JP2004042053A - Joining method of different metal material - Google Patents

Joining method of different metal material Download PDF

Info

Publication number
JP2004042053A
JP2004042053A JP2002199814A JP2002199814A JP2004042053A JP 2004042053 A JP2004042053 A JP 2004042053A JP 2002199814 A JP2002199814 A JP 2002199814A JP 2002199814 A JP2002199814 A JP 2002199814A JP 2004042053 A JP2004042053 A JP 2004042053A
Authority
JP
Japan
Prior art keywords
metal material
thermal expansion
melting point
expansion coefficient
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002199814A
Other languages
Japanese (ja)
Other versions
JP4131375B2 (en
Inventor
Yoshinori Shibata
柴田 義範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002199814A priority Critical patent/JP4131375B2/en
Publication of JP2004042053A publication Critical patent/JP2004042053A/en
Application granted granted Critical
Publication of JP4131375B2 publication Critical patent/JP4131375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding method for welding different metal materials by high energy beam without using an insert or clad material while preventing intermetallic compounds from being caused. <P>SOLUTION: A metal material 3 having high melting point (low thermal expansion rate) and a metal material 4 having low melting point (high thermal expansion rate) are overlapped with other and the high energy beam 2 is applied to the metal material 3 having high melting point (low thermal expansion rate). In this case, a gap (hereinafter termed as a plate gap) having a depth of < 50% of the thickness of the metal 3 having high melting point (low thermal expansion rate) is formed between the metal material 3 having high melting point (low thermal expansion rate) and the metal material 4 having low melting point (high thermal expansion rate). Depth of weld penetration on the side of the metal material 4 having high thermal expansion rate is set within the thickness of the metal material 4 having high thermal expansion rate, thus preventing it to pass through the metal material 4 having high thermal expansion rate. The metal material 3 having high melting point (low thermal expansion rate) is a steel based material and the metal material 4 having low melting point (high thermal expansion rate) is an aluminum material, and the high energy beam is a laser beam or electronic beam. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、異種金属材料の接合方法に関する。より詳しくは、金属間化合物を形成させない異種金属材料の高エネルギービームによる溶融溶接方法に関する。
【0002】
【従来の技術】
燃費の向上や、排ガス規制の強化により車両の軽量化が望まれている。このため、例えば、車体構造の強度の必要な部位には鋼材を用い、比較的強度が要求されない部位にはアルミニウムなどの軽量な材料を用いることが検討されている。
【0003】
しかし、異種金属の接合に溶融溶接法を適用すると、溶接部では液体状態で大量の異種金属が混合されるため金属同士の反応の制御が難しく、多くの場合に中間相としての脆弱な金属間化合物を形成することとなる。また、材料間で融点や熱伝導率、あるいは熱膨張係数といった各種の物性も大きく異なるため、溶融溶接法では溶接部の冷却凝固時に残留応力が発生し、割れや大きな歪みの発生につながるために異種金属材料の溶接接合は困難とされていた。
【0004】
例えば、アルミニウムと鋼、アルミニウムと銅、チタニウムと鋼のような異種金属材料の溶接では、その接合界面に脆弱な金属間化合物が形成されるために高い継手強度が得られないことが知られている。
【0005】
従来このような異種金属の接合方法としては、ネジ、ボルト、嵌合わせなどの機械的な接合方法や、爆着、熱間圧延、摩擦圧接などの固相接合法、さらには、ロウ付などの接着法などが検討され実施されている。しかし、機械的な接合や接着による方法では、信頼性、気密性、作業性などについて問題があり、また、爆着、熱間圧延、摩擦圧接などの固相接合法では、接合材の形状の制約が大きいことや、作業性の低いことが問題となっている。
【0006】
特開平4−81288号公報では鋼系材料とアルミニウム系材料との間に鋼系部材とアルミニウム系部材とを積層したクラッド材を配設して、異種金属が溶融し合わない溶接条件でレーザ溶接法により接合する方法を開示している。すなわち、鋼系材料とクラッド材の鋼系部分とをレーザ溶接し、また、アルミニウム系材料とクラッド材のアルミニウム系部分とをレーザ溶接することで鋼系材料とアルミニウム系材料とを接合する方法である。そして、レーザ溶接という精度の高い溶接方法で隣接する鋼系材料とアルミニウム系材料とを溶融・混合させないように制御する方法である。
【0007】
しかし、この方法では、▲1▼クラッド材は、車体の構造上は不要であるためコストが上昇する、また、▲2▼接合前にクラッド材を供給して保持する必要があり、従来の工程をそのまま利用することができない、さらに、▲3▼生産性が大きく損われる、といった問題がある。
【0008】
このようなことから、より簡便で作業性の高い異種金属材料の接合方法の開発が望まれていた。
【0009】
【発明が解決しようとする課題】
本発明は以上の問題点を解決すべくなされたもので、本発明の目的は、インサート材やクラッド材を用いないで、金属間化合物を生じることのない異種金属材料の高エネルギビームによる溶接方法を提供することである。
【0010】
【課題を解決するための手段】
本発明の異種金属材料の接合方法は、高融点金属材料と低融点金属材料とを重ねて配設し高エネルギビームを前記高融点金属材料側から照射する異種金属材料の重ね溶融溶接において、高融点金属材料と低融点金属材料との間に隙間(以下、板隙という)を設けることを特徴とする。
【0011】
ここで、板隙の大きさは、高融点金属材料の厚さの50%未満であることが望ましい。
【0012】
また、高融点金属材料の一例としては鋼系材料が、低融点金属材料としてはアルミニウム系材料が考えられる。
【0013】
本発明の異種金属材料の接合方法は、低熱膨張率金属材料と高熱膨張率金属材料とを重ねて配設し高エネルギビームを低熱膨張率金属材料側から照射する異種金属材料の重ね溶融溶接において、高熱膨張率金属材料側の溶け込み深さを高熱膨張率金属材料内に設定して貫通させないことを特徴とする。
【0014】
ここで、低熱膨張率金属材料としては鋼系材料が、高熱膨張率金属材料としてはアルミニウム系材料を一例として挙げることが出来る。
【0015】
また、高エネルギビームは、レーザビームや電子ビームであることが望ましい。
【0016】
【発明の実施の形態】
(第1発明)
