JP2004042425A - Vapor deposition film and its manufacturing method - Google Patents

Vapor deposition film and its manufacturing method Download PDF

Info

Publication number
JP2004042425A
JP2004042425A JP2002202654A JP2002202654A JP2004042425A JP 2004042425 A JP2004042425 A JP 2004042425A JP 2002202654 A JP2002202654 A JP 2002202654A JP 2002202654 A JP2002202654 A JP 2002202654A JP 2004042425 A JP2004042425 A JP 2004042425A
Authority
JP
Japan
Prior art keywords
film
organic compound
metal
vapor
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002202654A
Other languages
Japanese (ja)
Inventor
Chikashi Shinoda
篠田 史
Isazumi Ueha
上羽 功純
Kusato Hirota
廣田 草人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002202654A priority Critical patent/JP2004042425A/en
Publication of JP2004042425A publication Critical patent/JP2004042425A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal and/or metal oxide vapor deposition film which can stably produce a gas-barrier packaging film processed article or an industrial film processed article such as a capacitor and has excellent barrier properties. <P>SOLUTION: The vapor deposition film comprises a film substrate, a polymer film in which an organic compound is partially or totally polymerized, and the metal and/or metal oxide vapor deposition film. The molecular weight of the organic compound is 600 or below, and the compound can be an unsaturated fatty acid having at least one conjugated double bond. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はガスバリア性を有する包装用フイルム加工品、或いはコンデンサーなどの工業用フイルム加工品として用いられるフイルム加工品に関するものである。
【0002】
【従来の技術】
アルミニウム金属、或いはAlOx、SiOxなどの金属酸化物、或いはこれらの積層・複合物を蒸着やスパッタリングなどの方法によりフイルムにコーティングしたポリエチレンテレフタレートやポリプロピレンフイルム加工品は酸素バリア性、水蒸気バリア性に優れており、広く食品包装用フイルム加工品として用いられている。
【0003】
これらの欠点として製袋の際に金属蒸着フイルムが製袋機のフォーマで折り曲げられながら、引っ張られるため、金属蒸着膜や金属酸化物膜に亀裂が入る場合があり、バリア性が低下するということが問題となっている。
【0004】
これらの対策として金属または金属蒸着フイルムに樹脂をコーティングする方法が実用化されているが、製造価格が高くなり実用途が限定される問題がある。一方、米国特許第4,842,893号では金属を蒸着する蒸着機内において蒸着金属膜状にアクリル(メタクリル)酸エステルからなる有機単量体を蒸着後、次いで電子線で該有機単量体を電子線重合し樹脂層を形成する方法が提案されている。また、国内特許では特願平11−163552号で天然有機化合物を高分子化した高分子樹脂が積層された金属蒸着フイルムが提案されている。
【0005】
しかしながら、米国特許第4,842,893号で提案された方法では、加熱筒内で十分蒸発しきれなかったり、装置内で固化する問題があり、国内特許の特願平11−156352においても蒸発不十分な残留物が発生し、それにより蒸発量が変化し、安定して製品を得ることが困難であった。
【0006】
【発明が解決しようとする課題】
そこで本発明の目的は、上記従来技術の課題を解決し、安定した蒸発量を確保し、かつ、安定したガスバリア性を付加した蒸着フイルムを提供することにある。
【0007】
【課題を解決するための手段】
本発明の蒸着フイルムは、上記問題を解決するために、主として、以下の構成を有する。
【0008】
すなわち、フィルム基材、有機化合物の一部または全部が高分子化された高分子膜、金属及び/または金属酸化物蒸着膜からなる蒸着フィルムであって、該有機化合物は分子量が600以下であって、かつ、少なくとも1つの共役2重結合を持つ不飽和脂肪酸を含むことを特徴とする蒸着フィルムである。
【0009】
また、本発明の蒸着フィルムの製造方法は、上記問題を解決するために、主として、以下の構成を有する。
【0010】
