TWI513166B - Boost apparatus and series type transformer device - Google Patents

Boost apparatus and series type transformer device Download PDF

Info

Publication number
TWI513166B
TWI513166B TW103117371A TW103117371A TWI513166B TW I513166 B TWI513166 B TW I513166B TW 103117371 A TW103117371 A TW 103117371A TW 103117371 A TW103117371 A TW 103117371A TW I513166 B TWI513166 B TW I513166B
Authority
TW
Taiwan
Prior art keywords
transformer
side coil
series
transformers
coupled
Prior art date
Application number
TW103117371A
Other languages
Chinese (zh)
Other versions
TW201545453A (en
Inventor
Tung Ying Lin
Ming Sheng Zheng
Yu Chan Yeh
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW103117371A priority Critical patent/TWI513166B/en
Priority to CN201410338420.0A priority patent/CN105099212A/en
Publication of TW201545453A publication Critical patent/TW201545453A/en
Application granted granted Critical
Publication of TWI513166B publication Critical patent/TWI513166B/en

Links

Description

升壓裝置及串聯型變壓器裝置Booster device and series transformer device

本發明是有關於一種電力供應裝置,且特別是有關於一種升壓裝置及串聯型變壓器裝置。The present invention relates to a power supply device, and more particularly to a booster device and a series transformer device.

在一些機電裝置中,需要配置升壓裝置以便提供高壓電。舉例來說,介電質放電系統(Dielectric Discharge System)中可能會配置有升壓裝置。此介電質放電系統為大氣電漿應用之一,而大氣電漿產生器的開發趨勢朝向大面積且高功率發展。目前介電質放電技術已被廣泛使用於各產業上,包含:光電與半導體產業、汽車零組件、黏著之前處理產業等,其優勢為大型化與可快速量產。此介電質放電系統可以應用於臭氧產生器、表面改質或電漿乾蝕刻等。因介電質放電系統點燃需要較高電壓(約20k~30k Vp-p),因此需要利用升壓裝置將換流器的輸出電壓提升。In some electromechanical devices, a boost device needs to be configured to provide high voltage power. For example, a booster device may be configured in a Dielectric Discharge System. This dielectric discharge system is one of atmospheric plasma applications, and the development trend of atmospheric plasma generators is toward large-area and high-power development. At present, dielectric discharge technology has been widely used in various industries, including: optoelectronics and semiconductor industry, automotive components, adhesive processing industry, etc., its advantages are large-scale and rapid mass production. The dielectric discharge system can be applied to an ozone generator, surface modification or plasma dry etching. Since the dielectric discharge system requires a relatively high voltage (about 20k~30k Vp-p), it is necessary to boost the output voltage of the converter by using a boosting device.

升壓裝置的常見實施方式是利用單一個高壓變壓器將換流器的輸出電壓提升。圖1是說明利用單一個高壓變壓器110實 現升壓裝置100的電路示意圖。高壓變壓器110的主側線圈(primary-side winding)的第一端與第二端分別耦接至交流電源10的第一輸出端與第二輸出端。高壓變壓器110的次側線圈(secondary-side winding)的第一端與第二端分別耦接至負載20的第一電源端與第二電源端。在此假設高壓變壓器110的主側線圈匝數N1為50,而高壓變壓器110的次側線圈匝數N2為1250。因此,升壓裝置100形成了單一級25倍高壓變壓器電路,而將輸入電壓V1(即交流電源10的輸出電壓)直接升壓到所需要的輸出電壓V2=24k Vp-p,其中Vp-p表示峰對峰電壓值。A common implementation of the boost device is to boost the output voltage of the converter with a single high voltage transformer. Figure 1 is a diagram illustrating the use of a single high voltage transformer 110 A schematic circuit diagram of the current boosting device 100. The first end and the second end of the primary-side winding of the high voltage transformer 110 are respectively coupled to the first output end and the second output end of the AC power source 10. The first end and the second end of the secondary-side winding of the high voltage transformer 110 are respectively coupled to the first power end and the second power end of the load 20. It is assumed here that the primary side coil turns N1 of the high voltage transformer 110 is 50, and the secondary side coil turns N2 of the high voltage transformer 110 is 1250. Therefore, the boosting device 100 forms a single-stage 25 times high voltage transformer circuit, and directly boosts the input voltage V1 (ie, the output voltage of the alternating current power source 10) to the required output voltage V2=24k Vp-p, where Vp-p Indicates the peak-to-peak voltage value.

圖2是說明圖1所示升壓裝置100的輸入電壓V1與輸出電壓V2的波形示意圖。於圖2所示波形圖中,橫軸表示時間,而縱軸表示電壓。請參照圖1與圖2,由於高壓變壓器110之漏感、高壓變壓器110的主側線圈的寄生電容CA與高壓變壓器110的次側線圈的寄生電容CB的關係,圖1所示升壓裝置100的輸入電壓V1與輸出電壓V2的波形如圖2所示,其中輸入電壓V1與輸出電壓V2均為交流電。單級高壓變壓器110所構成的升壓裝置100主要因為變壓器次側線匝圈數過高的關係,使得變壓器寄生元件效應變得顯著而無法容忍,進而造成輸出失真情況。FIG. 2 is a schematic diagram showing the waveforms of the input voltage V1 and the output voltage V2 of the boosting device 100 shown in FIG. 1. In the waveform diagram shown in Fig. 2, the horizontal axis represents time and the vertical axis represents voltage. Referring to FIG. 1 and FIG. 2, the boosting device 100 of FIG. 1 is shown in FIG. 1 due to the leakage inductance of the high voltage transformer 110, the parasitic capacitance CA of the main side coil of the high voltage transformer 110, and the parasitic capacitance CB of the secondary side coil of the high voltage transformer 110. The waveform of the input voltage V1 and the output voltage V2 is as shown in FIG. 2, wherein the input voltage V1 and the output voltage V2 are both alternating current. The boosting device 100 constituted by the single-stage high-voltage transformer 110 is mainly caused by the relationship that the number of turns of the secondary side of the transformer is too high, so that the parasitic element effect of the transformer becomes conspicuous and cannot be tolerated, thereby causing output distortion.

高壓變壓器110的能量消耗原因為變壓器寄生元件(例如寄生電容與/或感應電感)所造成。如果利用單一個高壓變壓器110執行升壓功能,容易因單一個高壓變壓器110裡面線圈間的跨壓過大關係,使得寄生電容與感應電感的影響/效應變得顯著而無法 容忍。所述寄生電容與感應電感會影響高壓變壓器次側(secondary-side)的輸出波形失真。The energy consumption of the high voltage transformer 110 is caused by transformer parasitic components such as parasitic capacitance and/or inductive inductance. If a single high-voltage transformer 110 is used to perform the boosting function, it is easy to cause an excessive influence on the cross-voltage between the coils of the single high-voltage transformer 110, so that the influence/effect of the parasitic capacitance and the induced inductance becomes remarkable. tolerate. The parasitic capacitance and the induced inductance affect the secondary-side output waveform distortion of the high voltage transformer.