本発明の第1発明である異種金属材料の接合方法は、高融点金属材料と低融点金属材料とを重ねて配設し高エネルギビームを高融点金属材料側から照射する異種金属材料の重ね溶融溶接において、高融点金属材料と低融点金属材料との間に隙間(以下、板隙と称する)を設けることを特徴とする。
【0017】
一般的に、金属間化合物はある温度(例えば、鉄とアルミニウムの場合には約400℃)以上で生成し、その温度領域に保持されると成長する。このため溶融溶接では、高融点金属材料から低融点金属材料へ流れ込む溶融ビードと低融点金属材料との境界部の到達温度(溶融温度)と、この境界部での冷却速度とが重要になる。高エネルギビームを用いた場合には、アーク溶接と比較して、到達温度は変化しないが同等の溶け込みを得るための入熱量は少なくてすむため、結果として冷却速度は速くなる。このため、金属間化合物の成長はある程度抑制されるが、それでも十分な継手強度を得ることはできない。
【0018】
本発明による異種金属材料の接合方法の一例を模式的に図1に示す。すなわち、集光レンズ1で集光したレーザビーム2を高融点金属材料(上板)3の表面から、板隙5を介して配設されている低融点金属材料(下板)4に向って照射して両材料を接合する方法である。
【0019】
高融点金属材料と低融点金属材料との間に隙間(板隙)5を設けることにより、上板3から下板4への直接の熱伝達が遮断され、熱伝達は溶融ビード部のみを介して行われるので、金属間化合物が生成しやすい下板4と下板側溶融ビード部界面での冷却速度は非常に速くなり、このため有害な金属間化合物の成長は抑制される。この結果、十分な強度を有する重ね溶接継手を得ることが可能となる。
【0020】
本発明の接合方法では、高融点金属材料と低融点金属材料とには特に制限はない。例えば、鋼とアルミニウム(または、アルミニウム合金)、鋼とチタン(またはその合金)、鋼とマグネシウム(またはその合金)などを例示することができる。
【0021】
また、高融点および低融点という表現は、接合する2種類の金属材料の各融点の相対的な呼称であって、ある温度範囲などを特定するものではない。例えば、接合する異種金属材料が鋼とアルミニウムの場合には、鋼は高融点金属材料であり、アルミニウムは低融点金属材料である。また、チタンと鋼の場合には、チタンが高融点金属材料であり、鋼は低融点金属材料と呼ぶことができる。
【0022】
本発明における異種金属材料の形状は、レーザによる重ね溶接が可能であればどのような形状であっても特に制約はない。板と板、板とアングルなど型材、板とパイプなど、どのような組合わせでも差支えない。
【0023】
板隙5は、高融点金属材料の厚さの50%未満であることが望ましい。異種金属材料を配設する板隙5は、材料同士が接触していなければ上板3から下板4への直接の熱伝達が遮断されるので、少しでも隙間が認められれば本発明の目的を達することが可能ではあるが、概ね0.05mm以上であることが望ましい。一方、板隙5が上板3である高融点金属材料の厚さの50%を越えると、上板3の溶融池の落込みがひどくなりアンダーフィルとなるめに継手強度が低下するので好ましくない。すなわち、異種金属材料を配設する板隙をtmmとすると、0.05<t<0.5×(高融点金属材料の厚さ)であることが望ましい。この板隙の範囲限定は以下の実験によって確認した。
【0024】
レーザ溶接のビードのアルミニウム板への溶け込み深さを0.6mm、溶接速度を1.0m/min一定として、1.4mm厚さの鋼板と2.0mm厚さのアルミニウム板とを、板隙(t)を0、0.1、0.2、0.6、0.8mmの5水準に変化させて溶接し、得られた溶接継手の引張り剪断強度を測定した。
【0025】
ここで、溶接継手の引張り剪断強度は、鋼とアルミニウムとを重ねて溶接した適当な大きさの試験材から図2の寸法に切出して引張り剪断試験片とした。各試験片はオートグラフ(100kN)で引張り試験を実施して得られた破断強度を引張り剪断強度(kN)とした。
【0026】
結果を図3に示す。横軸は板隙(mm)であり、縦軸は試料に対応する引張り剪断強度(kN)である。図3から板隙が0(鋼板とアルミニウム板とが密着している)の場合は、引張り剪断強度は1〜2kNであったが、板隙が0.1mm(鋼板板厚の7%)では3.35〜3.78kNと引張り剪断強度は急増している。そして、板隙が0.1〜0.2mmをピークとして、それ以降は板隙の増加に伴い引張り剪断強度は低下して、板隙が0.8mm(鋼板板厚の57%)では2.35〜2.45kNとピーク時の約2/3となった。これは板隙が増加すると鋼板側の溶融池が落込むために引張り剪断強度が低下したものと考えられる。
【0027】
このように、板隙の大きさは溶接継手の引張り剪断強度に大きな影響を及すので、板隙はできるだけ正確に設定することが望ましい。例えば、鋼板またはアルミニウム板のいずれかに、板隙と同じ高さの突起、あるいは突部を設けて加圧する方法で設定することが好ましい。例えば、板隙(tmm)が0.05≦t<0.2の場合には、低融点金属材料の表面に板隙tに相当する厚さの断熱テープ(紙テープなど)を貼って高融点金属材料との板隙を確保する、また、0.2≦tの場合には突起や突部を設けて加圧する方法を用いることが考えられる。さらに、ラインでの生産性を考慮すると片側に突部を設ける方法が望ましい。
(第2発明)
本発明の第2発明である異種金属材料の接合方法は、低熱膨張率金属材料と高熱膨張率金属材料とを重ねて配設し高エネルギビームを前記低熱膨張率金属材料側から照射する異種金属材料の重ね溶融溶接において、前記高熱膨張率金属材料側の溶け込み深さを該高熱膨張率金属材料内に設定して貫通させないことを特徴とする。
【0028】
溶接のビード部は、低熱膨張率の金属に高熱膨張率の金属が少量だけ攪拌混合された状態であり、ビード部の熱膨張率は低熱膨張率金属材料に近い値となる。また、一般的に有害となる金属間化合物は延性が低く脆い。このため、上記異種金属材料の溶融溶接では、熱膨張率差により、溶融ビードと高熱膨張率金属材料との境界面もしくは、境界面に発生した金属間化合物層内で割れが発生しやすい。
【0029】
高エネルギビーム溶接、例えば、炭酸ガスレーザ溶接の場合には、入熱量を制御することによりビードの溶け込み深さを調整することができる。本発明の接合方法の特徴は、この溶け込み深さを高熱膨張率金属材料内に留めて貫通させないことである。
【0030】
溶接のビード部が高熱膨張率金属材料内に止まる非貫通の場合には、入熱時に発生する熱膨張によって溶融ビード周囲には圧縮の残留応力が残る。このためビード部の冷却時には比較的割れが発生しにくい。
【0031】
しかし、溶接のビード部を貫通させた場合には、入熱時に発生する熱膨張は溶融部分に吸収されるため溶融ビード側面の高熱膨張金属には残留応力は発生しない。このため、冷却時にこの高熱膨張率金属が収縮し、溶融ビードと高熱膨張率金属との境界面もしくは、境界面に発生した金属間化合物層内で割れが発生する。前述したように、金属間化合物の量は入熱量の増加に伴って増加するため、貫通溶接を行った場合には入熱量が大きくなり、非貫通の場合に比べて冷却時の熱応力が増加するとともに金属間化合物の形成量も増大する。
【0032】
本発明の異種金属材料の接合方法では、低熱膨張率金属材料と高熱膨張率金属材料とには特に制限はない。例えば、鋼とアルミニウム(または、アルミニウム合金)、鋼とチタン(またはその合金)、鋼とマグネシウム(またはその合金)などを例示することができる。
【0033】
また、低熱膨張率および高熱膨張率という表現は、ここでは接合する2種類の金属材料のある温度範囲での各熱膨張率の相対的な呼称である。例えば、接合する異種金属材料が鋼とアルミニウムの場合には、鋼は低熱膨張率金属材料であり、アルミニウムは高熱膨張率金属材料である。また、チタンと鋼の場合には、チタンが低熱膨張率金属材料であり、鋼は高熱膨張率金属材料となる。
【0034】
本発明における異種金属材料の形状は、レーザによる重ね溶接が可能であれば特に制約はない。板と板、板とアングルなど型材、板とパイプなどを例示することが出来る。
【0035】
接合部への入熱量の制御はレーザの出力を調整することによって行うことができる。厚さ1.4mmの鋼板(SHP45)を上板とし、厚さ2.0mmのアルミニウム板(A6NO1)を下板として、0.2mmの隙間を設けて配設し、COレーザ溶接機を用いて鋼板の表面からレーザ照射して重ね溶接を行った。溶接速度は1.0m/minであった。この時のレーザ出力の変化によるアルミニウム板側の溶け込み深さの変化を測定した。結果を図4に示す。
【0036】
レーザ出力が1.9kWでは溶け込み深さは0.24mmであった。そして、出力の上昇に比例して溶け込み深さは増加し、出力が2.7kWで溶け込み深さは約1.0mmとアルミニウム板厚の1/2となった。さらに出力を上げると溶け込み深さは急増した。これは、アルミニウムは熱伝導率が高いので、ある程度熱を加えると全体が加熱される予熱効果のためと考えられる。そして、出力が3.0kWで溶接ビードはアルミニウム板を貫通した。
【0037】
一方、アルミニウム板側の溶け込み深さと溶接継手強度との関係は、板隙0.2mmの場合においては後述する図5のように、貫通すると溶接継手の引張り剪断強度は0.8kN程度と急激に低下する。
【0038】
本発明で用いる高エネルギビームはレーザビームや電子ビームを使用することができる。COガスレーザビーム溶接は車両の生産ラインにおいて好適に使用されている。
【0039】
【実施例】
本発明の接合方法について実施例によりさらに詳しく説明する。
(実施例1)
厚さが1.4mmの鋼板(SHP45)を高融点金属材料(低膨張率金属材料)として、また、厚さが2.0mmのアルミニウム板(A6N01)を低融点金属材料(高膨張率金属材料)とした。このアルミニウム板に形成した突起を介して鋼板とアルミニウム板とを重ねて加圧する方法で、板隙0.2mmを確保してCOガスレーザ溶接機(レーザ出力:6kW)を用いて図2に示す形状の重ね溶接継手を得た(なお、図2の寸法単位はmmである)。溶接速度は1.0m/min一定として、レーザ出力を変化させてアルミニウム板側への溶け込み深さによる引張り剪断強度の変化を調べた。結果を図5に示す。