すなわち、真空蒸着機内にて、フィルム基材上もしくは金属蒸着膜及び/または金属酸化蒸着膜上に分子量が600以下であって、かつ、少なくとも1つの共役2重結合を持つ不飽和脂肪酸を含む有機化合物層を設け、次いで/または同時に放射線を照射し、有機化合物を重合及び/または架橋させることにより、有機化合物層の一部または全部が高分子化した高分子層を積層することを特徴とする蒸着フイルムの製造方法である。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について説明する。
【0012】
本発明のフィルム基材は、金属が蒸着できるものであれば特に限定されないが、ポリエチレン、無延伸或いは延伸ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミドなどの有機高分子フイルムがより好ましい。
【0013】
なお、基材表面は接着性改良などのためにコロナ放電処理、火炎処理、プラズマ処理などの表面処理、或いは、接着剤のコーティング層、樹脂コーティング層、溶融押し出しによる樹脂層などの積層が行われていても良い。
【0014】
本発明の金属蒸着膜は、Al、Cu、Sn、In、Znなどの金属、或いはこれらを組み合わせたもの、またはその他の金属との合金を蒸着することにより得られるが、酸素、水蒸気のガスバリア性の向上効果を得る観点から、Alを用いることが好ましい。
【0015】
本発明の金属酸化物蒸着膜はSiOx、AlOx、InOx、SnOxなどの金属酸化物、或いはこれらの化合物、混合物を蒸着することにより得られるが、酸素、水蒸気のガスバリア性の向上効果を得る観点からは、SiOx、AlOxを用いることが好ましい。
【0016】
本発明の蒸着フィルムは、酸素、水蒸気のガスバリア性の向上効果を得る観点から、有機化合物の一部または全部が高分子化された高分子膜を有する。該有機化合物は、天然有機化合物でも合成有機化合物でも良いが分子量が600以下であって、かつ、少なくとも1つの共役2重結合を持つ不飽和脂肪酸を含むことが必要である。該不飽和脂肪酸が分子量600を超えると、蒸着フィルムの製造工程において、有機化合物蒸発量が低下し、製造工程の安定化が図れない。不飽和脂肪酸の分子量は好ましくは400以下、より好ましくは300以下である。
【0017】
また、該不飽和脂肪酸が共役2重結合を有さないと、有機化合物の高分子化が十分に進まないため、安定した成膜が図れない。該有機化合物は、少なくとも1つの共役2重結合を持つ不飽和脂肪酸を組成比で45%以上含むことが好ましい。
【0018】
共役2重結合を持つ不飽和脂肪酸の組成比の検出方法としては、紫外線吸収スペクトルから求める日本油化学会制定の基準油脂分析試験法(I)2.4.3.1項、共役不飽和脂肪酸(スペクトル法)が挙げられる。
【0019】
さらに、該有機化合物は、人体に対して刺激が無く安全性の高いものが好ましく用いられ、例えば、共役リノール酸などが好適である。
【0020】
本発明の蒸着フイルムの構成はその用途に応じ、基材/金属蒸着膜及び/または金属酸化物蒸着膜/高分子膜、基材/高分子膜/金属蒸着膜及び/または金属酸化蒸着膜の順に積層された構成、或いはこれらの構成が多層に積層された構成を取ることができる。例えば、包装用蒸着フィルムにおけるガスバリア性低下を抑える目的では基材/高分子膜/金属蒸着膜及び/または金属酸化蒸着膜、また、コンデンサ用蒸着フィルムにおいて機材を透過してくる湿度による金属蒸着膜の水酸化反応を防止する場合、或いはセルフヒーリング性を改良する目的の場合は基材/高分子膜/金属蒸着膜及び/または金属酸化蒸着膜の順に積層された構成を取ることができる。また、金属蒸着膜及び/または金属酸化蒸着膜/高分子膜の層を多層設けることにより、小型コンデンサを作ることができる。
【0021】
もちろん本発明の構成はこれらに限定されるものではなく、基材の上に金属蒸着膜、金属酸化蒸着膜、高分子膜がどのような順序で積層されても良く、何層であっても良い。
【0022】
本発明の蒸着フイルムの製造方法は特に限定されないが、真空蒸着機内にて、フィルム基材上もしくは金属蒸着膜及び/または金属酸化蒸着膜上に分子量が600以下であって、かつ、少なくとも1つの共役2重結合を持つ不飽和脂肪酸を含む有機化合物層(以下有機化合物層と称す)を設け、或いは有機化合物層を設けて次いで/または同時に放射線を照射し、有機化合物層を重合及び/または架橋させることにより、有機化合物層の一部または全部高分子化した高分子層を積層する製造方法が、酸素、水蒸気のガスバリア性の向上効果を得る観点から好ましい。
【0023】
より、具体的な例として、(1)真空蒸着機内の加熱蒸発器内に酸素を供給し、フィルム基材に加熱酸化重合により有機化合物層の一部または全部高分子化した高分子層を設け、次いで該高分子層に直接、或いは放射線を照射することにより重合が進んだ高分子層を形成し、金属蒸着膜及び/または金属酸化蒸着膜を形成する方法、(2)真空蒸着機内にて、フィルム基材に直接、或いは放射線処理した基材上に、加熱蒸発器内に酸素を供給し、フィルム基材に加熱酸化重合により有機化合物層の一部または全部高分子化した高分子層を設け、次いで該高分子層に直接、或いは放射線を照射することにより重合が進んだ高分子層を形成し、金属蒸着膜及び/または金属酸化蒸着膜を形成する方法、(3)真空蒸着機内にて、フィルム基材に直接、或いは基材上に放射線処理を行った後に金属蒸着膜を形成し、次いで加熱酸化重合により有機化合物層の一部または全部高分子化した高分子層を設ける方法、(4)真空蒸着機内にて、フィルム基材に直接、或いは基材上に放射線処理を行った後に金属蒸着膜を形成し、次いで加熱蒸発器内に酸素を供給し、フィルム基材に加熱酸化重合により有機化合物層の一部または全部高分子化した高分子層を設け、次いで該高分子層に直接、或いは放射線を照射することにより重合が進んだ高分子層を形成する方法が挙げられる。
【0024】
ここでいう放射線とは紫外線、赤外線、電子線、イオン粒子、α線、β線、γ線、励起原子、励起分子、グロー放電、プラズマなどを指す。特に放射線が、電子線、不活性原子イオン、酸素イオンまたは励起酸素(分子または原子)からなる群から選ばれた少なくとも1種以上であることが好ましい。不活性原子イオン、酸素イオン、励起酸素(分子または原子)は不活性ガス、または/及び酸素原子を含む分子からなるガス、或いは他のガスとの混合ガスを用いたプラズマ中に存在し、よって有機物層をプラズマにさらすことによっても有機物を重合及び/または架橋させることができる。通常、プラズマ中のイオン、励起ガス粒子は有機化合物層深くには進入できないが、本発明では有機物層の厚みが薄いので重合及び/または架橋可能である。またプラズマの際に酸素ガス、アルゴンガスなどのガスを用いても良い。
【0025】
次に図1に基づいて、蒸着方法の概要を説明する。
【0026】
蒸着機は概ね図1に示すような構造となっている。未蒸着の巻き出しフィルム(2)から巻き出されたフイルム基材は数本のロール間を通ってクーリングドラム(4)に接触し、その後、数本のロール間を通って巻き取られ巻き取りフィルム(3)となる。
【0027】
クーリングドラム(4)下部には金属蒸着源(5)、有機化合物蒸発ノズル(6)があり、それぞれ必要な構成に応じて蒸着が可能となるように配置されている。放射線発生装置(7)は図1では下流側に配置してあるが、上流側のほぼ線対称な位置に設置可能で、有機化合物蒸着前または蒸着中のフィルム基材に放射線を照射する場合に上流側を使用し、有機化合物蒸着後に放射線を照射する場合には下流側に配置して使用することができる。
【0028】
尚、実施例、比較例においては使用した装置上の都合から、有機化合物を先に蒸着し、その後金属を蒸着する場合、一度原反を全て巻き取り、その原反を巻き出し側に載せ替え、再度ロール間にフイルムを通し金属の蒸着を行ったが、装置改造により有機化合物蒸発ノズルを蒸着金属の上流に移動し、一度のロールパスで有機化合物の蒸着を行い、次いで金属蒸着を行うことも可能である。
【0029】
【実施例】
以下、本発明の詳細につき実施例を用いてさらに説明する。
なお、実施例にもちいた酸素透過率、水蒸気透過率の評価機器、並びに条件は表1の通りである。
【0030】
【表1】

Figure 2004042425
(実施例1、比較例1、2)
幅350mm、厚み12μmの表面処理を行った2軸延伸ポリエチレンテレフタレートフィルムロール〔東レ(株)製:製品名「ルミラー12P60」〕に5×10−3torrに排気した真空蒸着機内で、まず150℃以上に加熱した有機化合物蒸発器の中に共役リノール酸(分子量280、組成比50%)と酸素を500cc/min供給し、蒸発した有機化合物を有機化合物蒸発器に設けられたスリットを通して蒸着し、次いで蒸着機内部に酸素ガスを500cc/min供給した箱形の電極に、1000W/cmの電力を投入し、該有機化合物層のプラズマ処理を行った。次いで、アルミニウムを吸光度OD2.5になるように有機化合物蒸着膜上に蒸着した。蒸着された有機化合物層の膜厚は50〜100nmになるように有機化合物量を制御した。本操作は長さ6000mのフイルムを用い蒸着速度50m/minで連続的に行われた。
【0031】
実施例1ではほぼフィルム全長に渡って安定した蒸着ができ、サンプルが得られた。真空蒸着機を開けて有機化合物蒸発器を確認したところ、内部には重合物、並びに重合していない有機化合物の未蒸発物はほとんど見られなかった。
【0032】
比較例1では使用した有機化合物の種類を桐油(分子量872)とした以外の条件は実施例1と同一とした。蒸着後、真空蒸着機を開けて有機化合物蒸発器内を確認したところ、内部には重合物並びに有機化合物の未蒸発物が残存していた。
【0033】
比較例2は有機化合物蒸着膜のないアルミニウム蒸着フィルムで、フイルム基材、真空度、及び蒸着速度などの有機化合物蒸着以外の諸条件は実施例1と同一とし、アルミニウムの吸光度OD2.5となるように蒸着した。
【0034】
各々のフィルムについて酸素透過率、水蒸気透過率を測定した。その結果を表2に示す。
【0035】
比較例2の有機化合物蒸着膜のない従来のアルミ蒸着フィルムは酸素バリア性、水蒸気バリア性とも大きく、また、比較例1の桐油を有機化合物とする、蒸着フィルムは水蒸気バリア性は優れているものの、蒸発機内の残存物である重合物、未蒸発物が多く、長期安定した蒸発が困難である。これに対し、本発明の実施例1は酸素透過率、並びに水蒸気透過率が良好であり、且つ、安定した蒸着を行うことが可能である。
(実施例2)
幅350mm、厚み12μmの表面処理を行った2軸延伸ポリエチレンテレフタレートフィルムロール〔東レ(株)製:製品名「ルミラー12P60」〕に5×10−3torrに排気した真空蒸着機内で、まず150℃以上に加熱した有機化合物蒸発器の中に共役リノール酸(分子量280、組成比70%)と酸素を500cc/min供給し、蒸発した有機化合物を有機化合物蒸発器に設けられたスリットを通して蒸着し、次いで蒸着機内部に酸素ガスを500cc/min供給した箱形の電極に1000W/cmの電力を投入し、該有機化合物層のプラズマ処理を行った。次いで、アルミニウムを吸光度OD2.5になるように有機化合物蒸着膜上に蒸着した。蒸着された有機化合物層の膜厚は50〜100nmになるように有機化合物量を制御した。本操作は長さ6000mのフイルムを用い蒸着速度50m/minで連続的に行われた。
【0036】
このようにして作られた蒸着フィルムの酸素透過率、水蒸気透過率を測定した。その結果を表2に示す。共に良好な値が得られ、また、蒸発器内の残存物は実施例1と同様ほとんど見られなかった。
(実施例3)
厚み12μmの表面処理を行った2軸延伸ポリエチレンテレフタレートフィルムロール〔東レ(株)製:製品名「ルミラー12P60」〕に5×10−3torrに排気した真空蒸着機内で、まず150℃以上に加熱した有機化合物蒸発器の中に共役リノール酸(分子量280、組成比77%)と酸素を500cc/min供給し、蒸発した有機化合物を有機化合物蒸発器に設けられたスリットを通して蒸着し、次いで蒸着機内部に酸素ガスを500cc/min供給した箱形の電極に、1000W/cmの電力を投入し、該有機化合物層のプラズマ処理を行った。次いで、アルミニウムを吸光度OD2.5になるように有機化合物蒸着膜上に蒸着した。蒸着された有機化合物層の膜厚は50〜100nmになるように有機化合物量を制御した。本操作は長さ6000mのフイルムを用い蒸着速度50m/minで連続的に行われた。
【0037】
