JP2004041989A - Method of purifying silicon-containing exhaust gas - Google Patents

Method of purifying silicon-containing exhaust gas Download PDF

Info

Publication number
JP2004041989A
JP2004041989A JP2002205765A JP2002205765A JP2004041989A JP 2004041989 A JP2004041989 A JP 2004041989A JP 2002205765 A JP2002205765 A JP 2002205765A JP 2002205765 A JP2002205765 A JP 2002205765A JP 2004041989 A JP2004041989 A JP 2004041989A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
silicon
temperature side
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002205765A
Other languages
Japanese (ja)
Inventor
Satoshi Kurose
黒瀬 聡
Yasuyoshi Kato
加藤 泰良
Masatoshi Fujisawa
藤澤 雅敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002205765A priority Critical patent/JP2004041989A/en
Publication of JP2004041989A publication Critical patent/JP2004041989A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic combustion type purification technique by which the purification of organic silicon-containing exhaust gas can be kept at a low cost for a long time at a high purification rate. <P>SOLUTION: In an alternately-operated heat accumulating catalytic combustion apparatus (shown in the figure) a catalyst 3 on the low temperature side and the catalyst 5 on the high temperature side, the performance of each of which is deteriorated by an organic silicon compound, are drawn out from catalyst layers respectively and exchanged for each other. The exhaust gas containing a volatile organic compound and silicon is led to a distribution valve 1 and made to flow to the black or white arrow directions by switching it periodically. In the case of the black arrow the exhaust gas is led to noble metal-deposited catalysts 3 and 5 from a heat accumulating material 2 and purified oxidatively and the purified exhaust gas is made to pass through another heat accumulating material 4 and the valve 1 and discharged to the outside. In the case of the white arrow the exhaust gas is treated in the same manner. As a result, the deteriorated catalyst can be regenerated easily, the exchange time of the expensive catalyst can be extended drastically and the running cost can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はシリコン含有排ガスの浄化方法に係り、特に、工場や化学プラントからの排ガス中に含まれる有害有機物を接触酸化により浄化する方法において、有機シリコン化合物が共存する排ガスを長期間高い浄化率で浄化できる排ガスの浄化技術に関する。
【0002】
【従来の技術】
工場からの排ガスには人体に悪影響をおよぼす有機化合物や炭化水素を含む場合が多く、これらを浄化する装置が必要となる。浄化法には有害物質を直接吸着する方法と、触媒もしくはバーナ等により燃焼して無害な物質にする方法があり、排ガス中の有害物質の濃度や温度により使い分けられている。