【0040】
板隙を0.2mmとした場合には、ビードがアルミニウム板を貫通した溶け込み深さ2.0mmの場合を除いて引張り剪断強度は2.8kN〜4.2kNと、溶け込み深さの広い範囲に亘って良好な値が得られた。すなわち、この方法によれば生産ラインにおいても安定して高い継手強度を得ることが可能であることが分る。
【0041】
次に、アルミニウム板側の溶け込み深さが0.24mm(レーザ出力:1.9kW 溶接速度:1.0m/min)の溶接部の断面(電子顕微鏡による反射電子像)を図6に示した。ここで、11は鋼板、12はアルミニウム板、6はレーザ溶接ビード、5は両材料の隙間で0.2mmの板隙である。図6では、0.24mmのビードの溶け込みが認められるが、有害な金属間化合物の層は見当らない。これは、鋼板からの直接の熱伝達がないのでアルミニウム板と溶融ビード部界面での冷却速度が非常に速くなるために、有害な金属間化合物の成長は抑制されたものと考えられる。
(比較例1)
実施例1と同様に、高融点金属材料(低膨張率金属材料)として厚さが1.4mmの鋼板(SHP45)と低融点金属材料(高膨張率金属材料)としては厚さが2.0mmのアルミニウム板(A6N01)とを板隙0mm(密着状態)で重ねて炭酸ガスレーザ溶接を実施した。溶接条件を変化させてアルミニウム板側溶け込み深さによる継手強度の変化を調べた。結果を図7に示す。
【0042】
図7からは、アルミニウム側の溶け込み深さが小さいほど溶接継手の引張り剪断強度は高いことが分る。例えば、溶け込み深さが0.3mmの場合には引張り剪断強度は3〜3.5kNであるが、溶け込み深さが1.2mmでは引張り剪断強度は0.8kNと溶け込み深さが0.3mmの場合の約1/4に低下してしまう。これは、鋼板からの熱伝達によりアルミニウム板内の溶融ビード部界面の冷却速度が小さくなるために硬くて脆い金属間化合物が成長したためと考えられる。本比較例では接合部の引張り剪断強度が2.8kN以上である溶け込み深さは0.3mm以下と極めて狭い範囲であるので、高い引張り剪断強度を生産ラインで安定的に得ることは困難である。
【0043】
次に、鋼板とアルミニウム板とを隙間を設けないで鋼板側からレーザ溶接したときの接合部の断面を図8に示す。図の上半分は鋼板11であり、下半分は12のアルミニウム板である。5は両材料板の界面(板隙0)であり、6はレーザ溶接のビードである。アルミニウム板側溶け込み部の先端に灰色部分13の金属間化合物が観察される。
(実施例2)
厚さ1.4mmの鋼板(SHP45)を上板とし、厚さ2.0mmのアルミニウム板(A6NO1)を下板として、0.2mmの隙間を設けて配設し、COレーザ溶接機を用いて鋼板側から重ね溶接を行った。
【0044】
本実施例は入熱量を制御して溶け込みをアルミニウムの板の途中に設定した非貫通溶接の場合である。溶接条件は、出力2.4kwで、1.0m/minの溶接速度であった。この時のアルミニウム側への溶け込み深さは0.6mmであった。
【0045】
接合部断面を図9に示した。本実施例では入熱量を制御して溶け込み深さを0.6mmとアルミニウムの板の途中に設定したので、ビードとアルミニウム板との界面に有害な割れは観察されず、また、引張り剪断強度も3.0kNと高い値が得られた。
(比較例2)
材料および溶接機は実施例2と同様であるが、本比較例は、鋼板とアルミニウム板とを重ねて貫通溶接を行った場合である。溶接条件は、レーザ出力:3.0kw、溶接速度:1.0m/minであった。この時、溶接ビードはアルミニウム板の厚さ2.0mmを貫通した。接合部断面を図10に示した。
【0046】
本比較例では、図10に見られるように接合部に割れが発生している。特に溶接ビードとアルミニウム母材との境界面で顕著であることが分る。このため、接合部の引張り剪断強度も0.8kNと極めて低いものであった。
【0047】
【発明の効果】
本発明の異種金属材料の接合方法によれば、例えば、鋼板とアルミニウム板といった異種金属材料の接合を容易にまた確実に実施することができ、品質の安定した重ね溶接継手を得ることができる。また、クラッド材のような中間層を使用することがないので低コストで生産性の高い異種金属材料の接合方法であり、車両などの軽量化に好適に利用することができる。
【図面の簡単な説明】
【図1】本発明のレーザ溶接法による接合方法の模式図である。
【図2】溶接継手の引張り剪断強度を測定する試験片の形状を示す図である。
【図3】アルミニウム板への溶け込み深さを一定にして、鋼板とアルミニウム板との隙間による溶接継手の引張り剪断強度の変化を示す図である。
【図4】板隙0.2mmの時のレーザ出力によるアルミニウム板側溶け込み深さの変化を示す図である。
【図5】鋼板とアルミニウム板との隙間を0.2mmとして、鋼板側からレーザ溶接したときのアルミニウム板側の溶け込み深さと溶接継手の引張り剪断強度との関係を示す図である。
【図6】板隙0.2mmの場合の鋼板とアルミニウム板との接合断面を示す図である。ビードの先端部には金属間化合物は認められない。
【図7】鋼板とアルミニウム板とを隙間を設けないで鋼板側からレーザ溶接したときのアルミニウム板側の溶け込み深さと溶接継手の引張り剪断強度との関係を示す図である。
【図8】板隙0の場合の鋼板とアルミニウム板との接合断面を示す図である。ビードの先端部に金属間化合物の形成が見られる。
【図9】入熱量を制御して溶け込みをアルミニウムの板の途中に設定した場合の接合部断面を示す図である。
【図10】鋼板とアルミニウム板とを重ねて貫通溶接を行った場合の接合部断面を示す図である。溶接ビードとアルミ母材との境界面で割れが発生している。
【符号の説明】
1:集光レンズ 2:レーザビーム 3:高融点(低膨張率)金属材料 4:低融点(高膨張率)金属材料 5:隙間(板隙) 6:ビード
11:鋼(SHP45) 12:アルミニウム(A6N01) 13:金属間化合物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for joining dissimilar metal materials. More specifically, the present invention relates to a fusion welding method using a high energy beam of a dissimilar metal material that does not form an intermetallic compound.
[0002]
[Prior art]
It is desired to reduce the weight of vehicles by improving fuel efficiency and strengthening exhaust gas regulations. For this reason, for example, it has been studied to use a steel material for a portion where the strength of the vehicle body structure is required and to use a light material such as aluminum for a portion where a relatively high strength is not required.
[0003]
However, when fusion welding is applied to the joining of dissimilar metals, it is difficult to control the reaction between the metals because a large amount of dissimilar metals are mixed in the welded part in the welded part, and in many cases, between weak metals as intermediate phases A compound will be formed. In addition, since various physical properties such as melting point, thermal conductivity, and thermal expansion coefficient differ greatly between materials, residual stress is generated during the cooling and solidification of the welded part in the fusion welding method, which leads to the generation of cracks and large strains. It has been considered difficult to weld and bond dissimilar metal materials.
[0004]
For example, it is known that welding of dissimilar metal materials such as aluminum and steel, aluminum and copper, and titanium and steel does not provide high joint strength due to the formation of brittle intermetallic compounds at the joint interface. Yes.
[0005]
Conventionally, such dissimilar metal joining methods include mechanical joining methods such as screws, bolts, fitting, solid phase joining methods such as explosive welding, hot rolling, friction welding, and brazing. Adhesion methods are being studied and implemented. However, mechanical bonding and adhesion methods have problems with reliability, airtightness, workability, etc., and solid-phase bonding methods such as explosive welding, hot rolling, friction welding, etc. The problem is that restrictions are large and workability is low.
[0006]
In JP-A-4-81288, a clad material in which a steel member and an aluminum member are laminated is disposed between a steel material and an aluminum material, and laser welding is performed under a welding condition in which different metals do not melt together. The method of joining by the method is disclosed. That is, a method of joining a steel material and an aluminum material by laser welding the steel material and the steel material portion of the clad material, and laser welding the aluminum material and the aluminum material portion of the clad material. is there. And it is the method of controlling so that the adjacent steel-type material and aluminum-type material may not be melted and mixed by the highly accurate welding method called laser welding.
[0007]
However, according to this method, (1) the clad material is unnecessary in terms of the structure of the vehicle body, so the cost increases. (2) It is necessary to supply and hold the clad material before joining. Cannot be used as it is, and (3) productivity is greatly impaired.
[0008]
For these reasons, development of a simpler and more workable joining method for dissimilar metal materials has been desired.
[0009]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and an object of the present invention is to use a high-energy beam welding method for dissimilar metal materials that do not produce an intermetallic compound without using an insert material or a clad material. Is to provide.
[0010]
[Means for Solving the Problems]
The dissimilar metal material joining method of the present invention is a high melting point metal material and a low melting point metal material which are arranged in a stacked manner and irradiated with a high energy beam from the high melting point metal material side. A gap (hereinafter referred to as a plate gap) is provided between the melting point metal material and the low melting point metal material.
[0011]
Here, the size of the plate gap is desirably less than 50% of the thickness of the refractory metal material.
[0012]
Further, as an example of the refractory metal material, a steel-based material can be considered, and as the low-melting metal material, an aluminum-based material can be considered.
[0013]
The joining method of dissimilar metal materials according to the present invention is a lap melting welding of dissimilar metal materials in which a low thermal expansion coefficient metal material and a high thermal expansion coefficient metal material are arranged and irradiated with a high energy beam from the low thermal expansion coefficient metal material side. The penetration depth on the high thermal expansion coefficient metal material side is set in the high thermal expansion coefficient metal material so as not to penetrate.
[0014]
Here, examples of the low thermal expansion coefficient metal material include steel materials, and examples of the high thermal expansion coefficient metal material include aluminum materials.
[0015]
The high energy beam is preferably a laser beam or an electron beam.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(First invention)
The dissimilar metal material joining method according to the first aspect of the present invention is a method of overlapping melting of dissimilar metal materials in which a high melting point metal material and a low melting point metal material are arranged to overlap each other and a high energy beam is irradiated from the high melting point metal material side. In welding, a gap (hereinafter referred to as a plate gap) is provided between the high melting point metal material and the low melting point metal material.
[0017]
In general, an intermetallic compound is produced at a temperature higher than a certain temperature (for example, about 400 ° C. in the case of iron and aluminum), and grows when held in that temperature range. For this reason, in fusion welding, the ultimate temperature (melting temperature) of the boundary between the molten bead flowing from the high melting point metal material to the low melting point metal material and the low melting point metal material and the cooling rate at the boundary are important. When a high energy beam is used, compared with arc welding, the ultimate temperature does not change, but the amount of heat input for obtaining the same penetration is reduced, and as a result, the cooling rate is increased. For this reason, the growth of the intermetallic compound is suppressed to some extent, but still a sufficient joint strength cannot be obtained.
[0018]
An example of a method for joining dissimilar metal materials according to the present invention is schematically shown in FIG. That is, the laser beam 2 collected by the condenser lens 1 is directed from the surface of the high melting point metal material (upper plate) 3 toward the low melting point metal material (lower plate) 4 disposed through the gap 5. This is a method of joining both materials by irradiation.
[0019]
By providing a gap (plate gap) 5 between the high-melting point metal material and the low-melting point metal material, direct heat transfer from the upper plate 3 to the lower plate 4 is interrupted, and heat transfer is performed only through the molten bead portion. Therefore, the cooling rate at the interface between the lower plate 4 and the lower plate-side molten bead portion where intermetallic compounds are likely to be generated becomes very fast, and thus the growth of harmful intermetallic compounds is suppressed. As a result, a lap weld joint having sufficient strength can be obtained.
[0020]
In the bonding method of the present invention, there is no particular limitation on the high melting point metal material and the low melting point metal material. Examples thereof include steel and aluminum (or an aluminum alloy), steel and titanium (or an alloy thereof), steel and magnesium (or an alloy thereof), and the like.
[0021]
The expressions high melting point and low melting point are relative names of the melting points of the two types of metal materials to be joined, and do not specify a certain temperature range. For example, when the dissimilar metal materials to be joined are steel and aluminum, steel is a high melting point metal material and aluminum is a low melting point metal material. In the case of titanium and steel, titanium is a high melting point metal material, and steel can be called a low melting point metal material.
[0022]
The shape of the dissimilar metal material in the present invention is not particularly limited as long as it can be welded by laser. Any combination of plates, plates, molds such as plates and angles, plates and pipes can be used.
[0023]
Desirably, the gap 5 is less than 50% of the thickness of the refractory metal material. If the gap 5 in which the dissimilar metal material is disposed is not in contact with each other, direct heat transfer from the upper plate 3 to the lower plate 4 is interrupted. However, it is generally desirable to be 0.05 mm or more. On the other hand, if the gap 5 exceeds 50% of the thickness of the refractory metal material that is the upper plate 3, the drop in the molten pool of the upper plate 3 becomes so severe that the joint strength decreases to cause an underfill. Absent. That is, it is desirable that 0.05 <t <0.5 × (thickness of the refractory metal material), where tmm is a gap between the dissimilar metal materials. This range limitation of the gap was confirmed by the following experiment.
[0024]
The depth of penetration of the laser welding bead into the aluminum plate is 0.6 mm, the welding speed is constant at 1.0 m / min, and a 1.4 mm-thick steel plate and a 2.0 mm-thick aluminum plate are T) was changed to five levels of 0, 0.1, 0.2, 0.6, and 0.8 mm for welding, and the tensile shear strength of the resulting welded joint was measured.
[0025]
Here, the tensile shear strength of the welded joint was cut out to a size shown in FIG. 2 from a test material of an appropriate size obtained by welding steel and aluminum and was used as a tensile shear test piece. For each test piece, the breaking strength obtained by carrying out a tensile test with an autograph (100 kN) was taken as the tensile shear strength (kN).
[0026]
The results are shown in FIG. The horizontal axis is the plate gap (mm), and the vertical axis is the tensile shear strength (kN) corresponding to the sample. From FIG. 3, when the gap was 0 (the steel plate and the aluminum plate were in close contact), the tensile shear strength was 1 to 2 kN, but when the gap was 0.1 mm (7% of the steel plate thickness). The tensile shear strength increases rapidly from 3.35 to 3.78 kN. Then, the peak of the sheet gap is 0.1 to 0.2 mm, and thereafter, the tensile shear strength decreases with the increase of the sheet gap, and when the sheet gap is 0.8 mm (57% of the steel plate thickness), 2. 35 to 2.45 kN, which was about 2/3 of the peak. This is considered to be because the tensile shear strength decreased because the molten pool on the steel sheet side dropped when the sheet gap increased.
[0027]
Thus, since the size of the gap greatly affects the tensile shear strength of the welded joint, it is desirable to set the gap as accurately as possible. For example, it is preferable to set by a method in which either a steel plate or an aluminum plate is provided with a protrusion or protrusion having the same height as the plate gap and pressed. For example, when the gap (tmm) is 0.05 ≦ t <0.2, a high-melting-point metal is attached by attaching a heat insulating tape (paper tape or the like) having a thickness corresponding to the gap t to the surface of the low-melting-point metal material. It is conceivable to use a method in which a gap with the material is secured, and when 0.2 ≦ t, a pressure is provided by providing a protrusion or a protrusion. Furthermore, in consideration of productivity in the line, a method of providing a protrusion on one side is desirable.
(Second invention)
The dissimilar metal material joining method according to the second aspect of the present invention is a dissimilar metal in which a low thermal expansion coefficient metal material and a high thermal expansion coefficient metal material are arranged to overlap each other and a high energy beam is irradiated from the low thermal expansion coefficient metal material side. In the lap fusion welding of materials, the penetration depth on the high thermal expansion coefficient metal material side is set in the high thermal expansion coefficient metal material so as not to penetrate.
[0028]
The weld bead portion is a state in which a small amount of high thermal expansion coefficient metal is stirred and mixed with a low thermal expansion coefficient metal, and the thermal expansion coefficient of the bead portion is close to that of a low thermal expansion coefficient metal material. In general, intermetallic compounds that are harmful are low in ductility and brittle. For this reason, in the fusion welding of the dissimilar metal materials, cracks are likely to occur in the boundary surface between the molten bead and the high thermal expansion coefficient metal material or in the intermetallic compound layer generated at the boundary surface due to the difference in thermal expansion coefficient.
[0029]
In the case of high energy beam welding, for example, carbon dioxide laser welding, the penetration depth of the beads can be adjusted by controlling the amount of heat input. A feature of the joining method of the present invention is that this penetration depth is kept in the high thermal expansion coefficient metal material and is not penetrated.
[0030]
In the case of non-penetrating where the weld bead portion remains in the high thermal expansion coefficient metal material, compressive residual stress remains around the molten bead due to thermal expansion that occurs during heat input. For this reason, when the bead portion is cooled, cracks are relatively difficult to occur.
[0031]
However, when the weld bead portion is penetrated, the thermal expansion generated at the time of heat input is absorbed by the molten portion, so that no residual stress is generated in the high thermal expansion metal on the side surface of the molten bead. For this reason, the high thermal expansion coefficient metal shrinks at the time of cooling, and a crack occurs in the boundary surface between the molten bead and the high thermal expansion coefficient metal or in the intermetallic compound layer generated at the boundary surface. As described above, since the amount of intermetallic compound increases with an increase in heat input, the amount of heat input increases when penetration welding is performed, and the thermal stress during cooling increases compared to the case of non-penetration. At the same time, the amount of intermetallic compound formed also increases.
[0032]
In the joining method of different metal materials of the present invention, there is no particular limitation on the low thermal expansion coefficient metal material and the high thermal expansion coefficient metal material. Examples thereof include steel and aluminum (or an aluminum alloy), steel and titanium (or an alloy thereof), steel and magnesium (or an alloy thereof), and the like.
[0033]
In addition, the expressions “low thermal expansion coefficient” and “high thermal expansion coefficient” are relative names of the respective thermal expansion coefficients in a certain temperature range of the two types of metal materials to be joined. For example, when the dissimilar metal materials to be joined are steel and aluminum, steel is a low thermal expansion coefficient metal material and aluminum is a high thermal expansion coefficient metal material. In the case of titanium and steel, titanium is a low thermal expansion coefficient metal material, and steel is a high thermal expansion coefficient metal material.
[0034]
The shape of the dissimilar metal material in the present invention is not particularly limited as long as lap welding with a laser is possible. Examples include plates and plates, molds such as plates and angles, plates and pipes, and the like.
[0035]
The amount of heat input to the joint can be controlled by adjusting the laser output. A steel plate (SHP45) having a thickness of 1.4 mm is used as an upper plate, an aluminum plate (A6NO1) having a thickness of 2.0 mm is used as a lower plate, a 0.2 mm gap is provided, and a CO 2 laser welding machine is used. Then, lap welding was performed by laser irradiation from the surface of the steel plate. The welding speed was 1.0 m / min. The change of the penetration depth on the aluminum plate side due to the change of the laser output at this time was measured. The results are shown in FIG.
[0036]
The penetration depth was 0.24 mm when the laser output was 1.9 kW. Then, the penetration depth increased in proportion to the increase in output, and the output was 2.7 kW, and the penetration depth was about 1.0 mm, which was a half of the aluminum plate thickness. When the output was further increased, the penetration depth increased rapidly. This is presumably because aluminum has a high thermal conductivity, and therefore, when a certain amount of heat is applied, the whole is heated. The output was 3.0 kW and the weld bead penetrated the aluminum plate.
[0037]
On the other hand, the relationship between the penetration depth on the aluminum plate side and the weld joint strength is as follows. When the plate gap is 0.2 mm, as shown in FIG. 5 described later, the tensile shear strength of the weld joint rapidly increases to about 0.8 kN. descend.
[0038]
As the high energy beam used in the present invention, a laser beam or an electron beam can be used. CO 2 gas laser beam welding is suitably used in vehicle production lines.
[0039]
【Example】
The joining method of the present invention will be described in more detail with reference to examples.
(Example 1)
A steel plate (SHP45) having a thickness of 1.4 mm is used as a high melting point metal material (low expansion coefficient metal material), and an aluminum plate (A6N01) having a thickness of 2.0 mm is used as a low melting point metal material (high expansion coefficient metal material). ). FIG. 2 shows a method using a CO 2 gas laser welding machine (laser output: 6 kW) with a gap of 0.2 mm secured by a method in which a steel plate and an aluminum plate are stacked and pressed through protrusions formed on the aluminum plate. A lap weld joint with a shape was obtained (the dimensional unit in FIG. 2 is mm). The welding speed was fixed at 1.0 m / min, and the change in tensile shear strength due to the depth of penetration into the aluminum plate was examined by changing the laser output. The results are shown in FIG.
[0040]
When the plate gap is 0.2 mm, the tensile shear strength is 2.8 kN to 4.2 kN, except for the case where the bead penetrates the aluminum plate and the penetration depth is 2.0 mm. Good values were obtained throughout. That is, according to this method, it can be seen that high joint strength can be stably obtained even in the production line.
[0041]
Next, FIG. 6 shows a cross section (reflected electron image by an electron microscope) of a welded portion having a penetration depth of 0.24 mm (laser output: 1.9 kW, welding speed: 1.0 m / min) on the aluminum plate side. Here, 11 is a steel plate, 12 is an aluminum plate, 6 is a laser weld bead, and 5 is a gap of 0.2 mm between the two materials. In FIG. 6, 0.24 mm bead penetration is observed, but no harmful intermetallic layer is found. This is thought to be because the growth of harmful intermetallic compounds is suppressed because there is no direct heat transfer from the steel sheet and the cooling rate at the interface between the aluminum plate and the molten bead portion becomes very high.
(Comparative Example 1)
As in Example 1, a steel plate (SHP45) having a thickness of 1.4 mm as a high melting point metal material (low expansion coefficient metal material) and a thickness of 2.0 mm as a low melting point metal material (high expansion coefficient metal material). The aluminum plate (A6N01) was overlapped with a gap of 0 mm (adhered state), and carbon dioxide laser welding was performed. Changes in joint strength due to penetration depth on the aluminum plate side were investigated by changing the welding conditions. The results are shown in FIG.
[0042]
FIG. 7 shows that the tensile shear strength of the welded joint is higher as the penetration depth on the aluminum side is smaller. For example, when the penetration depth is 0.3 mm, the tensile shear strength is 3 to 3.5 kN, but when the penetration depth is 1.2 mm, the tensile shear strength is 0.8 kN and the penetration depth is 0.3 mm. It decreases to about 1/4 of the case. This is presumably because a hard and brittle intermetallic compound grew because the cooling rate of the molten bead portion interface in the aluminum plate was reduced by heat transfer from the steel plate. In this comparative example, since the penetration depth where the tensile shear strength of the joint is 2.8 kN or more is an extremely narrow range of 0.3 mm or less, it is difficult to stably obtain high tensile shear strength on the production line. .
[0043]
Next, FIG. 8 shows a cross section of the joint when the steel plate and the aluminum plate are laser-welded from the steel plate side without providing a gap. The upper half of the figure is a steel plate 11 and the lower half is 12 aluminum plates. Reference numeral 5 denotes an interface (blank gap 0) between the two material plates, and reference numeral 6 denotes a laser welding bead. The intermetallic compound of the gray portion 13 is observed at the tip of the aluminum plate side penetration portion.