本發明提供一種升壓裝置及串聯型變壓器裝置,可有效降低變壓器裡面線圈間的跨壓。The invention provides a boosting device and a series transformer device, which can effectively reduce the cross-pressure between the coils inside the transformer.

本發明的實施例提出一種串聯型變壓器裝置。串聯型變壓器裝置包含有多個變壓器。這些變壓器中的第一個變壓器的主側線圈(primary-side winding)的第一端與第二端分別耦接至所述串聯型變壓器裝置的第一輸入端與第二輸入端。第一個變壓器的第一次側線圈(firstsecondary-side winding)的第一端耦接至所述串聯型變壓器裝置的第一輸出端。這些變壓器中的第i個變壓器的第一次側線圈的第一端耦接至這些變壓器中的第i-1個變壓器的第一次側線圈的第二端,其中i為大於1的整數。第i個變壓器的主側線圈的第一端與第二端分別耦接至第i-1個變壓器的第二次側線圈(second secondary-side winding)的第一端與第二端。Embodiments of the present invention provide a series type transformer device. The series type transformer device includes a plurality of transformers. The first and second ends of the primary-side winding of the first of the transformers are coupled to the first input and the second input of the series-type transformer device, respectively. A first end of a first secondary-side winding of the first transformer is coupled to a first output of the series-type transformer arrangement. A first end of the first secondary winding of the i-th transformer of the transformers is coupled to a second end of the first secondary winding of the i-th transformer of the transformers, wherein i is an integer greater than one. The first end and the second end of the main side coil of the i-th transformer are respectively coupled to the first end and the second end of the second secondary-side winding of the i-1th transformer.

本發明的實施例提出一種升壓裝置,其包含有換流器以及串聯型變壓器裝置。串聯型變壓器裝置包括多個變壓器。這些變壓器中的第一個變壓器的主側線圈的第一端與第二端分別耦接至所述換流器的第一輸出端與第二輸出端。第一個變壓器的第一次側線圈的第一端耦接至所述串聯型變壓器裝置的第一輸出端。這些變壓器中的第i個變壓器的第一次側線圈的第一端耦接至這 些變壓器中的第i-1個變壓器的第一次側線圈的第二端,其中i為大於1的整數。第i個變壓器的主側線圈的第一端與第二端分別耦接至第i-1個變壓器的第二次側線圈的第一端與第二端。Embodiments of the present invention provide a boosting device that includes an inverter and a series-type transformer device. The series type transformer device includes a plurality of transformers. The first end and the second end of the main side coil of the first one of the transformers are respectively coupled to the first output end and the second output end of the inverter. A first end of the first side coil of the first transformer is coupled to a first output of the series transformer device. The first end of the first side coil of the i-th transformer of these transformers is coupled to this The second end of the first secondary coil of the i-1th transformer of the transformers, where i is an integer greater than one. The first end and the second end of the main side coil of the i-th transformer are respectively coupled to the first end and the second end of the second sub-coil of the i-1th transformer.

在發明露的一實施例中,上述變壓器的數量為N。這些變壓器中的第N個變壓器的主側線圈的第一端與第二端分別耦接至這些變壓器中的第N-1個變壓器的第二次側線圈的第一端與第二端。第N個變壓器的第一次側線圈的第一端耦接至第N-1個變壓器的第一次側線圈的第二端。第N個變壓器的第一次側線圈的第二端耦接至所述串聯型變壓器裝置的第二輸出端。In an embodiment of the invention, the number of transformers described above is N. The first end and the second end of the main side coil of the Nth transformer of the transformers are respectively coupled to the first end and the second end of the second side coil of the N-1th transformer of the transformers. The first end of the first side coil of the Nth transformer is coupled to the second end of the first side coil of the N-1th transformer. The second end of the first side coil of the Nth transformer is coupled to the second output of the series type transformer device.

在發明露的一實施例中,上述的串聯型變壓器裝置更包括諧振電感。諧振電感耦接於所述串聯型變壓器裝置的第一輸入端與第一個變壓器的主側線圈的第一端之間。In an embodiment of the invention, the series transformer device further includes a resonant inductor. The resonant inductor is coupled between the first input of the series transformer device and the first end of the primary side coil of the first transformer.

在發明露的一實施例中,上述的串聯型變壓器裝置更包括諧振電感。諧振電感耦接於第i-1個變壓器的第二次側線圈的第一端與第i個變壓器的主側線圈的第一端之間。In an embodiment of the invention, the series transformer device further includes a resonant inductor. The resonant inductor is coupled between the first end of the second secondary coil of the i-1th transformer and the first end of the primary side coil of the i-th transformer.

在本發明的一實施例中,上述的第i個變壓器中,主側線圈與第二次側線圈的線圈圈數比例為1:1。In an embodiment of the invention, in the i-th transformer, the ratio of the number of turns of the main-side coil and the second-side coil is 1:1.

基於上述,本發明實施例所述串聯型變壓器裝置將多個變壓器的次側線圈相互串聯來提供高電壓。因此,每一個變壓器各自內部線圈間的跨壓/電壓差可以被有效降低。Based on the above, the series type transformer device according to the embodiment of the present invention connects the secondary side coils of the plurality of transformers in series to each other to provide a high voltage. Therefore, the voltage/voltage difference between the internal coils of each transformer can be effectively reduced.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

10‧‧‧交流電源10‧‧‧AC power supply

20‧‧‧負載20‧‧‧ load

30‧‧‧直流電源30‧‧‧DC power supply

100‧‧‧升壓裝置100‧‧‧Booster

110‧‧‧高壓變壓器110‧‧‧High voltage transformer

300‧‧‧升壓裝置300‧‧‧Booster

310‧‧‧換流器310‧‧‧Inverter

320‧‧‧串聯型變壓器裝置320‧‧‧Series transformer device

321、322、323‧‧‧諧振電感321, 322, 323‧‧‧Resonant inductance

341、351、361‧‧‧主側線圈341, 351, 361‧‧‧ main side coil

342、352‧‧‧第二次側線圈342, 352‧‧‧ second side coil

343、353、362‧‧‧第一次側線圈343, 353, 362‧‧‧ first side coil

C1、C2、C3、C4、CA、CB‧‧‧寄生電容C1, C2, C3, C4, CA, CB‧‧‧ parasitic capacitance

Cair、Cd‧‧‧電容Cair, Cd‧‧‧ capacitor

D1、D2、D3、D4‧‧‧本體二極體D1, D2, D3, D4‧‧‧ body diode

NP1、NP2、N1‧‧‧主側線圈匝數NP1, NP2, N1‧‧‧ main side coil turns

N2‧‧‧次側線圈匝數N2‧‧‧ secondary coil turns

NSA1、NSA2‧‧‧第一次側線圈匝數NSA1, NSA2‧‧‧ first side coil turns

NSB1‧‧‧第二次側線圈匝數NSB1‧‧‧Second side coil turns

S1、S2、S3、S4‧‧‧功率開關S1, S2, S3, S4‧‧‧ power switch

T1、T2、T3、T(i-1)、T(i)、T(N-1)、T(N)‧‧‧變壓器T1, T2, T3, T(i-1), T(i), T(N-1), T(N)‧‧‧ transformers

V1、Vin‧‧‧輸入電壓V1, Vin‧‧‧ input voltage

V2、Vo1、Vo2、Vo3、Vout‧‧‧輸出電壓V2, Vo1, Vo2, Vo3, Vout‧‧‧ output voltage

Vin1‧‧‧電壓Vin1‧‧‧ voltage

圖1是說明利用單一個高壓變壓器實現升壓裝置的電路示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a circuit diagram showing the implementation of a boosting device using a single high voltage transformer.