【0003】
このうち触媒燃焼法においては、100Å以上の細孔が全体の50%以上を占めるといった非常に比表面積の大きいアルミナ担体に、PtやPdといった貴金属を担持することで、活性成分への反応物質の拡散を容易にして、300℃という低温から効率よく、排ガス中の有害物質を酸化する技術(特開昭56−3095号公報)などが知られており、低ランニングコストな燃焼触媒として広く用いられている。
【0004】
また、昇温することにより、被毒物質により劣化した触媒を再生するといった技術(特願平11−027690号)も知られている。
【0005】
しかし有機シリコン含有ガスに対して十分に耐久性の高い燃焼触媒は知られていない。そこで装置の耐久性を高める手段として触媒前段に吸着剤を設ける(特開平10−267249号公報)といった技術も考えられている。
【0006】
【発明が解決しようとする課題】
上記のように、有機シリコン含有排ガスに対して、十分に耐久性の高い燃焼触媒は知られていない。そのために触媒量を増やしたり、交換回数を多くして耐久性を高めざるをえないため、ランニングコストが高くなるという問題がある
【0007】
本発明の課題は、有機シリコン含有排ガスに対し、低コストで長時間高い浄化率を維持できる触媒燃焼式の浄化技術を提供することにある。
【0008】
【課題を解決するための手段】
上記課題は、有機シリコンおよび揮発性有機化合物あるいは一酸化炭素を含有する排ガスを、貴金属担持触媒の充填層に導き、前記揮発性有機化合物あるいは前記一酸化炭素を酸化分解して無害化するシリコン含有排ガスの浄化方法において、前記有機シリコン化合物により性能が低下した触媒を触媒層から抜き出し、該触媒の低温側が高温側に、該触媒の高温側が低温側になるようにして再充填することを特徴とするシリコン含有排ガスの浄化方法によって解決される。
【0009】
上記貴金属担持体にはゼオライトが好適に用いられる。このとき触媒は細孔内への有機シリコンの蓄積を防止するという点で細孔径の小さい担体がよいが、小さすぎると逆に反応物質が細孔内へ拡散しないために、モルデナイト、フェリエライト、ZSM−5などを用いることが望ましい。
【0010】
またこれらの細孔内に活性成分として白金、パラジウム、ロジウムなどの貴金属が担持されているものが、高い酸化活性を得られるという点で望ましいが、ゼオライトの細孔内に担持され高活性であれば遷移金属でもがまわない。
【0011】
以下、本発明の作用を説明する。本発明者らは、有機物あるいは一酸化炭素の接触酸化触媒の有機シリコンによる劣化について詳細に研究した結果、貴金属を担持しだゼオライト触媒では、次の様な現象があることを見出し、本発明を完成するに至った。
【0012】
▲1▼触媒毒である有機シリコンは触媒層の入口部分の低温部に蓄積しやすく、低温部の触媒が優先的に劣化し易い。
【0013】
▲2▼これに対し、触媒層の出口部分では有機物が接触酸化された反応熱のため高温になっており、劣化速度が著しく小さいか、あるいは更に高温の場合には劣化しない。
【0014】
▲3▼さらに、低温部で劣化した触媒は、それ以上の温度に晒されると、触媒に蓄積して活性低下を引き起こしていた有機シリコンもしくはその誘導体の一部は揮発し、一部はSiO2 に酸化分解されることにより、活性が回復する性質がある。
【0015】
本発明では、上記のように、触媒活性が低下してきた時点で、入口部に当たる低温部の触媒を出口側の高温部に、高温部の触媒を低温部になるように入れ替えて再充填することを特徴としている。
【0016】
本方法における触媒の位置を入れ替えて再充填する操作を行うと、次の(a)および(b)の作用により、触媒活性が回復され長期間高い活性を維持しながら排ガス浄化を行うことが可能になる。
【0017】
(a)低温部で大きく劣化した触媒は、高温部に位置するようになり上記▲3▼で示した有機シリコンの蒸発や、SiO2 に分解することにより活性が回復される。
【0018】
(b)また、高温部の触媒は上記▲2▼に示したように劣化が小さいか、劣化していないため、入れ替えて最充填されることにより触媒層の入口部の活性が向上し、有機物の酸化反応による温度上昇を促進し、(a)の活性回復を促進する。
【0019】
また、本発明の方法では、上記の操作後、触媒活性が再び低下した場合には、再度入口部に当たる低温部の触媒を出口側の高温部に、高温部の触媒を低温部になるように入れ替えて再充填し、活性回復を繰り返し行うことが可能である。
【0020】
一般に有機シリコン含有排ガスに対して触媒燃焼装置を用いる場合、触媒量を多くするか、劣化した触媒は交換せざるを得ないが、本発明を用いることにより触媒量および触媒交換頻度を低減できる。
【0021】
【発明の実施の形態】
本発明の実施形態の概要は、触媒活性が低下してきた時点で、入口部に当たる低温部の触媒を出口側の高温部に、高温部の触媒を低温部になるように入れ替えて再充填するようにしたことである。また、上記の操作後、触媒活性が再び低下した場合には、入口側触媒と出口側触媒との入れ替えを繰り返し行うことが可能である。
【0022】
低温部で劣化した触媒を高温部に配置すると、有機シリコンの蒸発やSiOに分解することにより活性が回復される。また、高温部の触媒は劣化が小さいため、入れ替えて低音部に配置することによって、有機物の酸化反応による温度上昇を促進し、入口部の活性が向上する。以下、本発明の具体例を、図表を用いて詳細に説明する。