このようにして作られた蒸着フィルムの酸素透過率、水蒸気透過率を測定した。その結果を表2に示す。共に良好な値が得られ、また、蒸発器内の残存物は実施例1と同様ほとんど見られなかった。
【0038】
【表2】
Figure 2004042425
【0039】
【発明の効果】
蒸着フィルムの製造工程において、高分子膜層を形成する有機化合物の安定した蒸発量を確保することで、安定した製造が可能となり、かつ、優れたガスバリア性を付与した金属蒸着フィルムを提供することができる。
【図面の簡単な説明】
【図1】本発明の金属蒸着フィルムを得るための有機化合物層の蒸着方法の一例である。
【符号の説明】
1 :蒸着機本体
2 :巻き出しフィルム
3 :巻き取りフィルム
4 :クーリングドラム
5 :金属蒸着源
6 :有機化合物蒸発ノズル
7 :放射線発生装置
8 :有機化合物蒸発機[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a processed film product having a gas barrier property, or a processed film product used as an industrial film product such as a condenser.
[0002]
[Prior art]
A polyethylene terephthalate or polypropylene film processed product obtained by coating aluminum metal or a metal oxide such as AlOx, SiOx, or a laminate or composite thereof on a film by a method such as evaporation or sputtering has excellent oxygen barrier properties and water vapor barrier properties. It is widely used as a processed food product for food packaging.
[0003]
One of the drawbacks is that the metal-deposited film is pulled while being bent by the former of the bag-making machine during bag-making, which may cause cracks in the metal-deposited film or metal oxide film, resulting in reduced barrier properties. Is a problem.
[0004]
As a countermeasure, a method of coating a metal or a metal-deposited film with a resin has been put to practical use, but there is a problem that the production cost is high and the practical use is limited. On the other hand, in U.S. Pat. No. 4,842,893, an organic monomer composed of an acrylic (methacrylic acid) ester is vapor-deposited on a vapor-deposited metal film in a vapor deposition machine for vapor-depositing a metal, and then the organic monomer is evaporated with an electron beam. A method of forming a resin layer by electron beam polymerization has been proposed. In addition, Japanese Patent Application No. 11-163552 proposes a metal deposited film in which a polymer resin obtained by polymerizing a natural organic compound is laminated.
[0005]
However, the method proposed in U.S. Pat. No. 4,842,893 has a problem that it cannot evaporate sufficiently in the heating cylinder or solidifies in the apparatus, and the method disclosed in Japanese Patent Application No. 11-156352 also has a problem. Insufficient residue was generated, which changed the amount of evaporation, and it was difficult to obtain a stable product.
[0006]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a vapor deposition film that secures a stable evaporation amount and adds a stable gas barrier property.
[0007]
[Means for Solving the Problems]
The vapor deposition film of the present invention mainly has the following configuration in order to solve the above-mentioned problem.
[0008]
That is, the film is a film substrate, a vapor-deposited film composed of a polymer film in which part or all of the organic compound is polymerized, and a metal and / or metal oxide vapor-deposited film, wherein the organic compound has a molecular weight of 600 or less. And a unsaturated film having at least one conjugated double bond.
[0009]
The method for producing a vapor-deposited film according to the present invention mainly has the following configuration in order to solve the above problems.
[0010]
That is, in a vacuum vapor deposition machine, an organic material containing an unsaturated fatty acid having a molecular weight of 600 or less and having at least one conjugated double bond on a film substrate or a metal vapor deposition film and / or a metal oxide vapor deposition film. Providing a compound layer, and / or simultaneously irradiating radiation to polymerize and / or crosslink the organic compound, thereby laminating a polymer layer in which part or all of the organic compound layer is polymerized. This is a method for manufacturing a vapor deposition film.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0012]
The film substrate of the present invention is not particularly limited as long as a metal can be vapor-deposited thereon, but is not limited to polyethylene, non-stretched or stretched polypropylene, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyphenylene sulfide, polyetherimide, and polyimide. Molecular films are more preferred.
[0013]
In addition, the surface of the base material is subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment or the like, or lamination of an adhesive coating layer, a resin coating layer, a resin layer by melt-extrusion, etc. to improve adhesion. May be.
[0014]
The metal deposited film of the present invention can be obtained by depositing a metal such as Al, Cu, Sn, In, Zn, or a combination thereof, or an alloy with another metal. From the viewpoint of obtaining the effect of improving Al, it is preferable to use Al.
[0015]
Metal oxide deposited film of the present invention is SiOx, Al 2 Ox, InOx, metal oxides such as SnOx, or these compounds, are obtained by depositing the mixture, to obtain oxygen, the effect of improving the gas barrier properties of water vapor from the viewpoint, SiOx, it is preferable to use Al 2 Ox.
[0016]
The vapor-deposited film of the present invention has a polymer film in which some or all of the organic compound is polymerized from the viewpoint of obtaining an effect of improving the gas barrier properties of oxygen and water vapor. The organic compound may be a natural organic compound or a synthetic organic compound, but needs to have an unsaturated fatty acid having a molecular weight of 600 or less and having at least one conjugated double bond. If the unsaturated fatty acid has a molecular weight of more than 600, the evaporation amount of the organic compound is reduced in the production process of the vapor-deposited film, and the production process cannot be stabilized. The molecular weight of the unsaturated fatty acid is preferably 400 or less, more preferably 300 or less.
[0017]
Further, if the unsaturated fatty acid does not have a conjugated double bond, the polymerization of the organic compound does not proceed sufficiently, so that stable film formation cannot be achieved. The organic compound preferably contains at least 45% of an unsaturated fatty acid having at least one conjugated double bond in a composition ratio.
[0018]
As a method for detecting the composition ratio of the unsaturated fatty acid having a conjugated double bond, the standard fat and oil analysis test method (I) established by the Japan Oil Chemists' Society (I) obtained from the ultraviolet absorption spectrum, 2.4.3.1, conjugated unsaturated fatty acid (Spectral method).
[0019]
Furthermore, as the organic compound, those which are safe and have no irritation to the human body are preferably used. For example, conjugated linoleic acid is suitable.
[0020]
The structure of the vapor deposition film of the present invention depends on the use thereof, depending on the substrate / metal vapor deposition film and / or metal oxide vapor deposition film / polymer film, substrate / polymer film / metal vapor deposition film and / or metal oxide vapor deposition film. A configuration in which these components are stacked in order or a configuration in which these components are stacked in multiple layers can be employed. For example, a substrate / polymer film / metal vapor deposition film and / or metal oxide vapor deposition film, or a metal vapor deposition film due to humidity permeating equipment in a capacitor vapor deposition film for the purpose of suppressing a decrease in gas barrier properties in a vapor deposition film for packaging. In order to prevent the hydroxylation reaction of, or to improve the self-healing property, a configuration in which a base material / polymer film / metal vapor deposition film and / or metal oxide vapor deposition film are laminated in this order can be adopted. In addition, a small capacitor can be manufactured by providing multiple layers of a metal deposition film and / or a metal oxide deposition film / polymer film.
[0021]
Of course, the configuration of the present invention is not limited to these, and a metal deposited film, a metal oxide deposited film, and a polymer film may be laminated in any order on the base material, and may be in any number of layers. good.
[0022]
The method for producing the vapor-deposited film of the present invention is not particularly limited, but has a molecular weight of 600 or less on a film substrate or a metal-deposited film and / or a metal oxide-deposited film in a vacuum evaporator, and at least one An organic compound layer containing an unsaturated fatty acid having a conjugated double bond (hereinafter referred to as an organic compound layer) is provided, or the organic compound layer is provided and / or irradiated simultaneously with radiation to polymerize and / or crosslink the organic compound layer By doing so, a manufacturing method in which a polymer layer in which a part or all of the organic compound layer is polymerized is preferably used from the viewpoint of improving the gas barrier properties of oxygen and water vapor.
[0023]
As a more specific example, (1) oxygen is supplied into a heating evaporator in a vacuum evaporation machine, and a polymer layer in which a part or all of an organic compound layer is polymerized by heat oxidation polymerization is provided on a film substrate. A method of forming a polymerized polymer layer by directly or by irradiating the polymer layer with a radiation to form a metal vapor-deposited film and / or a metal oxide vapor-deposited film, (2) in a vacuum vapor deposition machine By supplying oxygen into the heating evaporator directly on the film substrate or on the radiation-treated substrate, a polymer layer obtained by polymerizing a part or all of the organic compound layer by heat oxidation polymerization on the film substrate A method of forming a polymer layer in which polymerization is advanced by directly providing the polymer layer or by irradiating radiation, and forming a metal vapor deposition film and / or a metal oxide vapor deposition film. (3) In a vacuum vapor deposition machine, Directly to the film substrate Or a method of forming a metal vapor-deposited film after performing a radiation treatment on a substrate, and then providing a polymer layer in which a part or all of the organic compound layer is polymerized by thermal oxidation polymerization. To form a metal-deposited film directly on the film substrate or after performing radiation treatment on the substrate, then supply oxygen into the heating evaporator, and heat and oxidize the film substrate to form an organic compound layer. A method of forming a polymer layer in which polymerization has progressed by providing a polymer layer partially or wholly polymerized, and then irradiating the polymer layer directly or with radiation.
[0024]
Here, radiation refers to ultraviolet rays, infrared rays, electron beams, ion particles, α rays, β rays, γ rays, excited atoms, excited molecules, glow discharge, plasma, and the like. In particular, the radiation is preferably at least one selected from the group consisting of an electron beam, an inert atom ion, an oxygen ion, and excited oxygen (molecule or atom). Inert atomic ions, oxygen ions, and excited oxygen (molecules or atoms) are present in a plasma using an inert gas or / and a gas composed of molecules containing oxygen atoms, or a mixed gas with another gas. The organic substance can also be polymerized and / or crosslinked by exposing the organic substance layer to plasma. Usually, ions and excited gas particles in the plasma cannot enter deep into the organic compound layer, but in the present invention, since the thickness of the organic layer is small, polymerization and / or cross-linking is possible. Further, a gas such as an oxygen gas or an argon gas may be used at the time of the plasma.
[0025]
Next, an outline of the vapor deposition method will be described based on FIG.
[0026]
The vapor deposition machine generally has a structure as shown in FIG. The film substrate unwound from the undeposited unwound film (2) passes through several rolls and contacts the cooling drum (4), and then is wound and wound through several rolls. It becomes a film (3).
[0027]
A metal evaporation source (5) and an organic compound evaporation nozzle (6) are provided below the cooling drum (4), and are arranged so that evaporation can be performed according to a required configuration. Although the radiation generator (7) is arranged on the downstream side in FIG. 1, it can be installed at an almost line-symmetrical position on the upstream side, and when irradiating the film base material before or during the deposition of the organic compound with radiation. When using the upstream side and irradiating radiation after depositing the organic compound, it can be arranged and used on the downstream side.
[0028]
In the examples and comparative examples, the organic compound was vapor-deposited first and then the metal was vapor-deposited. The metal was deposited again by passing the film between the rolls, but the organic compound evaporation nozzle was moved to the upstream of the deposited metal by remodeling the apparatus, and the organic compound was deposited with a single roll pass, and then the metal was deposited. It is possible.
[0029]
【Example】
Hereinafter, the details of the present invention will be further described using examples.
Table 1 shows equipment and conditions for evaluating oxygen permeability and water vapor permeability used in Examples.
[0030]
[Table 1]
Figure 2004042425
(Example 1, Comparative Examples 1 and 2)
First, 150 ° C. in a vacuum evaporation machine evacuated to 5 × 10 −3 torr on a biaxially stretched polyethylene terephthalate film roll (product name “Lumirror 12P60” manufactured by Toray Industries, Inc .: 350 mm in width and 12 μm in thickness). Conjugated linoleic acid (molecular weight 280, composition ratio 50%) and oxygen were supplied at 500 cc / min into the heated organic compound evaporator, and the evaporated organic compound was deposited through a slit provided in the organic compound evaporator. Next, power of 1000 W / cm was applied to a box-shaped electrode to which oxygen gas was supplied at 500 cc / min into the inside of the vapor deposition machine to perform plasma treatment on the organic compound layer. Next, aluminum was vapor-deposited on the organic compound vapor-deposited film so as to have an absorbance of OD2.5. The amount of the organic compound was controlled so that the thickness of the deposited organic compound layer was 50 to 100 nm. This operation was continuously performed at a deposition rate of 50 m / min using a 6000 m long film.
[0031]
In Example 1, stable vapor deposition was performed over almost the entire length of the film, and a sample was obtained. When the vacuum evaporation machine was opened and the organic compound evaporator was checked, almost no polymerized product and un-evaporated organic compound that had not been polymerized were found inside.