圖2是說明圖1所示升壓裝置的輸入電壓V1與輸出電壓V2的波形示意圖。FIG. 2 is a schematic diagram showing the waveforms of the input voltage V1 and the output voltage V2 of the boosting device shown in FIG.

圖3是依照本發明一實施例說明一種升壓裝置的電路示意圖。FIG. 3 is a circuit diagram showing a boosting device according to an embodiment of the invention.

圖4是依照本發明一實施例說明圖3所示升壓裝置的電路示意圖。FIG. 4 is a circuit diagram showing the boosting device of FIG. 3 according to an embodiment of the invention.

圖5是說明圖4所示升壓裝置的輸入電壓Vin與輸出電壓Vout的波形示意圖。FIG. 5 is a schematic diagram showing the waveforms of the input voltage Vin and the output voltage Vout of the boosting device shown in FIG.

圖6是依照本發明另一實施例說明圖3所示升壓裝置的電路示意圖。FIG. 6 is a circuit diagram showing the boosting device of FIG. 3 according to another embodiment of the present invention.

圖7至圖10是說明圖6所示電路的電壓波形模擬結果之示意圖。7 to 10 are diagrams illustrating simulation results of voltage waveforms of the circuit shown in Fig. 6.

在本發明說明書全文(包括申請專利範圍)中所使用的「耦接」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種 連接手段而間接地連接至該第二裝置。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟代表相同或類似部分。不同實施例中使用相同標號或使用相同用語的元件/構件/步驟可以相互參照相關說明。The term "coupled" as used throughout the specification (including the scope of the claims) may be used to refer to any direct or indirect means of attachment. For example, if the first device is described as being coupled to the second device, it should be construed that the first device can be directly connected to the second device, or the first device can be The connecting means is indirectly connected to the second device. In addition, wherever possible, the elements and/ Elements/components/steps that use the same reference numbers or use the same terms in different embodiments may refer to the related description.

圖3是依照本發明一實施例說明一種升壓裝置300的電路示意圖。升壓裝置300包括換流器(inverter)310以及串聯型變壓器裝置320。依據設計需求,換流器310可以是任何類型換流器電路,例如全橋換流器(full-bridge inverter)、半橋換流器(half-bridge inverter)或是其他換流器電路。換流器310可以將直流電源30所提供的直流電轉換為交流電。直流電源30可以是降壓轉換器(buck converter)、升壓轉換器(boost converter)、橋式整流電路及/或其他直流電源供應電路。舉例來說,直流電源30可以將市電(例如三相交流電)整流為單相直流電。FIG. 3 is a circuit diagram showing a boosting device 300 according to an embodiment of the invention. The boosting device 300 includes an inverter 310 and a series transformer device 320. Depending on the design requirements, inverter 310 can be any type of inverter circuit, such as a full-bridge inverter, a half-bridge inverter, or other converter circuit. The inverter 310 can convert the direct current supplied from the direct current power source 30 into alternating current. The DC power source 30 can be a buck converter, a boost converter, a bridge rectifier circuit, and/or other DC power supply circuits. For example, the DC power source 30 can rectify utility power (eg, three-phase AC power) to single-phase DC power.

串聯型變壓器裝置320的第一輸入端與第二輸入端分別耦接至換流器310的第一輸出端與第二輸出端以接收所述交流電。串聯型變壓器裝置320的第一輸出端與第二輸出端分別耦接至負載20的第一電源端與第二電源端。串聯型變壓器裝置320可以將換流器310所提供的交流電(即輸入電壓Vin)進行升壓而對應提供輸出電壓Vout給負載20。在本實施例中不限制所述負載20的特性。在一些應用範例中,負載20可能是電容性負載、電感性負載及/或其他負載。所述電容性負載可能是介電質放電系統(Dielectric Barrier Discharge System)等。所述電感性負載可能 是電動馬達等。The first input end and the second input end of the series transformer device 320 are respectively coupled to the first output end and the second output end of the inverter 310 to receive the alternating current. The first output end and the second output end of the series transformer device 320 are respectively coupled to the first power end and the second power end of the load 20 . The series type transformer device 320 can boost the alternating current (ie, the input voltage Vin) supplied from the inverter 310 to provide the output voltage Vout to the load 20. The characteristics of the load 20 are not limited in this embodiment. In some application examples, load 20 may be a capacitive load, an inductive load, and/or other load. The capacitive load may be a Dielectric Barrier Discharge System or the like. The inductive load may It is an electric motor.

串聯型變壓器裝置320包括多個變壓器,例如圖3所示變壓器T1、T2、…、T(i-1)、T(i)、…、T(N-1)、T(N),其中N為整數,而i為在1至N範圍內的整數。這些變壓器中第一個變壓器T1的主側線圈(primary-side winding)的第一端與第二端分別耦接至串聯型變壓器裝置320的第一輸入端與第二輸入端,即分別耦接至換流器310的第一輸出端與第二輸出端。第一個變壓器T1的第一次側線圈(first secondary-side winding)的第一端耦接至串聯型變壓器裝置320的第一輸出端,即耦接至負載20的第一電源端。The series type transformer device 320 includes a plurality of transformers, such as the transformers T1, T2, ..., T(i-1), T(i), ..., T(N-1), T(N) shown in Fig. 3, where N Is an integer, and i is an integer in the range of 1 to N. The first end and the second end of the primary-side winding of the first transformer T1 are respectively coupled to the first input end and the second input end of the series-type transformer device 320, that is, respectively coupled To the first output and the second output of the inverter 310. The first end of the first secondary-side winding of the first transformer T1 is coupled to the first output of the series transformer device 320, that is, to the first power terminal of the load 20.