【0023】
「実施例1」
モルデナイト粉末(東ソー社製HSZ−650、SiO2/AI2O3=23)50gに対し、重量割合でPtが0.5%になるように塩化白金酸水溶液(エヌ・イー・ケムキャット社製、lot.No100170)を規定量加えて蒸発乾固後、550℃で2時間焼成してPt−モルデナイト触媒を得た。
【0024】
これをシリカゾルと水でスラリ化し、ペーパハニカム(ニチアス社製)にコーティングしだ後、風乾2時間、120℃乾燥2時間、500℃焼成2時間によりハニカム形状のPt−モルデナイト触媒を得た。
【0025】
得られた触媒を下記表1の条件で初期性能測定した後、有機シリコンを20mg/m3 添加しながら100時間運転後、再び表1の条件で劣化後の活性を測定した。
【0026】
【表1】

Figure 2004041989
【0027】
さらに、本発明の触媒位置の入れ替え操作により触媒が高温部に位置することを摸擬するため、触媒を通気しながら500℃で2時間保持後、再び表1の条件で活性を測定し活性の回復度を調べた。結果はまとめて後記の表2に示す。
【0028】
「実施例2」
実施例1において触媒層の入口温度を350℃とした以外は同様の操作を行った。
【0029】
「比較例1」
実施例1において触媒層の入口温度を250℃とした以外は同様の操作を行った。
【0030】
「比較例2」
実施例1における通気操作を行わず、触媒性能を評価した。
【0031】
「実施例3」
実施例1におけるモルデナイト粉末をフェリエライト粉末(ZEORIST社製CP914c、SiO2/Al2O3=20)に変え、Pt−フェリエライト触媒とした以外は同様の試験を行った。
【0032】
「実施例4」
実施例3におけるフェリエライト粉末を、ZSM−5粉末(ZEOLIST社製、CBV3020、SiO2/Å12O3=30)に変え、Pt−ZSM−5触媒とした以外は同様の試験を行った。
【0033】
「実施例5」
実施例4における塩化白金酸を硝酸パラジウム(田中貴金属社製、Lot.No912253)に変え、Pd−モルデナイト触媒とした以外は同様の試験を行った。
【0034】
「実施例6」
実施例5における硝酸パラジウムを塩化ロジウム(日本エンゲルハルド杜製、Lot.No87692)に変え、Rh−モルデナイト触媒とした以外は同様の試験を行った。
【0035】
「比較例3」
実施例1におけるモルデナイト粉末を、TiO2粉末(Millennium社製G5)に変えPt−TiO2)触媒とした以外は同様の試験を行った。
【0036】
「比較例4」
比較例3における塩化白金酸を硝酸マンガン(キシダ化学社製、Lot.No000−47405)に変え、Mn−TiO2触媒とした以外は同様の試験を行った。
【0037】
「比較例5」
実施例1におけるモルデナイト粉末をAl2O3粉末(住友化学製、γアルミナKHS−46)に変え、Pt−Al2O3触媒とした以外は同様の試験を行った。
【0038】
実施例1〜6および比較例1〜5の結果をまとめて表2に示すと、
【表2】
Figure 2004041989
となる。
【0039】
表2に示すように、実施例1〜5および比較例1〜4により、触媒層の入口温度を上げることにより活性低下が抑えられ、さらに通気処理を行うことにより触媒性能の低下が大きく抑制出来ていることは明らかであり、本発明により触媒の交換頻度を低減できることが分かった。
【0040】
「実施例6」
本発明を交番蓄熱式触媒燃焼装置に適用する例を示す。揮発性有機化合物とシリコン含有排ガスは、図1に示す交番蓄熱式触媒燃焼装置において、先ず分配弁1に導かれ、定期的に黒い矢印と白い矢印の流れに切り替えられる。
【0041】
黒い矢印の場合は先ず蓄熱材2を通り、貴金属担持した燃焼触媒3、5に導かれて酸化浄化され、浄化されたガスは、蓄熱材4を経て再び分配弁1を通って外部に排出される。白い矢印の場合も同様である。装置の運転条件の一例を表3に示す。
【0042】
【表3】
Figure 2004041989
【0043】
このとき触媒層の蓄熱材側は、温度が低いために有機シリコンが触媒表面に蓄積し活性が低下しやすいが、加熱室側は作用の項で述べたように有機物の燃焼熱により高温になり劣化が小さいか、あるいは劣化が殆ど生じない。
【0044】
蓄熱材側の触媒が劣化し、必要な有機物分解性能が得られなくなった時点で触媒を抜き出し、劣化した低温側の触媒を高温側、高温側を低温側なるように再充填する。これにより劣化した部分が高温になり、触媒表面に蓄積した有機シリコンが酸化分解もしくは蒸気化して触媒活性が回復す。
【0045】
再び、有機シリコン化合物により蓄熱材側の触媒が劣化し、必要な有機物分解性能が得られなくなった場合には、上記と同様に劣化した低温側の触媒を高温側、高温側を低温側なるように再充填することを操り返すことにより、長期間高い触媒性能を維持することが可能である。
【0046】
この方法では、触媒を抜き出して反転させる操作のみで劣化した部分の昇温再生が可能となり、高活性を長時間維持できるので、触媒交換および昇温再生に必要なコストを低減できるという利点がある。
【0047】
【発明の効果】
本発明により、有機シリコンにより劣化した触媒を容易に再生することができ、長期間、高い性能を維持する徘ガス浄化装置を実現できる。また、高価な触媒の交換時期を大幅に延長でき、ランニングコストの低減にもつながる。
【図面の簡単な説明】
【図1】本発明を適用した交番蓄熱式触媒燃焼装置の構成図。
【符号の説明】
1 分配弁
2 蓄熱材
3 燃焼触媒
4 蓄熱材
5 燃焼触媒[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for purifying silicon-containing exhaust gas, and more particularly to a method for purifying harmful organic substances contained in exhaust gas from factories and chemical plants by catalytic oxidation. The present invention relates to a technology for purifying exhaust gas that can be purified.
[0002]
[Prior art]
Exhaust gas from factories often contains organic compounds and hydrocarbons that have an adverse effect on the human body, and a device for purifying them is required. The purification method includes a method of directly adsorbing harmful substances and a method of burning harmful substances using a catalyst or a burner, etc., which are used depending on the concentration and temperature of harmful substances in exhaust gas.
[0003]
Among them, in the catalytic combustion method, a noble metal such as Pt or Pd is supported on an alumina carrier having a very large specific surface area, in which pores of 100 ° or more occupy 50% or more of the whole, so that a reactive substance of an active ingredient is converted. Techniques for easily oxidizing harmful substances in exhaust gas by facilitating diffusion from a low temperature of 300 ° C. (JP-A-56-3095) are known and widely used as combustion catalysts with low running cost. ing.
[0004]
Further, a technique of regenerating a catalyst degraded by a poisoning substance by raising the temperature (Japanese Patent Application No. 11-027690) is also known.
[0005]
However, there is no known combustion catalyst that is sufficiently durable for an organic silicon-containing gas. Therefore, a technique of providing an adsorbent in front of the catalyst (JP-A-10-267249) has been considered as a means for increasing the durability of the apparatus.
[0006]
[Problems to be solved by the invention]
As described above, a combustion catalyst with sufficiently high durability against exhaust gas containing organic silicon has not been known. For this reason, the durability must be increased by increasing the amount of catalyst or increasing the number of replacements, which raises a problem of increasing running costs.
It is an object of the present invention to provide a catalytic combustion type purification technology capable of maintaining a high purification rate at a low cost for a long time with respect to an organic silicon-containing exhaust gas.
[0008]
[Means for Solving the Problems]
The above object is to introduce an exhaust gas containing organic silicon and a volatile organic compound or carbon monoxide to a packed layer of a noble metal-supported catalyst, and to oxidize and decompose the volatile organic compound or the carbon monoxide to make it harmless. In the method for purifying exhaust gas, the catalyst whose performance has been reduced by the organosilicon compound is extracted from the catalyst layer, and the low-temperature side of the catalyst is set to the high-temperature side, and the catalyst is recharged so that the high-temperature side of the catalyst is set to the low-temperature side. The problem is solved by a method for purifying silicon-containing exhaust gas.
[0009]
Zeolite is preferably used for the noble metal support. At this time, the catalyst is preferably a carrier having a small pore size in that the accumulation of organic silicon in the pores is prevented.However, if the size is too small, the reactants do not diffuse into the pores, so that mordenite, ferrierite, It is desirable to use ZSM-5 or the like.
[0010]
In addition, those in which noble metals such as platinum, palladium, and rhodium are supported as active components in these pores are desirable in that high oxidation activity can be obtained. If it is a transition metal, it does not matter.
[0011]
Hereinafter, the operation of the present invention will be described. The present inventors have studied in detail the degradation of the catalytic oxidation catalyst of organic substances or carbon monoxide by organic silicon, and as a result, have found that the following phenomena occur in a zeolite catalyst supporting a noble metal, and have found the present invention. It was completed.
[0012]
{Circle around (1)} Organic silicon, which is a catalyst poison, tends to accumulate in the low-temperature portion at the entrance of the catalyst layer, and the catalyst in the low-temperature portion tends to preferentially deteriorate.
[0013]
{Circle around (2)} On the other hand, the temperature at the outlet of the catalyst layer is high due to the reaction heat generated by the catalytic oxidation of the organic matter, and the deterioration rate is extremely low, or does not deteriorate at higher temperatures.
[0014]
{Circle around (3)} When the catalyst degraded in the low-temperature part is exposed to a higher temperature, part of the organic silicon or its derivative that has accumulated in the catalyst and caused a decrease in activity volatilizes, and part of SiO 2 It has the property of recovering its activity by being oxidatively decomposed.
[0015]
In the present invention, as described above, at the time when the catalyst activity has decreased, the low-temperature portion catalyst corresponding to the inlet portion is replaced with the high-temperature portion on the outlet side, and the high-temperature portion catalyst is replaced so as to be the low-temperature portion and refilled. It is characterized by.
[0016]
When the refilling operation is performed by changing the position of the catalyst in the present method, the following activities (a) and (b) restore the catalytic activity, and can purify exhaust gas while maintaining high activity for a long time. become.
[0017]
(A) The catalyst which has been greatly deteriorated in the low temperature part is located in the high temperature part, and its activity is recovered by evaporating the organic silicon and decomposing it into SiO 2 shown in the above (3).
[0018]
(B) Further, since the catalyst in the high-temperature portion has little or no deterioration as shown in (2) above, the activity at the inlet portion of the catalyst layer is improved by being replaced and refilled, and the organic matter is reduced. Promotes the temperature rise due to the oxidation reaction of (a), and promotes the activity recovery of (a).
[0019]
Further, in the method of the present invention, when the catalyst activity is reduced again after the above operation, the catalyst of the low-temperature portion corresponding to the inlet portion is changed to the high-temperature portion on the outlet side, and the catalyst of the high-temperature portion is changed to the low-temperature portion. It is possible to replace and refill, and to repeatedly perform activity recovery.
[0020]
In general, when a catalytic combustion apparatus is used for an organic silicon-containing exhaust gas, the amount of the catalyst must be increased or the deteriorated catalyst must be replaced. However, by using the present invention, the amount of the catalyst and the frequency of catalyst replacement can be reduced.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The outline of the embodiment of the present invention is such that at the time when the catalyst activity has decreased, the low-temperature portion catalyst corresponding to the inlet portion is replaced with the high-temperature portion on the outlet side, and the high-temperature portion catalyst is replaced so as to be the low-temperature portion and refilled. That is what we did. Further, when the catalyst activity decreases again after the above operation, the exchange of the inlet side catalyst and the outlet side catalyst can be repeated.