[0032]
In Comparative Example 1, the conditions were the same as in Example 1 except that the kind of organic compound used was tung oil (molecular weight 872). After the vapor deposition, the vacuum vapor deposition machine was opened to check the inside of the organic compound evaporator, and it was found that the polymer and the non-evaporated organic compound remained inside.
[0033]
Comparative Example 2 is an aluminum vapor-deposited film without an organic compound vapor-deposited film, and the conditions other than the organic compound vapor deposition, such as the film substrate, the degree of vacuum, and the vapor deposition rate, are the same as those in Example 1, and the absorbance of aluminum is OD2.5. Was deposited as follows.
[0034]
The oxygen permeability and the water vapor permeability of each film were measured. Table 2 shows the results.
[0035]
The conventional aluminum vapor-deposited film without the organic compound vapor-deposited film of Comparative Example 2 has a large oxygen barrier property and a high water vapor barrier property, and the vapor-deposited film of Comparative Example 1 using tung oil as an organic compound has excellent water vapor barrier properties. In addition, there are many polymerized substances and unevaporated substances remaining in the evaporator, and it is difficult to carry out long-term stable evaporation. On the other hand, in Example 1 of the present invention, the oxygen transmission rate and the water vapor transmission rate are good, and stable vapor deposition can be performed.
(Example 2)
First, 150 ° C. in a vacuum evaporation machine evacuated to 5 × 10 −3 torr on a biaxially stretched polyethylene terephthalate film roll (product name “Lumirror 12P60” manufactured by Toray Industries, Inc .: 350 mm in width and 12 μm in thickness). Conjugated linoleic acid (molecular weight 280, composition ratio 70%) and oxygen were supplied to the heated organic compound evaporator at 500 cc / min, and the evaporated organic compound was deposited through a slit provided in the organic compound evaporator. Next, a power of 1000 W / cm was applied to a box-shaped electrode to which oxygen gas was supplied at 500 cc / min into the inside of the vapor deposition machine to perform a plasma treatment on the organic compound layer. Next, aluminum was vapor-deposited on the organic compound vapor-deposited film so as to have an absorbance of OD2.5. The amount of the organic compound was controlled so that the thickness of the deposited organic compound layer was 50 to 100 nm. This operation was continuously performed at a deposition rate of 50 m / min using a 6000 m long film.
[0036]
The oxygen transmission rate and the water vapor transmission rate of the vapor-deposited film thus produced were measured. Table 2 shows the results. In both cases, good values were obtained, and almost no residue in the evaporator was observed as in Example 1.
(Example 3)
A biaxially stretched polyethylene terephthalate film roll having a surface treatment with a thickness of 12 μm [manufactured by Toray Industries, Inc .: product name “Lumirror 12P60”] was heated to 150 ° C. or higher in a vacuum evaporation machine evacuated to 5 × 10 −3 torr. Conjugated linoleic acid (molecular weight: 280, composition ratio: 77%) and oxygen were supplied at 500 cc / min into the evaporated organic compound evaporator, and the evaporated organic compound was vapor-deposited through a slit provided in the organic compound evaporator. An electric power of 1000 W / cm was applied to a box-shaped electrode into which oxygen gas was supplied at 500 cc / min to perform a plasma treatment on the organic compound layer. Next, aluminum was vapor-deposited on the organic compound vapor-deposited film so as to have an absorbance of OD2.5. The amount of the organic compound was controlled so that the thickness of the deposited organic compound layer was 50 to 100 nm. This operation was continuously performed at a deposition rate of 50 m / min using a 6000 m long film.
[0037]
The oxygen transmission rate and the water vapor transmission rate of the vapor-deposited film thus produced were measured. Table 2 shows the results. In both cases, good values were obtained, and almost no residue in the evaporator was observed as in Example 1.
[0038]
[Table 2]
Figure 2004042425
[0039]
【The invention's effect】
In the manufacturing process of a vapor-deposited film, by providing a stable evaporation amount of the organic compound forming the polymer film layer, stable production becomes possible, and a metal-deposited film provided with excellent gas barrier properties is provided. Can be.
[Brief description of the drawings]
FIG. 1 is an example of a method for depositing an organic compound layer for obtaining a metal deposited film of the present invention.
[Explanation of symbols]
1: evaporation machine body 2: unwinding film 3: winding film 4: cooling drum 5: metal evaporation source 6: organic compound evaporation nozzle 7: radiation generator 8: organic compound evaporation machine

Claims (6)

フィルム基材、有機化合物の一部または全部が高分子化された高分子膜、金属及び/または金属酸化物蒸着膜からなる蒸着フィルムであって、該有機化合物は分子量が600以下であって、かつ、少なくとも1つの共役2重結合を持つ不飽和脂肪酸を含むことを特徴とする蒸着フィルム。A film substrate, a polymer film in which a part or all of an organic compound is polymerized, a vapor-deposited film composed of a metal and / or metal oxide vapor-deposited film, wherein the organic compound has a molecular weight of 600 or less, A vapor-deposited film comprising an unsaturated fatty acid having at least one conjugated double bond. 該有機化合物は少なくとも1つの共役2重結合を持つ不飽和脂肪酸を組成比で45%以上含むことを特徴とする請求項1に記載の蒸着フィルム。The said organic compound contains 45% or more of unsaturated fatty acids which have at least 1 conjugated double bond in composition ratio, The vapor deposition film of Claim 1 characterized by the above-mentioned. 該有機化合物が、共役リノール酸を含むことを特徴とする請求項1または2に記載の蒸着フイルム。3. The vapor deposition film according to claim 1, wherein the organic compound contains conjugated linoleic acid. フィルム基材の上に、有機化合物の一部または全部を高分子化された高分子膜が積層され、該高分子膜の上に金属膜及び/または金属酸化膜が積層された請求項1〜3いずれかに記載の蒸着フイルム。A polymer film in which a part or all of an organic compound is polymerized on a film substrate, and a metal film and / or a metal oxide film is laminated on the polymer film. 3. The vapor deposition film according to any one of 3. フィルム基材の上に、金属膜及び/または金属酸化膜が積層され、該金属膜及び/または金属酸化膜の上に有機化合物の一部または全部が高分子化された高分子膜が積層された請求項1〜3のいずれかに記載の蒸着フイルム。A metal film and / or a metal oxide film is laminated on a film substrate, and a polymer film in which a part or all of an organic compound is polymerized is laminated on the metal film and / or the metal oxide film. The vapor-deposited film according to claim 1. 真空蒸着機内にて、フィルム基材上もしくは金属蒸着膜及び/または金属酸化蒸着膜上に分子量が600以下であって、かつ、少なくとも1つの共役2重結合を持つ不飽和脂肪酸を含む有機化合物層を設け、次いで/または同時に放射線を照射し、有機化合物を重合及び/または架橋させることにより、有機化合物層の一部または全部が高分子化した高分子層を積層することを特徴とする請求項1〜5のいずれかに記載の蒸着フイルムの製造方法。An organic compound layer having a molecular weight of 600 or less and containing an unsaturated fatty acid having at least one conjugated double bond on a film substrate or on a metal deposition film and / or a metal oxide deposition film in a vacuum deposition machine. And / or simultaneously irradiating radiation to polymerize and / or crosslink the organic compound, thereby laminating a polymer layer in which part or all of the organic compound layer is polymerized. 6. The method for producing a vapor-deposited film according to any one of 1 to 5.
JP2002202654A 2002-07-11 2002-07-11 Vapor deposition film and its manufacturing method Pending JP2004042425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202654A JP2004042425A (en) 2002-07-11 2002-07-11 Vapor deposition film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202654A JP2004042425A (en) 2002-07-11 2002-07-11 Vapor deposition film and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004042425A true JP2004042425A (en) 2004-02-12

Family

ID=31708781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202654A Pending JP2004042425A (en) 2002-07-11 2002-07-11 Vapor deposition film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004042425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179855A (en) * 2008-01-31 2009-08-13 Fujifilm Corp Method for producing functional film
CN109465296A (en) * 2018-12-28 2019-03-15 宜兴市惠华复合材料有限公司 A kind of metal composite process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179855A (en) * 2008-01-31 2009-08-13 Fujifilm Corp Method for producing functional film
CN109465296A (en) * 2018-12-28 2019-03-15 宜兴市惠华复合材料有限公司 A kind of metal composite process

Similar Documents

Publication Publication Date Title
US7807232B2 (en) Inline passivation of vacuum-deposited aluminum on web substrate
AU2009233624A1 (en) Plasma treated metallized film
JP2017177343A (en) Laminate film and method for manufacturing the same
WO1990003266A1 (en) Aluminium vacuum evaporation film and its production method
EP1155818B1 (en) Multilayered film and process for producing the same
JP2004042425A (en) Vapor deposition film and its manufacturing method
JPWO2018203526A1 (en) Aluminum vapor-deposited film and method for producing the same
CN109881152B (en) Conductive film with multilayer structure and preparation process thereof
US20060159860A1 (en) Plasma treated metallized film
JP2007201313A (en) Metal deposited film
US20060141244A1 (en) Multilayer film and process for producing the same
KR20070106462A (en) Metalization through a thin seed layer deposited under plasma support
JPH0565644A (en) Manufacture of vapor-deposited film
US6667247B2 (en) Electrodes for electrolytic capacitors and production process thereof
JP2000094578A (en) Metal vapor deposited film, its manufacture and product using the same
JPH11322979A (en) Clear barrier film and its production
JPS61160824A (en) Magnetic recording medium
JPH0253936B2 (en)
JP3293618B2 (en) Transparent vapor-deposited film and method for producing the same
JP3448872B2 (en) Method for producing transparent barrier film
JPH11300876A (en) Gas barrier material, its production and package
JPS6113310Y2 (en)
JP2003300270A (en) Metal thin film laminated film for packaging, manufacturing method therefor, and packaging bag
JP2006111284A (en) Low-absorptive packaging material for insecticide
JP2870937B2 (en) Manufacturing method of metallized film