that, it is washed with water, stretched 3 times in boiling water, dried, stretched 2 times in a dry heat state, relaxed on a hot plate at 250 ° C. by 10%, and subjected to acrylonitrile having a single fiber fineness of 5.5 dtex. A system filament was obtained. The bulk height, water retention, and elongation of each filament were measured. The results are shown in Table 1, and electron micrographs of the cross section and the side surface of Example 5 are shown in FIGS. Among these, the acrylonitrile filament discharged from the nozzle having a pore diameter of 0.18 mm or more had a large number of macrovoids opened on the fiber surface as shown in FIGS. In Comparative Example 3 having a pore diameter of 0.35 mm, the mechanical properties were inferior, and the processability was extremely poor.
[0026]
[Table 1]
Figure 2004044026
Examples 6 and 7, Comparative Example 4
Using the same spinning dope as in Example 1, a solvent having a solvent concentration of 50% by weight of dimethylacetamide and 50% by weight of water having a pore size of 0.20 mm and a hole number of 30 was used. It was discharged into a coagulation bath, which is a percentage by weight. Other conditions are the same as in the first embodiment. The bulk height, water retention, and high elongation of the obtained fibers were calculated. The results are shown in Table 2.
[0027]
[Table 2]
Figure 2004044026
Examples 8, 9 and Comparative Examples 5, 6
The same copolymer as in Example 1 was dissolved in dimethylacetamide to obtain a spinning dope having an acrylonitrile polymer concentration of 15 to 22% by weight. These were discharged from a nozzle having a hole diameter of 0.20 mm and a number of holes into a coagulation bath having a solvent concentration of 55% by weight consisting of 55% by weight of dimethylacetamide and 45% by weight of water in JS 1.63 to 2.39. All other conditions are the same as in the first embodiment. The bulk height, water retention, and high elongation of the obtained fibers were calculated. Table 3 shows the results. In Comparative Example 5, a large number of adhesions between single fibers occurred, and the spinning property was poor.
[0028]
[Table 3]
Figure 2004044026
Examples 10-12, Comparative Example 7
The same spinning dope as in Example 1 was discharged from a nozzle having a pore size of 0.25 mm and 12 holes into a coagulation bath having a dimethylacetamide concentration of 40 to 56% by weight. Other conditions are the same as in the first embodiment. The bulk height, water retention, and high elongation of the obtained fibers were calculated. The results are shown in Table 4.
[0029]
[Table 4]
Figure 2004044026
Example 13, Comparative Examples 8 and 9
Using the same spinning dope as in Example 1, the hole shape was round (hole diameter 0.2 mm), Y-shaped (one side length 0.1 mm), and cross shape (one side length 0.08 mm). The dimethylacetamide was discharged from a nozzle having 30 holes into a coagulation bath having a dimethylacetamide concentration of 56% by weight. Other conditions are the same as in the first embodiment. At this time, the maximum take-up speed and the maximum take-up speed from the coagulation bath were measured. The results are shown in Table 5.
[0030]
[Table 5]
Figure 2004044026
[0031]
【The invention's effect】
The acrylonitrile-based filament of the present invention has excellent bulkiness due to having a plurality of macrovoids inside the fiber, has an excellent lightweight feeling as compared with a normal acrylonitrile-based filament, and has water retention and water absorption. Because of its excellent properties, a smooth dry texture can be obtained. Therefore, the use of acrylonitrile-based filaments particularly for summer clothing is expanded. In addition, since the production method of the present invention does not use a specific additive, it can be produced in a conventional acrylonitrile-based filament production process, and has high industrial productivity. is there.
[Brief description of the drawings]
FIG. 1 is an SEM photograph of a cross section of the fiber of the present invention. FIG. 2 is a SEM photograph of a side surface of the fiber of the present invention.

Claims (2)

50重量%以上のアクリロニトリルを含有する重合体で構成され、繊維側面に部分的に開口し、かつ繊維軸方向に筋状に分布した直径2μm以上の巨大なボイドを繊維横断面あたり2個以上有した繊維であって、嵩高度が2.5cm/g以上、保水率が25%以上、強度が1.5g/dtex以上、伸度が10%以上、及び単繊維繊度が3dtex以上であることを特徴とするアクリロニトリル系フィラメント。It is composed of a polymer containing 50% by weight or more of acrylonitrile, and has two or more huge voids with a diameter of 2 μm or more distributed in the fiber axis direction, partially open on the fiber side, and distributed in the fiber axis direction. Having a bulk height of at least 2.5 cm 3 / g, a water retention of at least 25%, a strength of at least 1.5 g / dtex, an elongation of at least 10%, and a single fiber fineness of at least 3 dtex. An acrylonitrile-based filament characterized by the following. アクリロニトリル系重合体の濃度が16〜20重量%であるアクリロニトリル系重合体溶液を、直径が0.16〜0.30mmである丸型の吐出孔を有するノズルより、溶剤濃度が45〜60重量%である凝固浴中に、引き取り速度と吐出線速度の比が0.9以上で吐出し、繊維賦形を行うことを特徴とする特許請求項1記載のアクリロニトリル系フィラメントの製造方法。An acrylonitrile-based polymer solution having an acrylonitrile-based polymer concentration of 16 to 20% by weight was passed through a nozzle having a round discharge hole having a diameter of 0.16 to 0.30 mm with a solvent concentration of 45 to 60% by weight. 2. The method for producing an acrylonitrile filament according to claim 1, wherein the fiber is discharged into a coagulation bath having a ratio of a take-up speed and a discharge linear speed of 0.9 or more to perform fiber shaping.
JP2002204578A 2002-07-12 2002-07-12 Acrylonitrile-based filament and method for producing the same Pending JP2004044026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204578A JP2004044026A (en) 2002-07-12 2002-07-12 Acrylonitrile-based filament and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204578A JP2004044026A (en) 2002-07-12 2002-07-12 Acrylonitrile-based filament and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004044026A true JP2004044026A (en) 2004-02-12

Family

ID=31710139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204578A Pending JP2004044026A (en) 2002-07-12 2002-07-12 Acrylonitrile-based filament and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004044026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166956A1 (en) * 2014-04-30 2015-11-05 三菱レイヨン株式会社 Acrylic fibers, method for manufacturing same, and spun yarn and knitted fabric using said fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166956A1 (en) * 2014-04-30 2015-11-05 三菱レイヨン株式会社 Acrylic fibers, method for manufacturing same, and spun yarn and knitted fabric using said fibers
JP6065976B2 (en) * 2014-04-30 2017-01-25 三菱レイヨン株式会社 Acrylic fiber and its manufacturing method, spun yarn and knitted fabric using the fiber
EP3138940A4 (en) * 2014-04-30 2017-04-26 Mitsubishi Rayon Co., Ltd. Acrylic fibers, method for manufacturing same, and spun yarn and knitted fabric using said fibers

Similar Documents

Publication Publication Date Title
JP3933712B2 (en) Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
US2907096A (en) Shaped polyacrylonitrile structures
US4925604A (en) Process for preparing a carbon fiber of high strength
JPH0345708A (en) Forming method for melt spinning acrylic fiber adapted for heat conversion to high strength carbon fiber
JP3737969B2 (en) Acrylonitrile fiber bundle for carbon fiber precursor and method for producing the same
JP2651094B2 (en) Speaker cone and method of manufacturing the same
JP2004044026A (en) Acrylonitrile-based filament and method for producing the same
JP3808643B2 (en) Acrylonitrile fiber bundle and method for producing the same
JPH09250024A (en) Pill-resistant ultrafine acrylic fiber and its production
JPS6018332B2 (en) Manufacturing method of acrylic hollow fiber
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JPH10504616A (en) Acrylonitrile filament manufacturing method
JPS6361409B2 (en)
JPH05148709A (en) Acrylic modified cross section fiber and its production
JP2003301322A (en) Acrylic modified cross section high-fineness fiber and method producing same
JP2007182645A (en) Method for producing acrylic fiber
JP2002266159A (en) Precursor fiber bundle for carbon fiber and method for producing the same
JP3008951B2 (en) Highly water-retaining acrylic fiber and method for producing the same
JPH0673608A (en) Flat acrylic synthetic fiber and its production
KR950002814B1 (en) Process for the production of non-drawing ultrafine acrylic fibers
JP3720635B2 (en) Acrylonitrile-based synthetic fiber and method for producing the same
JPS5982420A (en) Production of carbon fiber
JP2004332179A (en) Acrylic synthetic fiber and method for producing the same