[0022]
When the catalyst degraded in the low temperature part is placed in the high temperature part, the activity is recovered by evaporating the organic silicon and decomposing it into SiO 2 . In addition, since the catalyst in the high-temperature portion is less deteriorated, by replacing the catalyst and disposing it in the low-tone portion, the temperature rise due to the oxidation reaction of organic substances is promoted, and the activity of the inlet portion is improved. Hereinafter, specific examples of the present invention will be described in detail with reference to the drawings.
[0023]
"Example 1"
50 g of mordenite powder (HSZ-650, manufactured by Tosoh Corporation, SiO2 / AI2O3 = 23) so that Pt becomes 0.5% by weight in terms of a weight ratio (lot No. 100170, manufactured by NE Chemcat, Ltd.). Was added and evaporated to dryness, and then calcined at 550 ° C. for 2 hours to obtain a Pt-mordenite catalyst.
[0024]
This was slurried with silica sol and water, coated on paper honeycomb (manufactured by Nichias), and air-dried for 2 hours, dried at 120 ° C. for 2 hours, and calcined at 500 ° C. for 2 hours to obtain a honeycomb-shaped Pt-mordenite catalyst.
[0025]
After measuring the initial performance of the obtained catalyst under the conditions shown in Table 1 below, the catalyst was operated for 100 hours while adding 20 mg / m 3 of organic silicon, and the activity after deterioration was measured again under the conditions shown in Table 1.
[0026]
[Table 1]
Figure 2004041989
[0027]
Further, in order to simulate that the catalyst is located at a high temperature part by the operation of replacing the catalyst position of the present invention, the activity was measured again under the conditions shown in Table 1 after maintaining the catalyst at 500 ° C. for 2 hours while passing air through the catalyst. The degree of recovery was examined. The results are shown in Table 2 below.
[0028]
"Example 2"
The same operation was performed as in Example 1, except that the inlet temperature of the catalyst layer was changed to 350 ° C.
[0029]
"Comparative Example 1"
The same operation was performed as in Example 1 except that the inlet temperature of the catalyst layer was changed to 250 ° C.
[0030]
"Comparative Example 2"
The catalyst performance was evaluated without performing the aeration operation in Example 1.
[0031]
"Example 3"
A similar test was performed except that the mordenite powder in Example 1 was changed to ferrierite powder (CP914c, manufactured by ZEORIST, SiO2 / Al2O3 = 20) and a Pt-ferrierite catalyst was used.
[0032]
"Example 4"
The same test was performed except that the ferrierite powder in Example 3 was changed to a ZSM-5 powder (CBOL3020, manufactured by ZEOLIST, SiO2 / Å12O3 = 30) and a Pt-ZSM-5 catalyst was used.
[0033]
"Example 5"
The same test was performed except that the chloroplatinic acid in Example 4 was changed to palladium nitrate (Lot. No. 912253, manufactured by Tanaka Kikinzoku Co., Ltd.) and a Pd-mordenite catalyst was used.
[0034]
"Example 6"
The same test was performed except that the palladium nitrate in Example 5 was changed to rhodium chloride (Nippon Engelhard Co., Ltd., Lot. No. 87692) and a Rh-mordenite catalyst was used.
[0035]
"Comparative Example 3"
The same test was performed except that the mordenite powder in Example 1 was changed to a TiO2 powder (G5 manufactured by Millennium) and a Pt-TiO2) catalyst was used.
[0036]
"Comparative Example 4"
A similar test was performed except that chloroplatinic acid in Comparative Example 3 was changed to manganese nitrate (Lot. No. 000-47405, manufactured by Kishida Chemical Co., Ltd.) and a Mn-TiO2 catalyst was used.
[0037]
"Comparative Example 5"
A similar test was performed except that the mordenite powder in Example 1 was changed to Al2O3 powder (manufactured by Sumitomo Chemical Co., Ltd., γ-alumina KHS-46) and a Pt-Al2O3 catalyst was used.
[0038]
Table 2 summarizes the results of Examples 1 to 6 and Comparative Examples 1 to 5,
[Table 2]
Figure 2004041989
It becomes.
[0039]
As shown in Table 2, according to Examples 1 to 5 and Comparative Examples 1 to 4, a decrease in the activity can be suppressed by increasing the inlet temperature of the catalyst layer, and a decrease in the catalyst performance can be greatly suppressed by performing the ventilation treatment. It is clear that the present invention can reduce the catalyst replacement frequency.
[0040]
"Example 6"
An example in which the present invention is applied to an alternating regenerative catalytic combustion device will be described. In the alternating regenerative catalytic combustion device shown in FIG. 1, the volatile organic compound and the silicon-containing exhaust gas are first guided to the distribution valve 1 and periodically switched to the flow indicated by the black and white arrows.
[0041]
In the case of a black arrow, the gas first passes through the heat storage material 2 and is guided to the noble metal-supported combustion catalysts 3 and 5 to be oxidized and purified. The purified gas passes through the heat storage material 4 and is again discharged outside through the distribution valve 1. You. The same applies to the case of the white arrow. Table 3 shows an example of operating conditions of the apparatus.
[0042]
[Table 3]
Figure 2004041989
[0043]
At this time, since the temperature is low on the heat storage material side of the catalyst layer, organic silicon easily accumulates on the catalyst surface and the activity tends to decrease, but the heating chamber side becomes high temperature due to the heat of combustion of the organic matter as described in the operation section. The deterioration is small or hardly occurs.
[0044]
When the catalyst on the heat storage material side is deteriorated and the required organic substance decomposition performance cannot be obtained, the catalyst is extracted, and the deteriorated low-temperature side catalyst is refilled so that the high-temperature side becomes the low-temperature side. As a result, the deteriorated portion becomes hot, and the organic silicon accumulated on the catalyst surface is oxidized and decomposed or vaporized to recover the catalytic activity.
[0045]
Again, when the catalyst on the heat storage material side is deteriorated by the organosilicon compound and the required organic substance decomposition performance cannot be obtained, the deteriorated low-temperature side catalyst is changed to the high-temperature side and the high-temperature side to the low-temperature side in the same manner as described above. It is possible to maintain high catalyst performance for a long period of time by repeating the refilling.
[0046]
In this method, it is possible to raise the temperature of the deteriorated portion only by extracting and reversing the catalyst and to maintain the high activity for a long time, so that there is an advantage that the cost required for the catalyst replacement and the temperature recovery can be reduced. .
[0047]
【The invention's effect】
According to the present invention, a catalyst degraded by organic silicon can be easily regenerated, and a wandering gas purifying apparatus that maintains high performance for a long period of time can be realized. In addition, the replacement time of the expensive catalyst can be greatly extended, leading to a reduction in running costs.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an alternating regenerative catalytic combustion device to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Distribution valve 2 Heat storage material 3 Combustion catalyst 4 Heat storage material 5 Combustion catalyst

Claims (3)

有機シリコンおよび揮発性有機化合物あるいは一酸化炭素を含有する排ガスを、貴金属担持触媒の充填層に導き、前記揮発性有機化合物あるいは前記一酸化炭素を酸化分解して無害化するシリコン含有排ガスの浄化方法において、前記有機シリコン化合物により性能が低下した触媒を触媒層から抜き出し、該触媒の低温側が高温側に、該触媒の高温側が低温側になるようにして再充填することを特徴とするシリコン含有排ガスの浄化方法。An exhaust gas containing organic silicon and a volatile organic compound or carbon monoxide is guided to a packed bed of a noble metal-supported catalyst, and a method for purifying a silicon-containing exhaust gas in which the volatile organic compound or the carbon monoxide is oxidatively decomposed and made harmless. In the silicon-containing exhaust gas, a catalyst whose performance has been reduced due to the organosilicon compound is extracted from a catalyst layer, and the catalyst is recharged such that a low temperature side of the catalyst is a high temperature side and a high temperature side of the catalyst is a low temperature side. Purification method. 前記貴金属担持触媒は、ゼオライト、モルデナイト、フェリエライト、ZSM−5のいずれかである請求項1に記載のシリコン含有排ガスの浄化方法。The method for purifying a silicon-containing exhaust gas according to claim 1, wherein the noble metal-supported catalyst is any of zeolite, mordenite, ferrierite, and ZSM-5. 前記触媒に担持される貴金属は、白金、パラジウム、ロジウムのいずれかである請求項1〜2のうちいずれか1項に記載のシリコン含有排ガスの浄化方法。The method for purifying a silicon-containing exhaust gas according to claim 1, wherein the noble metal supported on the catalyst is any of platinum, palladium, and rhodium.
JP2002205765A 2002-07-15 2002-07-15 Method of purifying silicon-containing exhaust gas Pending JP2004041989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205765A JP2004041989A (en) 2002-07-15 2002-07-15 Method of purifying silicon-containing exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205765A JP2004041989A (en) 2002-07-15 2002-07-15 Method of purifying silicon-containing exhaust gas

Publications (1)

Publication Number Publication Date
JP2004041989A true JP2004041989A (en) 2004-02-12

Family

ID=31710981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205765A Pending JP2004041989A (en) 2002-07-15 2002-07-15 Method of purifying silicon-containing exhaust gas

Country Status (1)

Country Link
JP (1) JP2004041989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056165A1 (en) * 2003-12-11 2005-06-23 The Chugoku Electric Power Co.,Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
JP2010029864A (en) * 2009-11-02 2010-02-12 Chugoku Electric Power Co Inc:The Method for restoring performance capability of exhaust gas treatment apparatus
JP2012081444A (en) * 2010-10-14 2012-04-26 Toyobo Co Ltd Catalytic combustion apparatus and method for regenerating catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056165A1 (en) * 2003-12-11 2005-06-23 The Chugoku Electric Power Co.,Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
US7441332B2 (en) 2003-12-11 2008-10-28 The Chugoku Electric Power Co., Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
JP2010029864A (en) * 2009-11-02 2010-02-12 Chugoku Electric Power Co Inc:The Method for restoring performance capability of exhaust gas treatment apparatus
JP2012081444A (en) * 2010-10-14 2012-04-26 Toyobo Co Ltd Catalytic combustion apparatus and method for regenerating catalyst

Similar Documents

Publication Publication Date Title
JP2009057922A (en) Exhaust emission control system
JP2008086942A (en) Apparatus and method for cleaning air
JP2018529039A (en) System for removal of particulate matter and harmful compounds from engine exhaust
KR101027080B1 (en) Bi-functional catalyst for decomposing and oxidizing nitric oxide simultaneously and its preparation method therein
JP2018528849A (en) Three-way catalyst with NH3-SCR activity, ammonia oxidation activity and adsorption capacity for volatile vanadium and tungsten compounds
JP2004041989A (en) Method of purifying silicon-containing exhaust gas
JP3546908B2 (en) Ammonia purification catalyst device
JP4141722B2 (en) Method for purifying exhaust gas containing silicon
JP4704964B2 (en) NOx purification system and NOx purification method
JP2827532B2 (en) Catalyst device for reducing diesel particulates
JP3458624B2 (en) Exhaust purification catalyst device for internal combustion engine
JP3745407B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method
JP3321423B2 (en) Exhaust gas purification method
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
JP2004066126A (en) Catalyst for purification of exhaust gas containing silicon
JPH02251226A (en) Air cleaning apparatus
JP4283037B2 (en) Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
KR20020032167A (en) Catalyst for decomposition of toxic pollutants and producing process thereof
JP2004089953A (en) Method of continuously decomposing and removing organic substance contained in gas
JPH1176827A (en) Apparatus for cleaning exhaust gas
JP3300027B2 (en) Exhaust gas purification catalyst
JP2004211566A (en) Emission control system and emission control method
JP2004211565A (en) Emission control system and emission control method
JP2002210366A (en) PLASMA-ASSIST CATALYST FOR CLEANING NOx
JP2002320851A (en) Catalyst for cleaning exhaust gas and method for manufacturing the same