這些變壓器中的第i個變壓器T(i)的第一次側線圈的第一端耦接至這些變壓器中的第i-1個變壓器T(i-1)的第一次側線圈的第二端。舉例來說,第二個變壓器T2的第一次側線圈的第一端耦接至第一個變壓器T1的第一次側線圈的第二端。第i個變壓器T(i)的主側線圈的第一端與第二端分別耦接至第i-1個變壓器T(i-1)的第二次側線圈(second secondary-side winding)的第一端與第二端。舉例來說,第二個變壓器T2的主側線圈的第一端與第二端分別耦接至第一個變壓器T1的第二次側線圈的第一端與第二端。a first end of the first secondary winding of the i-th transformer T(i) of the transformers is coupled to a second of the first secondary windings of the i-1th transformer T(i-1) of the transformers end. For example, the first end of the first side coil of the second transformer T2 is coupled to the second end of the first side coil of the first transformer T1. The first end and the second end of the main side coil of the i-th transformer T(i) are respectively coupled to the second secondary-side winding of the i-1th transformer T(i-1) First end and second end. For example, the first end and the second end of the main side coil of the second transformer T2 are respectively coupled to the first end and the second end of the second side coil of the first transformer T1.

在此假設這些變壓器的數量為N。這些變壓器中的第N個變壓器T(N)的主側線圈的第一端與第二端分別耦接至這些變壓器中的第N-1個變壓器T(N-1)的第二次側線圈的第一端與第二端。第N個變壓器T(N)的第一次側線圈的第一端耦接至第N-1個 變壓器T(N-1)的第一次側線圈的第二端。第N個變壓器T(N)的第一次側線圈的第二端耦接至串聯型變壓器裝置320的第二輸出端,即耦接至負載20的第二電源端。It is assumed here that the number of these transformers is N. The first end and the second end of the main side coil of the Nth transformer T(N) of the transformers are respectively coupled to the second side coil of the N-1th transformer T(N-1) of the transformers The first end and the second end. The first end of the first side coil of the Nth transformer T(N) is coupled to the N-1th The second end of the first side coil of the transformer T(N-1). The second end of the first side coil of the Nth transformer T(N) is coupled to the second output end of the series transformer device 320, that is, to the second power terminal of the load 20.

本實施例利用多組變壓器T1~T(N)之輸出繞組(第一次側線圈)串接後形成串聯型變壓器裝置320拓撲。利用串聯型變壓器裝置320可降低線圈間之漏感以及寄生電容效應,進而提升變壓器效率且降低熱能消耗。In this embodiment, the series winding device 320 topology is formed by serially connecting the output windings (first side coils) of the plurality of sets of transformers T1 to T(N). The series type transformer device 320 can reduce the leakage inductance and the parasitic capacitance effect between the coils, thereby improving the efficiency of the transformer and reducing the heat energy consumption.

圖4是依照本發明一實施例說明圖3所示升壓裝置300的電路示意圖。於圖4所示實施例中,串聯型變壓器裝置320包含兩組變壓器,即變壓器T1與T2。變壓器T1的主側線圈的第一端與第二端分別耦接至串聯型變壓器裝置320的第一輸入端與第二輸入端,即分別耦接至換流器310的第一輸出端與第二輸出端。變壓器T1的第一次側線圈的第一端耦接至串聯型變壓器裝置320的第一輸出端,即耦接至負載20的第一電源端。變壓器T2的主側線圈的第一端與第二端分別耦接至變壓器T1的第二次側線圈的第一端與第二端。變壓器T2的第一次側線圈的第一端耦接至變壓器T1的第一次側線圈的第二端。變壓器T2的第一次側線圈的第二端耦接至串聯型變壓器裝置320的第二輸出端,即耦接至負載20的第二電源端。FIG. 4 is a circuit diagram showing the boosting device 300 of FIG. 3 according to an embodiment of the invention. In the embodiment shown in FIG. 4, the series transformer assembly 320 includes two sets of transformers, namely transformers T1 and T2. The first end and the second end of the main-side coil of the transformer T1 are respectively coupled to the first input end and the second input end of the series-type transformer device 320, that is, respectively coupled to the first output end of the inverter 310 and Two outputs. The first end of the first side coil of the transformer T1 is coupled to the first output end of the series transformer device 320, that is, to the first power end of the load 20. The first end and the second end of the main side coil of the transformer T2 are respectively coupled to the first end and the second end of the second side coil of the transformer T1. The first end of the first side coil of the transformer T2 is coupled to the second end of the first side coil of the transformer T1. The second end of the first-side coil of the transformer T2 is coupled to the second output end of the series-type transformer device 320, that is, to the second power terminal of the load 20.

在同一個變壓器中,主側線圈與第二次側線圈的線圈圈數比例為1:1。在其他應用需求下,主側線圈與第二次側線圈的線圈圈數比例不限於1:1。在此假設(但不限於此),圖4所示變 壓器T1的主側線圈匝數NP1為10,變壓器T1的第一次側線圈匝數NSA1為150,而變壓器T1的第二次側線圈匝數NSB1為10。圖4所示變壓器T2的主側線圈匝數NP2為10,而變壓器T2的第一次側線圈匝數NSA2為100。因輸出電壓Vout被分壓的關係,使變壓器T1的第一次側線圈兩端跨壓(電壓差)與變壓器T2的第一次側線圈兩端跨壓皆可以降低。第一次側線圈兩端跨壓降低的情況下,變壓器內部寄生元件(例如寄生電容與/或感應電感)所造成的損耗也可以降低。In the same transformer, the ratio of the number of turns of the primary side coil and the second side coil is 1:1. In other application requirements, the ratio of the number of turns of the primary side coil and the second side side coil is not limited to 1:1. Here is the assumption (but not limited to), the change shown in Figure 4. The main-side coil turns NP1 of the press T1 is 10, the first-side coil turns NSA1 of the transformer T1 is 150, and the second-side coil turns NSB1 of the transformer T1 is 10. The main-side coil turns NP2 of the transformer T2 shown in FIG. 4 is 10, and the first-side coil turns NSA2 of the transformer T2 is 100. Due to the partial pressure of the output voltage Vout, the voltage across the first-side coil of the transformer T1 (voltage difference) and the voltage across the first-side coil of the transformer T2 can be reduced. In the case where the voltage across the first side coil is reduced across the transformer, the losses caused by parasitic components (such as parasitic capacitance and/or inductive inductance) inside the transformer can also be reduced.

圖5是說明圖4所示升壓裝置300的輸入電壓Vin與輸出電壓Vout的波形示意圖。於圖5所示波形圖中,橫軸表示時間,而縱軸表示電壓。請參照圖4與圖5,在此假設輸入電壓Vin的均方根值為100V,而換流器310的輸出電流的均方根值為0.8A,則升壓裝置300的輸入功率為80W。若負載20的阻值為36.75K ohm,則輸出電壓Vout的均方根值為1.64K V,升壓裝置300的輸出功率為73W。FIG. 5 is a schematic diagram showing the waveforms of the input voltage Vin and the output voltage Vout of the boosting device 300 shown in FIG. In the waveform diagram shown in Fig. 5, the horizontal axis represents time and the vertical axis represents voltage. Referring to FIG. 4 and FIG. 5, it is assumed here that the root mean square value of the input voltage Vin is 100V, and the root mean square value of the output current of the inverter 310 is 0.8A, and the input power of the boosting device 300 is 80W. If the resistance of the load 20 is 36.75 K ohm, the root mean square value of the output voltage Vout is 1.64 KV, and the output power of the boosting device 300 is 73 W.

在此以圖1所示電路相較於圖4所示電路。假設圖1所示輸入電壓V1的均方根值為100V,而交流電源10的輸出電流的均方根值為0.8A,則升壓裝置100的輸入功率為80W。若負載20的阻值為36.75K ohm,則圖1所示輸出電壓V2的均方根值為1.33K V,升壓裝置100的輸出功率為48W。比較圖4所示串聯型變壓器裝置320的輸出功率與圖1所示單一個高壓變壓器110的輸出功率,二者相差25W。也就是說,圖4所示串聯型變壓器裝 置320的輸出功率提昇31%。The circuit shown in Figure 1 is compared to the circuit shown in Figure 4. Assuming that the root mean square value of the input voltage V1 shown in FIG. 1 is 100 V, and the root mean square value of the output current of the alternating current power source 10 is 0.8 A, the input power of the boosting device 100 is 80 W. If the resistance of the load 20 is 36.75 K ohm, the root mean square value of the output voltage V2 shown in FIG. 1 is 1.33 KV, and the output power of the boosting device 100 is 48 W. Comparing the output power of the series-type transformer device 320 shown in FIG. 4 with the output power of the single high-voltage transformer 110 shown in FIG. 1, the difference between them is 25 W. That is to say, the series type transformer shown in Figure 4 Set the output power of 320 by 31%.

圖6是依照本發明另一實施例說明圖3所示升壓裝置300的電路示意圖。圖6所示負載20是以電容性負載(例如介電質放電系統)為應用範例,其等效電路包括電容Cair、電容Cd與齊納二極體(Zener diode)。換流器310將直流電源30所提供電能轉換為交流電。串聯型變壓器裝置320的變壓器T1~T3將換流器310所提供的交流電升壓為輸出電壓Vout,以驅動負載20。於圖6所示實施例中,換流器310可以是全橋換流器,其包括功率開關S1、S2、S3與S4。功率開關S1~S4可以是金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor field-effect transistor,MOSFET)或是其他開關元件。圖6所示二極體D1、D2、D3與D4分別表示功率開關S1~S4的本體二極體,而電容C1、C2、C3與C4分別表示功率開關S1~S4的寄生電容。功率開關S1的兩端分別耦接至換流器310的第一輸入端與第一輸出端。功率開關S2的兩端分別耦接至換流器310的第二輸入端與第一輸出端。功率開關S3的兩端分別耦接至換流器310的第一輸入端與第二輸出端。功率開關S4的兩端分別耦接至換流器310的第二輸入端與第二輸出端。FIG. 6 is a circuit diagram showing the boosting device 300 of FIG. 3 according to another embodiment of the present invention. The load 20 shown in FIG. 6 is an application example of a capacitive load (for example, a dielectric discharge system), and the equivalent circuit includes a capacitor Cair, a capacitor Cd, and a Zener diode. The inverter 310 converts the electrical energy provided by the direct current power source 30 into alternating current. The transformers T1 to T3 of the series type transformer device 320 boost the alternating current supplied from the inverter 310 to the output voltage Vout to drive the load 20. In the embodiment shown in FIG. 6, the inverter 310 can be a full bridge converter that includes power switches S1, S2, S3, and S4. The power switches S1 to S4 may be Metal-Oxide-Semiconductor field-effect transistors (MOSFETs) or other switching elements. The diodes D1, D2, D3, and D4 shown in FIG. 6 represent the body diodes of the power switches S1 to S4, respectively, and the capacitors C1, C2, C3, and C4 represent the parasitic capacitances of the power switches S1 to S4, respectively. The two ends of the power switch S1 are respectively coupled to the first input end and the first output end of the inverter 310. The two ends of the power switch S2 are respectively coupled to the second input end of the inverter 310 and the first output end. The two ends of the power switch S3 are respectively coupled to the first input end and the second output end of the inverter 310. The two ends of the power switch S4 are respectively coupled to the second input end and the second output end of the inverter 310.

於圖6所示實施例中,串聯型變壓器裝置320包含三組變壓器,即變壓器T1、T2與T3。在同一個變壓器中,主側線圈與第二次側線圈的線圈圈數比例為1:1。串聯型變壓器裝置320更選擇性地包含諧振電感321、322與323。諧振電感321的第一 端與第二端分別耦接至換流器310的第一輸出端與變壓器T1的主側線圈341的第一端。變壓器T1的主側線圈341的第二端耦接至換流器310的第二輸出端。變壓器T1的第一次側線圈343的第一端耦接至串聯型變壓器裝置320的第一輸出端,即耦接至負載20的第一電源端。諧振電感322的第一端與第二端分別耦接於變壓器T1的第二次側線圈342的第一端與變壓器T2的主側線圈351的第一端。變壓器T2的主側線圈351的第二端耦接至變壓器T1的第二次側線圈342的第二端。變壓器T2的第一次側線圈353的第一端耦接至變壓器T1的第一次側線圈343的第二端。變壓器T2的第一次側線圈353的第二端耦接至變壓器T3的第一次側線圈362的第一端。諧振電感323的第一端與第二端分別耦接於變壓器T2的第二次側線圈352的第一端與變壓器T3的主側線圈361的第一端。變壓器T2的第二次側線圈352的第二端耦接至變壓器T3的主側線圈361的第二端。變壓器T3的第一次側線圈362的第二端耦接至串聯型變壓器裝置320的第二輸出端,即耦接至負載20的第二電源端。In the embodiment shown in FIG. 6, the series transformer device 320 includes three sets of transformers, namely transformers T1, T2 and T3. In the same transformer, the ratio of the number of turns of the primary side coil and the second side coil is 1:1. The series transformer device 320 more selectively includes resonant inductors 321, 322 and 323. First of the resonant inductor 321 The first end and the second end are respectively coupled to the first output end of the inverter 310 and the first end of the main side coil 341 of the transformer T1. The second end of the main side coil 341 of the transformer T1 is coupled to the second output end of the inverter 310. The first end of the first side coil 343 of the transformer T1 is coupled to the first output end of the series transformer device 320, that is, to the first power end of the load 20. The first end and the second end of the resonant inductor 322 are respectively coupled to the first end of the second side coil 342 of the transformer T1 and the first end of the main side coil 351 of the transformer T2. The second end of the main side coil 351 of the transformer T2 is coupled to the second end of the second side coil 342 of the transformer T1. The first end of the first side coil 353 of the transformer T2 is coupled to the second end of the first side coil 343 of the transformer T1. The second end of the first side coil 353 of the transformer T2 is coupled to the first end of the first side coil 362 of the transformer T3. The first end and the second end of the resonant inductor 323 are respectively coupled to the first end of the second side coil 352 of the transformer T2 and the first end of the main side coil 361 of the transformer T3. The second end of the second side coil 352 of the transformer T2 is coupled to the second end of the main side coil 361 of the transformer T3. The second end of the first side coil 362 of the transformer T3 is coupled to the second output end of the series transformer device 320, that is, to the second power end of the load 20.

於本實施例中,諧振電感321、322與/或323可以是實體電感器。在其他實施例中,諧振電感321、322與323中的一或多者可能被省略。舉例來說,諧振電感322與/或323可能被省略。In the present embodiment, the resonant inductors 321, 322 and/or 323 may be solid inductors. In other embodiments, one or more of the resonant inductors 321, 322, and 323 may be omitted. For example, resonant inductors 322 and/or 323 may be omitted.

第一級變壓器T1之第一次側線圈343之跨壓是由主側線圈341經第一級變壓器T1升壓後形成。第二級變壓器T2之第一次側線圈353之跨壓是由主側線圈351經第二級變壓器T2升壓形 成。第三級變壓器T3之第一次側線圈362之跨壓是由主側線圈361經第三級變壓器T3升壓形成。第一級變壓器T3中第一次側線圈343串接第二級變壓器T2之第一次側線圈353,而第二級變壓器T2之第一次側線圈353串接第三級變壓器T3之第一次側線圈362。相互串接的第一次側線圈343、353與362上的跨壓相加總後成為輸出電壓Vout。輸出電壓Vout可以驅動負載20(例如介電質放電負載)。因此,介電質放電負載20有足夠跨壓可產生電漿。The voltage across the first side coil 343 of the first stage transformer T1 is formed by the main side coil 341 being boosted by the first stage transformer T1. The voltage across the first side coil 353 of the second stage transformer T2 is boosted by the main side coil 351 via the second stage transformer T2. to make. The voltage across the first side coil 362 of the third stage transformer T3 is formed by the main side coil 361 being boosted by the third stage transformer T3. The first-stage side coil 343 of the first-stage transformer T3 is connected in series with the first-stage side coil 353 of the second-stage transformer T2, and the first-stage side coil 353 of the second-stage transformer T2 is connected in series with the first stage of the third-stage transformer T3. Secondary side coil 362. The voltage across the first side coils 343, 353, and 362 connected in series is added to form an output voltage Vout. The output voltage Vout can drive the load 20 (eg, a dielectric discharge load). Therefore, the dielectric discharge load 20 has sufficient cross-pressure to generate plasma.

綜上所述,圖6所示實施例利用三組變壓器T1~T3之輸出繞組(第一次側線圈)相互串接後形成串聯型變壓器裝置320拓撲。本實施例所述串聯型變壓器裝置320將多個變壓器T1~T3的第一次側線圈相互串聯來,以提供高電壓給負載20。因此,每一個變壓器各自內部線圈間的跨壓/電壓差可以被有效降低。利用串聯型變壓器裝置320可降低線圈間之漏感以及寄生電容效應,進而提升變壓器效率以及降低熱能消耗。諧振電感321、322與323可以使換流器310輸出阻抗匹配為電感性,降低換流器310的功率電晶體(功率開關)硬切時造成的突波電流,增加功率電晶體壽命。In summary, the embodiment shown in FIG. 6 forms a series-type transformer device 320 topology by using the output windings (first-side coils) of the three sets of transformers T1 to T3 in series with each other. The series type transformer device 320 of the present embodiment connects the first side coils of the plurality of transformers T1 to T3 in series to each other to supply a high voltage to the load 20. Therefore, the voltage/voltage difference between the internal coils of each transformer can be effectively reduced. The series transformer device 320 can reduce leakage inductance and parasitic capacitance between coils, thereby improving transformer efficiency and reducing thermal energy consumption. The resonant inductors 321, 322 and 323 can match the output impedance of the converter 310 to inductivity, reduce the surge current caused by the hard transistor (power switch) of the inverter 310, and increase the life of the power transistor.

圖7至圖10是說明圖6所示電路的電壓波形模擬結果之示意圖。於圖7至圖10所示波形圖中,橫軸表示時間,而縱軸表示電壓。圖7所示電壓曲線是換流器310的輸出電壓(即輸入電壓Vin)的波形,其均方根值Vin,rms=300V,而峰對峰值Vin,p-p= 600V(+/-300V)。圖8所示電壓曲線是第一級變壓器T1的主側線圈341之電壓Vin1的波形。因經由諧振電感321升壓的關係,主側線圈341之電壓Vin1之均方根值Vin1,rms=680.35V,而電壓Vin1之峰對峰值Vin1,p-p=1.8325k V(+/-916.25V)。圖9所示電壓曲線分別為第一次側線圈343、353與362之輸出電壓Vo1、Vo2與Vo3的波形,其均方根值均為Vo1,rms=Vo2,rms=Vo3,rms=2.72k V,而峰對峰值為Vo1,p-p=Vo2,p-p=Vo3,p-p=7.33k V(+/-3.66k V)。圖10所示電壓曲線是負載20上兩電源輸入端之間的電壓(即輸出電壓Vout)的波形,其均方根值為Vout,rms=8.16k V,而峰對峰值Vout,p-p=22k V(+/-11k V)。綜合上述模擬結果可知,串聯型變壓器裝置320中各輸出繞組(第一次側線圈)之電壓降成輸出電壓Vout的1/3,進而改善換流器310之輸出電壓(即輸入電壓Vin)因變壓器之寄生元件造成電壓波形失真的問題。7 to 10 are diagrams illustrating simulation results of voltage waveforms of the circuit shown in Fig. 6. In the waveform diagrams shown in Figs. 7 to 10, the horizontal axis represents time and the vertical axis represents voltage. The voltage curve shown in FIG. 7 is the waveform of the output voltage of the inverter 310 (ie, the input voltage Vin), and its root mean square value Vin, rms=300V, and the peak-to-peak value Vin, p-p= 600V (+/-300V). The voltage curve shown in Fig. 8 is the waveform of the voltage Vin1 of the main-side coil 341 of the first-stage transformer T1. Due to the boosting relationship via the resonant inductor 321, the root mean square value of the voltage Vin1 of the primary side coil 341 is Vin1, rms = 680.35V, and the peak of the voltage Vin1 is the peak value Vin1, pp = 1.8325k V (+/- 916.25V). . The voltage curves shown in FIG. 9 are waveforms of the output voltages Vo1, Vo2, and Vo3 of the first-side coils 343, 353, and 362, respectively, and the rms values are all Vo1, rms=Vo2, rms=Vo3, rms=2.72k. V, and the peak-to-peak value is Vo1, pp=Vo2, pp=Vo3, pp=7.33kV (+/-3.66kV). The voltage curve shown in Figure 10 is the waveform of the voltage between the two power supply inputs on the load 20 (ie, the output voltage Vout), the rms value is Vout, rms = 8.16k V, and the peak-to-peak value Vout, pp = 22k V (+/-11k V). According to the above simulation results, the voltage of each output winding (the first-side coil) in the series-type transformer device 320 is reduced to 1/3 of the output voltage Vout, thereby improving the output voltage of the inverter 310 (ie, the input voltage Vin). The parasitic components of the transformer cause distortion of the voltage waveform.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

20‧‧‧負載20‧‧‧ load

30‧‧‧直流電源30‧‧‧DC power supply

300‧‧‧升壓裝置300‧‧‧Booster

310‧‧‧換流器310‧‧‧Inverter

320‧‧‧串聯型變壓器裝置320‧‧‧Series transformer device

321、322、323‧‧‧諧振電感321, 322, 323‧‧‧Resonant inductance

341、351、361‧‧‧主側線圈341, 351, 361‧‧‧ main side coil

342、352‧‧‧第二次側線圈342, 352‧‧‧ second side coil

343、353、362‧‧‧第一次側線圈343, 353, 362‧‧‧ first side coil

C1、C2、C3、C4‧‧‧寄生電容C1, C2, C3, C4‧‧‧ parasitic capacitance

Cair、Cd‧‧‧電容Cair, Cd‧‧‧ capacitor

D1、D2、D3、D4‧‧‧本體二極體D1, D2, D3, D4‧‧‧ body diode

S1、S2、S3、S4‧‧‧功率開關S1, S2, S3, S4‧‧‧ power switch

T1、T2、T3‧‧‧變壓器T1, T2, T3‧‧‧ transformer

Vin‧‧‧輸入電壓Vin‧‧‧Input voltage

Vo1、Vo2、Vo3、Vout‧‧‧輸出電壓Vo1, Vo2, Vo3, Vout‧‧‧ output voltage

Vin1‧‧‧電壓Vin1‧‧‧ voltage

Claims (10)

一種串聯型變壓器裝置,其包含有:複數個變壓器,該些變壓器中的第一個變壓器的主側線圈的第一端與第二端分別耦接至所述串聯型變壓器裝置的第一輸入端與第二輸入端,該第一個變壓器的第一次側線圈的第一端耦接至所述串聯型變壓器裝置的第一輸出端,該些變壓器中的第i個變壓器的第一次側線圈的第一端耦接至該些變壓器中的第i-1個變壓器的第一次側線圈的第二端,該第i個變壓器的主側線圈的第一端與第二端分別耦接至該第i-1個變壓器的第二次側線圈的第一端與第二端,其中i為大於1的整數。A series-type transformer device comprising: a plurality of transformers, wherein a first end and a second end of a main-side coil of a first one of the transformers are respectively coupled to a first input end of the series-type transformer device And a first input end, the first end of the first side coil of the first transformer is coupled to the first output end of the series type transformer device, and the first side of the i-th transformer of the plurality of transformers The first end of the coil is coupled to the second end of the first side coil of the i-1th transformer of the transformers, and the first end and the second end of the main side coil of the i-th transformer are respectively coupled To the first end and the second end of the second side coil of the i-1th transformer, wherein i is an integer greater than one. 如申請專利範圍第1項所述的串聯型變壓器裝置,其中,該些變壓器的數量為N,該些變壓器中的第N個變壓器的主側線圈的第一端與第二端分別耦接至該些變壓器中的第N-1個變壓器的第二次側線圈的第一端與第二端,該第N個變壓器的第一次側線圈的第一端耦接至該第N-1個變壓器的第一次側線圈的第二端,該第N個變壓器的該第一次側線圈的第二端耦接至所述串聯型變壓器裝置的第二輸出端。The series-type transformer device of claim 1, wherein the number of the transformers is N, and the first ends and the second ends of the main-side coils of the N-th transformers of the transformers are respectively coupled to a first end and a second end of the second side coil of the N-1th transformer of the transformers, wherein the first end of the first side coil of the Nth transformer is coupled to the N-1th The second end of the first side coil of the Nth transformer is coupled to the second end of the series transformer device. 如申請專利範圍第1項所述的串聯型變壓器裝置,更包括:諧振電感,耦接於所述串聯型變壓器裝置的該第一輸入端與該第一個變壓器的該主側線圈的該第一端之間。The series-type transformer device of claim 1, further comprising: a resonant inductor coupled to the first input end of the series-type transformer device and the first-side coil of the first transformer Between one end. 如申請專利範圍第1項所述的串聯型變壓器裝置,更包括:諧振電感,耦接於該第i-1個變壓器的該第二次側線圈的該 第一端與該第i個變壓器的該主側線圈的該第一端之間。The series transformer device of claim 1, further comprising: a resonant inductor coupled to the second secondary coil of the i-1th transformer The first end is between the first end of the main side coil of the i-th transformer. 如申請專利範圍第1項所述的串聯型變壓器裝置,其中,在該第i個變壓器中,該主側線圈與該第二次側線圈的線圈圈數比例為1:1。The series-type transformer device according to claim 1, wherein in the i-th transformer, a ratio of a number of turns of the main-side coil and the second-side coil is 1:1. 一種升壓裝置,其包含有:換流器以及串聯型變壓器裝置,該串聯型變壓器裝置包含有複數個變壓器,該些變壓器中的第一個變壓器的主側線圈的第一端與第二端分別耦接至所述換流器的第一輸出端與第二輸出端,該第一個變壓器的第一次側線圈的第一端耦接至所述串聯型變壓器裝置的第一輸出端,該些變壓器中的第i個變壓器的第一次側線圈的第一端耦接至該些變壓器中的第i-1個變壓器的第一次側線圈的第二端,該第i個變壓器的主側線圈的第一端與第二端分別耦接至該第i-1個變壓器的第二次側線圈的第一端與第二端,其中i為大於1的整數。A boosting device comprising: an inverter and a series transformer device, the series transformer device comprising a plurality of transformers, the first end and the second end of the main side coil of the first one of the transformers The first output end and the second output end of the first transformer are coupled to the first output end of the series transformer device, a first end of the first side coil of the i-th transformer of the transformers is coupled to a second end of the first-side coil of the i-th transformer of the transformers, the i-th transformer The first end and the second end of the main side coil are respectively coupled to the first end and the second end of the second sub-coil of the i-1th transformer, wherein i is an integer greater than 1. 如申請專利範圍第6項所述的升壓裝置,其中,該些變壓器的數量為N,該些變壓器中的第N個變壓器的主側線圈的第一端與第二端分別耦接至該些變壓器中的第N-1個變壓器的第二次側線圈的第一端與第二端,該第N個變壓器的第一次側線圈的第一端耦接至該第N-1個變壓器的第一次側線圈的第二端,該第N個變壓器的該第一次側線圈的第二端耦接至所述串聯型變壓器裝置的第二輸出端。The boosting device of claim 6, wherein the number of the transformers is N, and the first ends and the second ends of the main side coils of the Nth transformers of the transformers are respectively coupled to the a first end and a second end of the second side coil of the N-1th transformer of the transformer, the first end of the first side coil of the Nth transformer is coupled to the N-1th transformer The second end of the first side coil of the Nth transformer is coupled to the second output end of the series transformer device. 如申請專利範圍第6項所述的升壓裝置,其中,該串聯型 變壓器裝置更包括:諧振電感,耦接於所述換流器的該第一輸出端與該第一個變壓器的該主側線圈的該第一端之間。The boosting device according to claim 6, wherein the series type The transformer device further includes a resonant inductor coupled between the first output of the inverter and the first end of the primary side coil of the first transformer. 如申請專利範圍第6項所述的升壓裝置,其中,該串聯型變壓器裝置更包括:諧振電感,耦接於該第i-1個變壓器的該第二次側線圈的該第一端與該第i個變壓器的該主側線圈的該第一端之間。The boosting device of claim 6, wherein the series transformer device further includes: a resonant inductor coupled to the first end of the second secondary coil of the i-1th transformer Between the first ends of the main side coil of the i-th transformer. 如申請專利範圍第6項所述的升壓裝置,其中,在該第i個變壓器中,該主側線圈與該第二次側線圈的線圈圈數比例為1:1。The boosting device according to claim 6, wherein in the i-th transformer, the ratio of the number of turns of the primary side coil and the second secondary side coil is 1:1.
TW103117371A 2014-05-16 2014-05-16 Boost apparatus and series type transformer device TWI513166B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103117371A TWI513166B (en) 2014-05-16 2014-05-16 Boost apparatus and series type transformer device
CN201410338420.0A CN105099212A (en) 2014-05-16 2014-07-16 Voltage booster and series type transformer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103117371A TWI513166B (en) 2014-05-16 2014-05-16 Boost apparatus and series type transformer device

Publications (2)

Publication Number Publication Date
TW201545453A TW201545453A (en) 2015-12-01
TWI513166B true TWI513166B (en) 2015-12-11

Family

ID=54578987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103117371A TWI513166B (en) 2014-05-16 2014-05-16 Boost apparatus and series type transformer device

Country Status (2)

Country Link
CN (1) CN105099212A (en)
TW (1) TWI513166B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539082B (en) * 2016-01-27 2018-03-16 广安市华蓥山领创电子有限公司 A kind of automobile-used negative ion air-cleaner for being integrated with dual transformer
AU2017275474B2 (en) * 2016-05-31 2022-06-02 Stryker Corporation Control console including a transformer with a leakage control winding and with a capacitor
US11004660B2 (en) * 2018-11-30 2021-05-11 Eagle Harbor Technologies, Inc. Variable output impedance RF generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI292974B (en) * 2005-04-14 2008-01-21 Mitsubishi Electric Corp Power converter
TWM346239U (en) * 2008-07-16 2008-12-01 Gigno Technology Co Ltd Driving device of lighting apparatus
CN201656789U (en) * 2010-04-07 2010-11-24 上海交通大学 Three-phase medium-voltage frequency converter
TW201338385A (en) * 2012-03-15 2013-09-16 Delta Electronics Shanghai Co Converter circuit and layout thereof and resonant converter circuit and layout thereof
TW201401747A (en) * 2012-06-27 2014-01-01 Univ Nat Cheng Kung Converter having current doubler
CN103683960A (en) * 2012-09-21 2014-03-26 成都市思博睿科技有限公司 Series connection type high-power combined frequency converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777842A (en) * 2010-03-24 2010-07-14 上海交通大学 Medium voltage frequency conversion power circuit system
CN201666933U (en) * 2010-04-20 2010-12-08 宝山钢铁股份有限公司 Electrode insulation detecting device for three-phase AC electric arc furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI292974B (en) * 2005-04-14 2008-01-21 Mitsubishi Electric Corp Power converter
TWM346239U (en) * 2008-07-16 2008-12-01 Gigno Technology Co Ltd Driving device of lighting apparatus
CN201656789U (en) * 2010-04-07 2010-11-24 上海交通大学 Three-phase medium-voltage frequency converter
TW201338385A (en) * 2012-03-15 2013-09-16 Delta Electronics Shanghai Co Converter circuit and layout thereof and resonant converter circuit and layout thereof
TW201401747A (en) * 2012-06-27 2014-01-01 Univ Nat Cheng Kung Converter having current doubler
CN103683960A (en) * 2012-09-21 2014-03-26 成都市思博睿科技有限公司 Series connection type high-power combined frequency converter

Also Published As

Publication number Publication date
TW201545453A (en) 2015-12-01
CN105099212A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
Montoya et al. An evaluation of selected solid-state transformer topologies for electric distribution systems
US20100097830A1 (en) Induction power system
US20120195074A1 (en) DC-DC Converter Circuit For High Input-To-Output Voltage Conversion
CN107453615B (en) Modular multilevel converter and power electronic transformer
US9413227B2 (en) Converter circuit with power factor correction for converting AC input voltage into DC output voltage
US20130051082A1 (en) Switching power supply
US8050069B2 (en) Method and apparatus for electrical bus centering
TWI513166B (en) Boost apparatus and series type transformer device
CN103825483B (en) SiC power switch device and silicon IGBT mixed type single-phase high-voltage converter
TW201325057A (en) A DC-to-DC voltage regulator and the operating method thereof
CN113839558A (en) Conversion device
JP7328748B2 (en) power converter
TW201421886A (en) AC/DC symmetrical voltage multiplier utilizing coupling inductance
US7969225B2 (en) Circuit of reducing power loss of switching device
TWI530074B (en) Converter circuit with power factor correction
JP6297565B2 (en) Rectifier circuit and method for unbalanced two-phase DC grid
TW201724717A (en) High voltage gain power converter
US9263953B2 (en) Power supply apparatus for supplying internal power from a minimum input voltage to a steady state of an output of a boost stage
Choi et al. Cascaded dc-to-dc converter employing a tapped-inductor for high voltage boosting ratio
TW202125956A (en) Power conversion device capable of balancing cross voltage between first and second electric switches and enhancing stability
TWI543513B (en) Resonant converter
TWI586092B (en) Single-stage ac-to-dc converter
US7656683B2 (en) Electrical conversion device, converter and uninterruptible electric power supply comprising one such device
CN102664538A (en) High-power-factor dielectric barrier discharge power supply circuit
Nguyen et al. Active CDS-clamped L-type current-fed isolated DC-DC converter