(Example 2)
A steel plate (SHP45) having a thickness of 1.4 mm is used as an upper plate, an aluminum plate (A6NO1) having a thickness of 2.0 mm is used as a lower plate, a 0.2 mm gap is provided, and a CO 2 laser welding machine is used. Then, lap welding was performed from the steel plate side.
[0044]
In this example, the amount of heat input is controlled and the penetration is set in the middle of the aluminum plate in the case of non-penetrating welding. The welding conditions were an output of 2.4 kw and a welding speed of 1.0 m / min. The depth of penetration into the aluminum side at this time was 0.6 mm.
[0045]
A cross section of the joint is shown in FIG. In this example, the heat input was controlled and the penetration depth was set to 0.6 mm in the middle of the aluminum plate, so no harmful cracks were observed at the interface between the bead and the aluminum plate, and the tensile shear strength was also A high value of 3.0 kN was obtained.
(Comparative Example 2)
The material and the welding machine are the same as those in Example 2, but this comparative example is a case where a steel plate and an aluminum plate are overlapped and through welding is performed. The welding conditions were laser output: 3.0 kW and welding speed: 1.0 m / min. At this time, the weld bead penetrated the thickness of 2.0 mm of the aluminum plate. A cross section of the joint is shown in FIG.
[0046]
In this comparative example, as shown in FIG. 10, the joint is cracked. It can be seen that this is particularly noticeable at the interface between the weld bead and the aluminum base material. For this reason, the tensile shear strength of the joint was also extremely low at 0.8 kN.
[0047]
【The invention's effect】
According to the joining method of dissimilar metal materials of the present invention, for example, dissimilar metal materials such as a steel plate and an aluminum plate can be joined easily and reliably, and a lap weld joint with stable quality can be obtained. In addition, since an intermediate layer such as a clad material is not used, this is a low-cost and highly productive joining method for dissimilar metal materials, which can be suitably used for weight reduction of vehicles and the like.
[Brief description of the drawings]
FIG. 1 is a schematic view of a joining method by a laser welding method of the present invention.
FIG. 2 is a diagram showing the shape of a test piece for measuring the tensile shear strength of a welded joint.
FIG. 3 is a diagram showing a change in tensile shear strength of a welded joint due to a gap between a steel plate and an aluminum plate with a constant penetration depth into the aluminum plate.
FIG. 4 is a diagram showing a change in penetration depth on the aluminum plate side due to laser output when the clearance is 0.2 mm.
FIG. 5 is a diagram showing the relationship between the penetration depth on the aluminum plate side and the tensile shear strength of the welded joint when laser welding is performed from the steel plate side with the gap between the steel plate and the aluminum plate being 0.2 mm.
FIG. 6 is a view showing a joining cross section of a steel plate and an aluminum plate when the gap is 0.2 mm. No intermetallic compound is observed at the tip of the bead.
FIG. 7 is a diagram showing the relationship between the penetration depth on the aluminum plate side and the tensile shear strength of the welded joint when laser welding is performed from the steel plate side without providing a gap between the steel plate and the aluminum plate.
FIG. 8 is a view showing a joining cross section between a steel plate and an aluminum plate when the gap is zero. Formation of an intermetallic compound is seen at the tip of the bead.
FIG. 9 is a view showing a cross section of the joint portion when the amount of heat input is controlled and the penetration is set in the middle of the aluminum plate.
FIG. 10 is a view showing a cross section of a joint portion when through welding is performed by overlapping a steel plate and an aluminum plate. Cracks occur at the interface between the weld bead and the aluminum base material.
[Explanation of symbols]
1: Condensing lens 2: Laser beam 3: High melting point (low expansion coefficient) metal material 4: Low melting point (high expansion coefficient) metal material 5: Crevice (plate gap) 6: Bead 11: Steel (SHP45) 12: Aluminum (A6N01) 13: Intermetallic compound

Claims (6)

高融点金属材料と低融点金属材料とを重ねて配設し高エネルギビームを前記高融点金属材料側から照射する異種金属材料の重ね溶融溶接において、前記高融点金属材料と前記低融点金属材料との間に隙間を設けることを特徴とする異種金属材料の接合方法。In the lap melting welding of dissimilar metal materials in which a high melting point metal material and a low melting point metal material are arranged to overlap and irradiate a high energy beam from the high melting point metal material side, the high melting point metal material and the low melting point metal material, A method of joining different metal materials, characterized in that a gap is provided between the two. 前記隙間は前記高融点金属材料の厚さの50%未満である請求項1に記載の異種金属材料の接合方法。The method for joining different metal materials according to claim 1, wherein the gap is less than 50% of the thickness of the refractory metal material. 前記高融点金属材料は鋼系材料であり、前記低融点金属材料はアルミニウム系材料である請求項1に記載の異種金属材料の接合方法。The method for bonding dissimilar metal materials according to claim 1, wherein the refractory metal material is a steel material, and the low melting metal material is an aluminum material. 低熱膨張率金属材料と高熱膨張率金属材料とを重ねて配設し高エネルギビームを前記低熱膨張率金属材料側から照射する異種金属材料の重ね溶融溶接において、前記高熱膨張率金属材料側の溶け込み深さを該高熱膨張率金属材料内に設定する(貫通させない)ことを特徴とする異種金属材料の接合方法。In the lap-melt welding of dissimilar metal materials in which a low thermal expansion coefficient metal material and a high thermal expansion coefficient metal material are arranged and irradiated with a high energy beam from the low thermal expansion coefficient metal material side, penetration on the high thermal expansion coefficient metal material side A method for joining different metal materials, characterized in that the depth is set in the high thermal expansion coefficient metal material (not penetrated). 前記低熱膨張率金属材料は鋼系材料であり、前記高熱膨張率金属材料はアルミニウム系材料である請求項4に記載の異種金属材料の接合方法。The method for joining different metal materials according to claim 4, wherein the low thermal expansion coefficient metal material is a steel-based material, and the high thermal expansion coefficient metal material is an aluminum-based material. 前記高エネルギービームはレーザビームまたは電子ビームである請求項1から5のいずれかに記載の異種金属材料の接合方法。6. The method for bonding dissimilar metal materials according to claim 1, wherein the high energy beam is a laser beam or an electron beam.
JP2002199814A 2002-07-09 2002-07-09 Bonding method of dissimilar metal materials Expired - Fee Related JP4131375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199814A JP4131375B2 (en) 2002-07-09 2002-07-09 Bonding method of dissimilar metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199814A JP4131375B2 (en) 2002-07-09 2002-07-09 Bonding method of dissimilar metal materials

Publications (2)

Publication Number Publication Date
JP2004042053A true JP2004042053A (en) 2004-02-12
JP4131375B2 JP4131375B2 (en) 2008-08-13

Family

ID=31706857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199814A Expired - Fee Related JP4131375B2 (en) 2002-07-09 2002-07-09 Bonding method of dissimilar metal materials

Country Status (1)

Country Link
JP (1) JP4131375B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320954A (en) * 2005-05-20 2006-11-30 Nichirin Co Ltd Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
JP2006320953A (en) * 2005-05-20 2006-11-30 Nichirin Co Ltd Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
JP2007194167A (en) * 2006-01-23 2007-08-02 Sanyo Electric Co Ltd Sealed battery
US7943883B2 (en) 2006-10-27 2011-05-17 Honda Motor Co., Ltd. Method for joining iron member and aluminum member and iron-aluminum joined body
CN102211253A (en) * 2010-04-09 2011-10-12 深圳市大族激光科技股份有限公司 Laser welding method for dissimilar metals
CN102658428A (en) * 2012-05-11 2012-09-12 中国第一汽车股份有限公司 Laser welding method for 20CrMnTi carburizing steel and nodular cast iron dissimilar materials
KR101321919B1 (en) 2006-12-21 2013-10-25 재단법인 포항산업과학연구원 Methods for welding of Mg and Al alloy
CN104139243A (en) * 2013-05-07 2014-11-12 上海亚尔光源有限公司 Production method of electrode component for automotive metal halide lamp
WO2015045515A1 (en) * 2013-09-25 2015-04-02 日本サーモスタット株式会社 Structure for connecting terminal of electrical component
JP2019093436A (en) * 2017-11-27 2019-06-20 矢崎総業株式会社 Method for welding different kinds of metal
JP2020066044A (en) * 2018-10-26 2020-04-30 トヨタ自動車株式会社 Lap-welding method for dissimilar metal component
RU2766615C1 (en) * 2021-07-08 2022-03-15 Акционерное общество "Пермский завод "Машиностроитель" Method for electron beam welding of thin-walled tubular parts
US11376691B2 (en) 2016-03-30 2022-07-05 Panasonic Intellectual Property Management Co., Ltd. Joint structure
CN115213561A (en) * 2022-07-29 2022-10-21 苏州大学 Method for realizing laser sealing of glass and stainless steel by adding titanium as transition layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108608115B (en) * 2018-05-10 2020-08-14 上海交通大学 Laser welding method for increasing welding penetration and improving weld formation

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320954A (en) * 2005-05-20 2006-11-30 Nichirin Co Ltd Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
JP2006320953A (en) * 2005-05-20 2006-11-30 Nichirin Co Ltd Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
JP2007194167A (en) * 2006-01-23 2007-08-02 Sanyo Electric Co Ltd Sealed battery
US7943883B2 (en) 2006-10-27 2011-05-17 Honda Motor Co., Ltd. Method for joining iron member and aluminum member and iron-aluminum joined body
KR101321919B1 (en) 2006-12-21 2013-10-25 재단법인 포항산업과학연구원 Methods for welding of Mg and Al alloy
CN102211253A (en) * 2010-04-09 2011-10-12 深圳市大族激光科技股份有限公司 Laser welding method for dissimilar metals
CN102658428A (en) * 2012-05-11 2012-09-12 中国第一汽车股份有限公司 Laser welding method for 20CrMnTi carburizing steel and nodular cast iron dissimilar materials
CN104139243A (en) * 2013-05-07 2014-11-12 上海亚尔光源有限公司 Production method of electrode component for automotive metal halide lamp
WO2015045515A1 (en) * 2013-09-25 2015-04-02 日本サーモスタット株式会社 Structure for connecting terminal of electrical component
US11376691B2 (en) 2016-03-30 2022-07-05 Panasonic Intellectual Property Management Co., Ltd. Joint structure
JP2019093436A (en) * 2017-11-27 2019-06-20 矢崎総業株式会社 Method for welding different kinds of metal
JP2020066044A (en) * 2018-10-26 2020-04-30 トヨタ自動車株式会社 Lap-welding method for dissimilar metal component
JP7110907B2 (en) 2018-10-26 2022-08-02 トヨタ自動車株式会社 Lap welding method for dissimilar metal members
US11413706B2 (en) 2018-10-26 2022-08-16 Toyota Jidosha Kabushiki Kaisha Method for stack-welding dissimilar metal members
RU2766615C1 (en) * 2021-07-08 2022-03-15 Акционерное общество "Пермский завод "Машиностроитель" Method for electron beam welding of thin-walled tubular parts
CN115213561A (en) * 2022-07-29 2022-10-21 苏州大学 Method for realizing laser sealing of glass and stainless steel by adding titanium as transition layer
CN115213561B (en) * 2022-07-29 2023-11-24 苏州大学 Laser sealing method for glass and stainless steel by adding titanium as transition layer

Also Published As

Publication number Publication date
JP4131375B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP4131375B2 (en) Bonding method of dissimilar metal materials
US7156282B1 (en) Titanium-aluminide turbine wheel and shaft assembly, and method for making same
Meng et al. Microstructures and mechanical properties of laser-arc hybrid welded dissimilar pure copper to stainless steel
Kah et al. Trends in joining dissimilar metals by welding
Sierra et al. Galvanised steel to aluminium joining by laser and GTAW processes
CN110421223B (en) Titanium alloy-stainless steel dissimilar metal laser brazing method adopting copper-based brazing filler metal
Deng et al. Migration behavior of IMC layer in twin-spot laser welding-brazing of aluminum to steel
Zhu et al. Effect of laser-arc offset and laser-deviation angle on the control of a Ti-Al interlayer
CN113747994B (en) Welding flux for laser tailor-welding of coated steel plate and laser tailor-welding method
JP4656495B2 (en) Joining method and joining structure of oxide film forming material
CN107008985A (en) A kind of molybdenum alloy fusion welding method based on microalloying with synchronous parasitic soldering
US20220176492A1 (en) Method for manufacturing dissimilar material joint structure, and dissimilar material joint structure
JP2007136489A (en) Method for welding different materials
CN113857669A (en) Laser welding method for titanium alloy and aluminum alloy dissimilar materials
US4817859A (en) Method of joining nodular cast iron to steel by means of fusion welding
CN113798669A (en) Laser welding method for hot forming steel with coating
Chu et al. Structure-Property correlation in weld metals and interface regions of titanium/steel dissimilar joints
JP4978121B2 (en) Butt joining method of metal plates
Chen et al. Achieving high strength joint of pure copper via laser-cold metal transfer arc hybrid welding
JP2017080791A (en) Weld conjugant of ferrous metal/aluminum-based metal, and method for production thereof
Venukumar et al. TIG arc welding-brazing of dissimilar metals-an overview
Biswas et al. Applications of Laser Beam Welding in Automotive Sector-A Review
JP2018108602A (en) Overlap laser spot weld joint and manufacturing method for the weld joint
JP2008155226A (en) Laser lap weld joint of steel plate, and method for laser lap welding
JP2006159240A (en) High energy-density beam-welded product, high energy-density beam-welding method, welding method, and welding supporting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4131375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees