JP2004040932A - Dc high-voltage power supply device - Google Patents

Dc high-voltage power supply device Download PDF

Info

Publication number
JP2004040932A
JP2004040932A JP2002196190A JP2002196190A JP2004040932A JP 2004040932 A JP2004040932 A JP 2004040932A JP 2002196190 A JP2002196190 A JP 2002196190A JP 2002196190 A JP2002196190 A JP 2002196190A JP 2004040932 A JP2004040932 A JP 2004040932A
Authority
JP
Japan
Prior art keywords
voltage
circuit
stage
power supply
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002196190A
Other languages
Japanese (ja)
Other versions
JP3792179B2 (en
JP2004040932A5 (en
Inventor
Masaaki Kajiyama
梶山 雅章
Takehide Hayashi
林 丈英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002196190A priority Critical patent/JP3792179B2/en
Publication of JP2004040932A publication Critical patent/JP2004040932A/en
Publication of JP2004040932A5 publication Critical patent/JP2004040932A5/ja
Application granted granted Critical
Publication of JP3792179B2 publication Critical patent/JP3792179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC high-voltage power supply device by which a high-DC high voltage is effectively obtained without enlarging the device. <P>SOLUTION: Rectifying circuits of one or more steps are constituted by combining capacitor units 22 and rectifying element units 21 and connected in multi-step series. One end of each of the circuits is driven by a secondary winding of a transformer 2, and a Cockcroft circuit 3 for taking out the DC high voltage from the opposite end is arranged. The height of at least the one-step rectifying circuit among the rectifying circuits is made to correspond to a shared voltage of the one-step circuit and made lower than that of the other circuit. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は直流高電圧電源装置に係り、特に電子線照射装置、または粒子線加速装置等の用途に好適な1000〜5000kV程度の直流高電圧を発生することができる直流高電圧電源装置に関する。
【0002】
【従来の技術】
例えば火力発電所等において、燃焼排ガス中から大気汚染物質を除去するために燃焼排ガスに電子線を照射する技術が知られている。このような用途の電子線照射装置では、例えば800kVの直流高電圧を加速管に与え、電子線を大気中に放出して燃焼排ガスに照射するようにしたものである。照射対象が水のような液体になると、透過能力が1000〜5000kV程度の加速電圧を必要とする。
【0003】
このような電子線照射装置には、1000〜5000kVの直流高電圧を発生する電源装置が必要であり、整流昇圧回路としてコッククロフト回路が用いられるのが一般的である。コッククロフト回路は、コンデンサと整流素子とを組み合わせて多段直列接続した整流昇圧回路であり、その一端をトランスの二次巻線で駆動し、反対端より直流高電圧を取り出すようにしたものである。即ち、コッククロフト回路によればトランスの二次巻線に形成される交流電圧が半波ごとに整流され、コンデンサと整流素子とを組み合わせた多段直列回路により整流電圧が順次加算され、多段直列回路の最終段より直流高電圧が取り出される。
【0004】
【発明が解決しようとする課題】
係るコッククロフト回路においては、理論的には、コンデンサユニットと整流素子ユニットとを組み合わせた整流回路ユニットの段数分と、トランスの二次巻線電圧の整流電圧(波高値分)との積の2倍の直流高電圧が得られる。しかしながら、実際には各段間には浮遊容量が存在し、このためこの浮遊容量が整流素子に並列接続した形となり、理論的な直流高電圧が得られないという問題がある。
【0005】
本発明は上述した事情に鑑みて為されたもので、装置を大型化することなく、高い直流高電圧が効率的に得られるようにした直流高電圧電源装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の直流高電圧電源装置は、コンデンサユニットと整流素子ユニットを組合わせて一段以上の整流回路を構成し、これを多段直列接続して、その一端をトランスの二次巻線で駆動し、反対端より直流高電圧を取り出すコッククロフト回路を備え、前記整流回路のうち少なくとも一段の整流回路の高さをその整流回路の分担電圧に対応させて、それ以外の整流回路の高さより低くしたことを特徴とする。
【0007】
上述した本発明によれば、各段の整流回路が等しい回路定数を有していても、浮遊容量の影響により後段側に行くに従って整流電圧の分担比が下がるということを逆に利用して、これに対応した絶縁設計を施すことで、整流昇圧回路の全体的な高さを低減すると共に、コストを低減するようにしたものである。即ち、変圧器の二次巻線に接続する入力段側では整流回路一段当たりの計算上の整流電圧に対応した高さが絶縁設計上必要であるが、後段側に行くに従い、浮遊容量の影響で整流回路一段当たりの整流電圧が低下することは上述したとおりである。絶縁設計としては、後段側に行くに従い、余裕が生じるので、この部分の整流回路一段当たりの高さを低くすることができると共に、耐圧確保のための部品の直列接続数を低減できる。従って、電源全体としてのサイズを小型化することができると共に部品点数を低減してコスト低減が可能である。
【0008】
上記絶縁設計の考え方によれば、後段側に行くに従って、順次整流回路の一段当たりの高さを連続的(傾斜的)に低くすることができる。しかしながら、整流回路の一段当たりの高さを順次連続的に変化させることは、部品の標準化という観点からは必ずしも好ましいものではなく、多段直列接続の整流回路の一部の段のみに上記絶縁設計を適用しても、全体の高さの低減に有効である。従って、前記一段の整流回路の高さを低くした段を、前記コッククロフト回路の前記直流高電圧の取出し口の段またはその近傍の複数段に配置することができる。また、前記ロッククロフト回路の各段を複数のグループに区分し、該複数のグループ毎に、前記整流回路の高さを前記整流電圧の分担比に対応して調整するようにしてもよい。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照しながら説明する。
【0010】
図1は、本発明の実施形態の直流高電圧電源装置を示し、図2はバランス形コッククロフト回路の構成例を示す。電源装置は圧力容器1の内部に加速管13と共に収容され、変圧器2と、コッククロフト回路3等から構成されている。容器1内には、SFガス等の絶縁ガスが充填され、十分な絶縁性が確保されている。コッククロフト回路3は、支柱5に支持された絶縁板6にコンデンサ素子ユニットCが搭載され、上下の段との間に整流素子ユニットD(Cs)が接続されて、図示するように多数の段が積層されて構成されている。絶縁板6の周囲には金属材で構成されたコロナシールドフープ7が配置され、絶縁板6周辺の電位傾度を緩やかなものとし、コロナ放電の発生を防止している。また、コッククロフト回路3の最上段の直流高電圧取出し部の周辺にはコロナシールドカバー4が配置され、同様に直流高電圧部周辺の電位傾度を緩和し、コロナ放電の発生を防止している。
【0011】
図2に示すバランス形コッククロフト回路は、整流素子Dとこれに並列接続されたコンデンサCsと直列接続された保護抵抗Rからなる整流素子ユニット21がたすきがけ状に配置され、コンデンサCとこれに直列接続された保護抵抗rとからなるコンデンサユニット22が整流素子ユニット21に接続されて一段の整流回路を構成し、これが多段縦続接続されている。即ち、各段の整流回路では、2台の整流素子ユニット21,21がたすきがけ状に接続され、次段側への接続点と前段側の接続点との間に2台のコンデンサユニット22,22がそれぞれ接続されている。
【0012】
コッククロフト回路の動作は、変圧器の二次巻線20a,20bにそれぞれ例えば100kV程度の交流高電圧が生じると、半波ごとに整流素子ユニット21,21で整流され、コンデンサユニット22,22のコンデンサCに整流された直流電圧が充電される。そして、2段目のコンデンサユニット22,22のコンデンサCには一段目のコンデンサCに蓄圧された直流電圧に加算するように、たすきがけ状に接続された整流素子ユニット21,21から直流電流が流入する。従って、2段目のコンデンサユニット22,22においては、初段の整流電圧と同じ整流電圧がコンデンサCに充電される。このようにしてたすきがけ状に直列接続された整流素子ユニットの段数Nに、一段当たりの整流電圧を乗じた直流電圧が、理論的には最終段の直流電圧取出し端子に得られる。
【0013】
ここで整流素子ユニット21およびコンデンサユニット22は単一の整流素子DとコンデンサCとからそれぞれ構成されるように等価的に図示しているが、実際には多数の単体の整流素子およびコンデンサ等の直列接続集合体である。個々の整流素子およびコンデンサは、市販品の有する通常の耐圧であるが、例えば数百個の単体整流素子を直列接続することで、一段当たりの所用の耐圧を確保している。
【0014】
しかしながら、コッククロフト回路においては、その各段に浮遊容量が存在し、このためこの浮遊容量が整流素子に並列接続した形となり、後段側に行くに従い得られる一段当たりの直流電圧が低下し、全体として理論的な直流高電圧が得られないという問題があることは上述したとおりである。例えば、0.08μFのコンデンサを15段積み上げたバランス型コッククロフト回路において、入力電圧を3kV、使用周波数を5kHzとして、整流素子ユニットの並列浮遊容量を25pFとすると、例えば、3000kVの直流高電圧発生時の各段の電圧分担は次のとおりとなる。即ち、最下段では270kVが得られ、段が上がるにつれ、260kV、250kV、235kV、225kV、215kV、205kV、195kV、190kV、185kV、180kV、175kV、170kV、165kVとなり、そして最上段では160kV程度になる。
【0015】
このような場合に、各段の絶縁設計を同一にして、一段当たりの最高電圧である270kVで設計すれば、後段側では余裕がありすぎる。このため、本発明の直流高電圧電源装置では、電圧分担の低い後段側の整流回路では、その分担電圧に対応させた絶縁設計を行うことを特徴としている。各段の分担電圧に対応させて、それぞれの絶縁設計を変化させても良いが、各段毎に仕様がすべて異なることになり、標準化の観点から好ましいことではない。
【0016】
このため、図1に示す実施形態では、電圧分担に応じてA,B,C,Dの4グループに分けている。最下段のグループDでは、分担電圧が270kVから250kVの3段であるので、270kV絶縁を採用する。次のグループCにおいては、分担電圧が235kVから205kVの4段であるので、235kV絶縁を採用する。そして、次のグループBの分担電圧が195kVから185kVの3段であるので、195kV絶縁を採用する。そして、最上段のグループAにおいては、分担電圧が180kVから160kVであるので、その5段については180kV絶縁を採用する。
【0017】
各段当たりの高さは、最上段のグループAでは190mm程度となり、最下段のグループDでは240mm程度となる。グループB,Cにおいては、それぞれその中間的な値となる。これにより、総合的に外形寸法を小さくすることができる。
【0018】
1台の整流素子ユニットは、通常数百個の整流素子から成り、所要耐電圧に応じて、直列接続素子数を変更することが容易である。従って、一段当たりの分担電圧に対応させて、整流素子のユニットの直列接続素子数を減らすことができ、長さ方向に制約がある場合には高さ方向で調節することが可能である。同様にコンデンサユニットも、実際には十数個のコンデンサ素子で所要の耐電圧が得られるように構成されているが、一段当たりの絶縁耐圧を低減することで、その所要素子数を低減することが可能である。従って、一段当たりの絶縁設計を低耐圧化することで、コッククロフト回路を構成する一段当たりの高さを低減し、全体としても構成を小型コンパクト化することができると共に、直列接続素子数を低減することができ、これによりコストダウンをはかることができる。
【0019】
図1に示す実施形態においては、絶縁耐圧をコッククロフト回路の分担電圧に対応させて4グループに分ける例について説明したが、分割するグループを2グループとし、入力段側の1〜2段を正規の絶縁耐圧とし、その他の段を低減した絶縁耐圧とし、一段当たりの高さを低減し、且つ直列接続部品数を低減するようにしても良い。また、逆に直流高電圧の出力段側の1〜2段をその分担電圧に対応して絶縁耐圧を低減し、その高さを低減すると共に直列接続部品数を低減するようにしても良い。
【0020】
以上の説明は、バランス形コッククロフト回路についてのものであるが、対称形コッククロフト回路等の他の回路形式にも、同様に適用可能なことは勿論である。
【0021】
なお、上記実施形態は本発明の実施例の一態様を述べたもので、本発明の趣旨を逸脱することなく種々の変形実施例が可能なことは勿論である。
【0022】
【発明の効果】
以上説明したように本発明によれば、サイズを大型化することなく、効率的に高い直流高電圧が得られる電源装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態の直流高電圧電源装置の構成例を示す、(a)平面図と(b)立面図である。
【図2】図1におけるコッククロフト回路の回路図である。
【符号の説明】
1   高圧容器
2   変圧器
3   コッククロフト回路
4   コロナシールドカバー
5   支柱
6   絶縁支持板
7   コロナシールドフープ
13   加速管
21   整流素子ユニット
22   コンデンサユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a DC high-voltage power supply, and more particularly to a DC high-voltage power supply capable of generating a DC high voltage of about 1000 to 5000 kV suitable for applications such as an electron beam irradiation device or a particle beam accelerator.
[0002]
[Prior art]
For example, in a thermal power plant or the like, a technique of irradiating the combustion exhaust gas with an electron beam to remove air pollutants from the combustion exhaust gas is known. In an electron beam irradiation apparatus for such a purpose, a high DC voltage of, for example, 800 kV is applied to an acceleration tube, and an electron beam is emitted into the atmosphere to irradiate combustion exhaust gas. When the irradiation target is a liquid such as water, an acceleration voltage having a transmission capability of about 1000 to 5000 kV is required.
[0003]
Such an electron beam irradiation device requires a power supply device for generating a DC high voltage of 1000 to 5000 kV, and a Cockcroft circuit is generally used as a rectifying and boosting circuit. The Cockcroft circuit is a rectifying and boosting circuit in which a capacitor and a rectifying element are combined and connected in multiple stages in series. One end of the circuit is driven by a secondary winding of a transformer, and a DC high voltage is taken out from the other end. That is, according to the Cockcroft circuit, the AC voltage formed in the secondary winding of the transformer is rectified for each half-wave, and the rectified voltages are sequentially added by a multi-stage series circuit combining a capacitor and a rectifying element. DC high voltage is extracted from the last stage.
[0004]
[Problems to be solved by the invention]
In such a Cockcroft circuit, theoretically, twice the product of the number of stages of the rectifier circuit unit in which the capacitor unit and the rectifier element unit are combined and the rectified voltage (for the peak value) of the secondary winding voltage of the transformer. DC high voltage is obtained. However, there is actually a problem that stray capacitance exists between the stages, and this stray capacitance is connected in parallel to the rectifying element, so that a theoretical high DC voltage cannot be obtained.
[0005]
The present invention has been made in view of the above-described circumstances, and has as its object to provide a DC high-voltage power supply device capable of efficiently obtaining a high DC high voltage without increasing the size of the device.
[0006]
[Means for Solving the Problems]
The DC high-voltage power supply of the present invention comprises a combination of a capacitor unit and a rectifier element unit to form a rectifier circuit of one or more stages, which are connected in multiple stages in series, and one end of which is driven by a secondary winding of a transformer, A cockcroft circuit that takes out a DC high voltage from the opposite end is provided, and the height of at least one rectifier circuit of the rectifier circuit is made lower than the height of the other rectifier circuits in accordance with the shared voltage of the rectifier circuit. Features.
[0007]
According to the present invention described above, even if the rectifier circuits in each stage have the same circuit constant, the fact that the sharing ratio of the rectified voltage decreases as going to the subsequent stage due to the influence of the stray capacitance is used in reverse. By providing an insulation design corresponding to this, the overall height of the rectifying and boosting circuit is reduced, and the cost is reduced. That is, on the input stage side connected to the secondary winding of the transformer, a height corresponding to the calculated rectified voltage per rectifier circuit is required for insulation design on the input stage side. As described above, the rectification voltage per one stage of the rectifier circuit decreases. As for the insulation design, there is a margin as it goes to the subsequent stage, so that the height of this portion per one stage of the rectifier circuit can be reduced, and the number of components connected in series for securing the withstand voltage can be reduced. Therefore, the size of the power supply as a whole can be reduced, and the number of components can be reduced to reduce the cost.
[0008]
According to the concept of the insulating design, the height of one stage of the rectifier circuit can be successively (gradually) reduced as one goes to the subsequent stage. However, it is not always preferable from the viewpoint of component standardization that the height per one stage of the rectifier circuit is continuously and continuously changed, and the above insulation design is applied only to some stages of the rectifier circuit of the multi-stage series connection. Even if applied, it is effective in reducing the overall height. Therefore, the stage in which the height of the one-stage rectifier circuit is reduced can be arranged at the stage of the DC high voltage outlet of the Cockcroft circuit or at a plurality of stages near the stage. Further, each stage of the lockcroft circuit may be divided into a plurality of groups, and the height of the rectifier circuit may be adjusted for each of the plurality of groups in accordance with the ratio of the rectified voltage.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0010]
FIG. 1 shows a DC high-voltage power supply device according to an embodiment of the present invention, and FIG. 2 shows a configuration example of a balanced cockcroft circuit. The power supply device is housed inside the pressure vessel 1 together with the acceleration tube 13 and includes a transformer 2, a cockcroft circuit 3, and the like. The inside of the container 1 is filled with an insulating gas such as SF 6 gas to ensure sufficient insulation. In the Cockcroft circuit 3, a capacitor element unit C is mounted on an insulating plate 6 supported by a support post 5, and a rectifying element unit D (Cs) is connected between upper and lower stages. It is configured to be laminated. A corona shield hoop 7 made of a metal material is arranged around the insulating plate 6 to make the potential gradient around the insulating plate 6 gentle and prevent corona discharge from occurring. In addition, a corona shield cover 4 is arranged around the top DC high-voltage output section of the cockcroft circuit 3 to similarly reduce the potential gradient around the DC high-voltage section and prevent the occurrence of corona discharge.
[0011]
In the balanced Cockcroft circuit shown in FIG. 2, a rectifying element unit 21 composed of a rectifying element D and a protection resistor R connected in series with a capacitor Cs connected in parallel to the rectifying element D is provided in a cross-shaped manner. The capacitor unit 22 including the connected protective resistor r is connected to the rectifier element unit 21 to form a one-stage rectifier circuit, which is cascaded in multiple stages. That is, in the rectifier circuit of each stage, the two rectifier element units 21 and 21 are connected in a crosswise manner, and the two capacitor units 22 and 22 are connected between the connection point to the next stage and the connection point to the previous stage. 22 are connected.
[0012]
The operation of the Cockcroft circuit is such that when an AC high voltage of, for example, about 100 kV is generated in each of the secondary windings 20a and 20b of the transformer, the rectification is performed by the rectifying element units 21 and 21 for each half-wave, and the capacitors of the capacitor units 22 and 22 are turned off. The DC voltage rectified to C is charged. The DC current is supplied from the rectifying element units 21 and 21 connected in a crosswise manner to the capacitors C of the second-stage capacitor units 22 and 22 so as to add to the DC voltage stored in the first-stage capacitor C. Inflow. Therefore, in the second-stage capacitor units 22 and 22, the capacitor C is charged with the same rectified voltage as the first-stage rectified voltage. A DC voltage obtained by multiplying the number of stages N of the rectifying element units connected in series in a cross-like manner by the rectified voltage per stage is theoretically obtained at the DC voltage output terminal of the final stage.
[0013]
Here, the rectifying element unit 21 and the capacitor unit 22 are equivalently illustrated as being constituted by a single rectifying element D and a capacitor C, but actually, a large number of single rectifying elements and capacitors are used. It is a series connection aggregate. Each of the rectifiers and capacitors has a normal withstand voltage of a commercially available product. For example, by connecting several hundred individual rectifiers in series, the required withstand voltage per stage is secured.
[0014]
However, in the Cockcroft circuit, stray capacitance exists at each stage, and this stray capacitance is connected in parallel to the rectifying element, and the DC voltage per stage obtained decreases toward the subsequent stage, and as a whole, As described above, there is a problem that a theoretical DC high voltage cannot be obtained. For example, assuming that the input voltage is 3 kV, the operating frequency is 5 kHz, and the parallel stray capacitance of the rectifying element unit is 25 pF in a balanced Cockcroft circuit in which 15 stages of 0.08 μF capacitors are stacked, for example, when a DC high voltage of 3000 kV is generated. The voltage sharing of each stage is as follows. That is, 270 kV is obtained at the lowest stage, 260 kV, 250 kV, 235 kV, 225 kV, 205 kV, 195 kV, 190 kV, 185 kV, 180 kV, 175 kV, 170 kV, 165 kV as the stage rises, and about 160 kV at the top stage. .
[0015]
In such a case, if the insulation design of each stage is made the same and the design is made at the maximum voltage of 270 kV per stage, there is too much room on the subsequent stage. For this reason, the DC high-voltage power supply device of the present invention is characterized in that an insulation design corresponding to the shared voltage is performed in the latter rectifier circuit having a low voltage sharing. The insulation design of each stage may be changed in accordance with the shared voltage of each stage, but the specifications are different for each stage, which is not preferable from the viewpoint of standardization.
[0016]
For this reason, in the embodiment shown in FIG. 1, it is divided into four groups of A, B, C and D according to the voltage sharing. In the lowermost group D, the shared voltage is three stages from 270 kV to 250 kV, so that 270 kV isolation is adopted. In the next group C, since the shared voltage has four stages from 235 kV to 205 kV, 235 kV isolation is adopted. Then, since the shared voltage of the next group B is three stages from 195 kV to 185 kV, 195 kV insulation is adopted. In the uppermost group A, the shared voltage is from 180 kV to 160 kV, so that 180 kV insulation is adopted for the five stages.
[0017]
The height per each step is about 190 mm in the uppermost group A and about 240 mm in the lowermost group D. Each of the groups B and C has an intermediate value. As a result, the overall dimensions can be reduced overall.
[0018]
One rectifying element unit usually comprises several hundred rectifying elements, and it is easy to change the number of series-connected elements according to the required withstand voltage. Therefore, it is possible to reduce the number of rectifying element units connected in series in accordance with the shared voltage per stage, and to adjust the height in the height direction when there is a restriction in the length direction. Similarly, the capacitor unit is actually configured so that the required withstand voltage can be obtained with dozens of capacitor elements.However, by reducing the withstand voltage per stage, the number of required elements must be reduced. Is possible. Accordingly, by lowering the insulation design per stage, the height per stage constituting the Cockcroft circuit can be reduced, and the overall configuration can be reduced in size and size, and the number of series-connected elements can be reduced. This can reduce costs.
[0019]
In the embodiment shown in FIG. 1, an example has been described in which the withstand voltage is divided into four groups in accordance with the shared voltage of the Cockcroft circuit. However, the group to be divided is divided into two groups, and the first and second stages on the input stage side are made regular. The withstand voltage may be the withstand voltage, and the withstand voltage may be reduced with the other steps reduced, so that the height per step may be reduced and the number of components connected in series may be reduced. Conversely, the one or two stages on the output stage side of the DC high voltage may be reduced in withstand voltage corresponding to the shared voltage, so that the height is reduced and the number of series-connected components is reduced.
[0020]
Although the above description is about a balanced Cockcroft circuit, it is needless to say that the present invention can be similarly applied to other circuit types such as a symmetric Cockcroft circuit.
[0021]
It should be noted that the above-described embodiment describes one mode of the embodiment of the present invention, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a power supply device capable of efficiently obtaining a high DC high voltage without increasing the size.
[Brief description of the drawings]
FIG. 1A is a plan view and FIG. 1B is an elevation view showing a configuration example of a DC high-voltage power supply device according to an embodiment of the present invention.
FIG. 2 is a circuit diagram of a cockcroft circuit in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High-pressure vessel 2 Transformer 3 Cockcroft circuit 4 Corona shield cover 5 Prop 6 Insulating support plate 7 Corona shield hoop 13 Accelerator tube 21 Rectifier element unit 22 Capacitor unit

Claims (2)

コンデンサユニットと整流素子ユニットを組合わせて一段以上の整流回路を構成し、これを多段直列接続して、その一端をトランスの二次巻線で駆動し、反対端より直流高電圧を取り出すコッククロフト回路を備え、前記整流回路のうち少なくとも一段の整流回路の高さをその整流回路の分担電圧に対応させて、それ以外の整流回路の高さより低くしたことを特徴とする直流高電圧電源装置。A combination of a capacitor unit and a rectifier element unit constitutes a rectifier circuit of one or more stages, which are connected in series in multiple stages, one end of which is driven by a secondary winding of a transformer, and a cockcroft circuit that extracts a high DC voltage from the opposite end. Wherein the height of at least one rectifier circuit of the rectifier circuit is made lower than the heights of the other rectifier circuits in accordance with the shared voltage of the rectifier circuit. 前記コッククロフト回路の各段を複数のグループに区分し、該複数のグループ毎に、前記整流回路の高さを調整したことを特徴とする請求項1記載の直流高電圧電源装置。2. The DC high-voltage power supply according to claim 1, wherein each stage of the Cockcroft circuit is divided into a plurality of groups, and the height of the rectifier circuit is adjusted for each of the plurality of groups.
JP2002196190A 2002-07-04 2002-07-04 DC high-voltage power supply device and method for generating high voltage Expired - Fee Related JP3792179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196190A JP3792179B2 (en) 2002-07-04 2002-07-04 DC high-voltage power supply device and method for generating high voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196190A JP3792179B2 (en) 2002-07-04 2002-07-04 DC high-voltage power supply device and method for generating high voltage

Publications (3)

Publication Number Publication Date
JP2004040932A true JP2004040932A (en) 2004-02-05
JP2004040932A5 JP2004040932A5 (en) 2005-01-06
JP3792179B2 JP3792179B2 (en) 2006-07-05

Family

ID=31704351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196190A Expired - Fee Related JP3792179B2 (en) 2002-07-04 2002-07-04 DC high-voltage power supply device and method for generating high voltage

Country Status (1)

Country Link
JP (1) JP3792179B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286302A (en) * 2005-03-31 2006-10-19 Ulvac Japan Ltd Voltage-generating unit, voltage-generating device, and charged particle accelerator equipped with
JP2009195825A (en) * 2008-02-21 2009-09-03 Orc Mfg Co Ltd Ultraviolet irradiation apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286302A (en) * 2005-03-31 2006-10-19 Ulvac Japan Ltd Voltage-generating unit, voltage-generating device, and charged particle accelerator equipped with
JP2009195825A (en) * 2008-02-21 2009-09-03 Orc Mfg Co Ltd Ultraviolet irradiation apparatus
TWI451472B (en) * 2008-02-21 2014-09-01 Orc Mfg Co Ltd Ultraviolet radiation device

Also Published As

Publication number Publication date
JP3792179B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
US7903432B2 (en) High-voltage power generation system and package
US20080238211A1 (en) Solid-state microsecond capacitance charger for high voltage and pulsed power
US9369060B2 (en) Power generation system and package
JPH0395898A (en) X-ray generating device
CA2881664C (en) Dc power transmission systems and method of assembling the same
CA2282919A1 (en) High-voltage power supply circuit having a plurality of diode bridges connected in series to the secondary winding of a transformer
US3723846A (en) High voltage power supply
KR101370598B1 (en) Apparatus for driving high voltage for x-ray tube
JP2004040932A (en) Dc high-voltage power supply device
JP2008053076A (en) High voltage circuit and x-ray generator
Park et al. 60 V-to-35 kV input-parallel output-series DC-DC converter using multi-level class-DE rectifiers
JP2011139618A (en) Device for generating dc high voltage
JPH0572193B2 (en)
US3849717A (en) Circuit for operation of gas discharge lamps
US8331118B2 (en) Generator and method for generating a direct current high voltage, and dust collector using such generator
CN111212511B (en) Direct-current high-voltage power supply and low-energy electron accelerator
JP5193795B2 (en) High voltage generator
TWI513166B (en) Boost apparatus and series type transformer device
KR102448639B1 (en) Rectifier for Generating Very High Voltage DC
JPH04236165A (en) No-loss switching snubber circuit
Singh et al. High voltage high frequency resonant DC-DC converter for electric propulsion for micro and nanosatellites
JP2004281170A (en) High voltage device for x-ray tube
JP2004023913A (en) Dc high voltage power supply unit
CN110148515A (en) High pressure potential device
JP2004040932A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040206

A977 Report on retrieval

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090414

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees