JP2004040128A - Method for forming copper thin film by chemical vapor deposition method - Google Patents

Method for forming copper thin film by chemical vapor deposition method Download PDF

Info

Publication number
JP2004040128A
JP2004040128A JP2003306183A JP2003306183A JP2004040128A JP 2004040128 A JP2004040128 A JP 2004040128A JP 2003306183 A JP2003306183 A JP 2003306183A JP 2003306183 A JP2003306183 A JP 2003306183A JP 2004040128 A JP2004040128 A JP 2004040128A
Authority
JP
Japan
Prior art keywords
thin film
film
cvd
barrier metal
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306183A
Other languages
Japanese (ja)
Inventor
Toshio Kusumoto
楠本 淑郎
Masaaki Murata
村田 真朗
Motoko Ichihashi
市橋 素子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003306183A priority Critical patent/JP2004040128A/en
Publication of JP2004040128A publication Critical patent/JP2004040128A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a copper thin film excellent in adhesiveness and having a smooth plane shape by the chemical vapor deposition method. <P>SOLUTION: On a substrate on which a barrier metal film has already been formed by the chemical vapor deposition method, a CVD-TiN thin film or a CVD-TaN thin film having a thickness of 50nm or less is formed as an adhesion reinforcing layer using one kind or two or more kinds of organic titanium material selected from among TDMAT, TDEAT and TiPMAT, or one kind or two kinds of organic tantalum material of Ta(N-(CH<SB>3</SB>)<SB>2</SB>)<SB>5</SB>and Ta((N-(t-C<SB>4</SB>H<SB>9</SB>)<SB>2</SB>)<SB>2</SB>(N-(C<SB>2</SB>H<SB>5</SB>)<SB>2</SB>)<SB>3</SB>) respectively, then a CVD-Cu thin film is formed on the adhesion reinforcing layer using Cu<SP>I</SP>(HFAC)VTMS or Cu<SP>II</SP>(HFAC)<SB>2</SB>as a reaction material. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、LSI等のICを製造する際の銅薄膜の形成方法に関し、特に化学蒸着法で形成されるCu薄膜(CVD−Cu薄膜)による配線埋め込み工程のCVD−Cu薄膜の形成方法や、Cu電解メッキのためのシード層としてのCVD−Cu薄膜の形成方法に関する。 The present invention relates to a method for forming a copper thin film when manufacturing an IC such as an LSI, and more particularly to a method for forming a CVD-Cu thin film in a wiring embedding step using a Cu thin film (CVD-Cu thin film) formed by a chemical vapor deposition method, The present invention relates to a method for forming a CVD-Cu thin film as a seed layer for Cu electrolytic plating.

 従来、CVD法によりCu薄膜を形成してCu配線を形成する場合、直接バリアメタル膜上にCu薄膜を形成するか、またはバリアメタル膜上に厚さ20nm程度のCu膜をスパッタ法により形成した後、このスパッタ−Cu膜上にCu薄膜を形成していた。下地層としてスパッタ−Cu膜を介在させたCVD−Cu薄膜の形成方法は、例えば特許文献1に記載されている。
 従来のCu配線形成では、基板上に設けられたシリコン酸化物(SiO2)絶縁膜中に配線溝を形成し、次いで絶縁膜中へのCuの拡散を防止するためにバリアメタル(TiN、TaN、WN等)膜をスパッタ法またはCVD法により形成し、その後CVD−Cu薄膜を形成するか、またはCVD−Cu薄膜の形成前にこのCu薄膜との密着性を増強するためにバリアメタル膜上にスパッタ−Cu膜を形成し、次いでその上にCVD−Cu薄膜を形成するかした後、CMP(化学機械研磨)法で研磨することにより配線を形成する方法が採用されていた。
 上記配線形成法では、例えばCVD法で成膜した窒化チタン(CVD−TiN)や窒化タンタル(CVD−TaN)薄膜をバリアメタル膜として用いる場合には、成膜時に混入した炭素やその他の有機残基を除去する必要があるため、バリアメタル膜形成後に熱アニールやプラズマアニールを行い、次いでCVD−Cu薄膜の形成を行うのが通常であった。このような後処理を行うことにより、組成が安定し、スパッタ膜に近い抵抗値まで低抵抗化することが可能である。
特開平4−242937号公報
Conventionally, when a Cu thin film is formed by a CVD method to form a Cu wiring, a Cu thin film is formed directly on a barrier metal film, or a Cu film having a thickness of about 20 nm is formed on the barrier metal film by a sputtering method. Thereafter, a Cu thin film was formed on the sputter-Cu film. A method of forming a CVD-Cu thin film with a sputter-Cu film interposed as an underlayer is described in, for example, Patent Document 1.
In the conventional Cu wiring formation, a wiring groove is formed in a silicon oxide (SiO 2 ) insulating film provided on a substrate, and then a barrier metal (TiN, TaN) is formed in order to prevent diffusion of Cu into the insulating film. , WN, etc.) film is formed by a sputtering method or a CVD method, and then a CVD-Cu thin film is formed, or a barrier metal film is formed before the formation of the CVD-Cu thin film in order to enhance the adhesion with the Cu thin film. A sputter-Cu film is formed thereon, and then a CVD-Cu thin film is formed thereon, and then the wiring is formed by polishing by a CMP (chemical mechanical polishing) method.
In the above wiring formation method, for example, when a titanium nitride (CVD-TiN) or tantalum nitride (CVD-TaN) thin film formed by a CVD method is used as a barrier metal film, carbon or other organic residue mixed during the film formation is used. Since it is necessary to remove the groups, it has been usual to perform thermal annealing or plasma annealing after forming the barrier metal film and then to form a CVD-Cu thin film. By performing such a post-treatment, the composition is stabilized, and the resistance can be reduced to a resistance value close to that of the sputtered film.
JP-A-4-242937

 しかしながら、バリアメタル膜上に直接CVD−Cu薄膜を形成する場合、CVD−Cu薄膜とバリアメタル膜との間の密着性は一般に劣悪であり、テープ剥離テストを行うと容易に剥離してしまうことが多い。特にCuと合金を形成しないTa系バリアメタルにおいては、成膜後に熱処理を行っても密着性の改善効果は全く見られない。更に、かかるバリアメタル膜上ではCuの初期核生成密度が小さく、まばらな核が成長して合体して成膜されるため、滑らかな平面形状を得ることは困難であった。
 また、CVD法でバリアメタル膜を形成した後に上記のような熱アニール等の後処理を行う場合、スパッタ法により成膜したバリアメタル膜の場合と同様に、バリアメタル膜とCVD−Cu薄膜との密着性が劣悪であり、その後のCMP工程に耐えられなくなるという問題がある。
However, when a CVD-Cu thin film is formed directly on a barrier metal film, the adhesion between the CVD-Cu thin film and the barrier metal film is generally poor, and the tape is easily peeled off when a tape peeling test is performed. There are many. In particular, in the case of a Ta-based barrier metal which does not form an alloy with Cu, even if heat treatment is performed after film formation, no effect of improving adhesion is observed. Furthermore, on such a barrier metal film, the initial nucleation density of Cu is low, and sparse nuclei grow and coalesce to form a film. Therefore, it is difficult to obtain a smooth planar shape.
When a post-treatment such as thermal annealing is performed after the barrier metal film is formed by the CVD method, the barrier metal film and the CVD-Cu thin film are formed in the same manner as in the case of the barrier metal film formed by the sputtering method. Has poor adhesion and cannot withstand the subsequent CMP process.

 この密着性の問題を改善するために、前記したように、CVD−Cu薄膜の形成前にバリアメタル膜上に薄いスパッタ−Cu膜を形成することが提案されている。しかし、この方法は密着性の改善には有効ではない。なぜならば、スパッタ法では被成膜面の幾何学的形状によりその膜厚が異なり、配線溝幅が小さくなると、深い穴または溝の側面部および底面部への成膜が不完全となり、十分な膜厚を得ることができないからである。このように、側面部および底面部で密着性の改善に有効な膜厚が得られないだけでなく、フィールド部(穴、溝の上部平面)ではCu膜が厚いため、その後のCVD−Cu薄膜の形成工程においてフィールド部で選択的にCVD−Cuの核形成が行われてしまい、側面部および底面部の被覆性が悪い要因ともなっている。また、側面部のスパッタ−Cu膜は入射角が浅いために粒状に凝集するので、その上に成膜されるCVD−Cu薄膜も荒れた平面を有する膜が形成される。
 本発明は、上述のような従来プロセスの問題点を解消しようとするもので、優れた密着性と平滑な平面形状とを併せ持つCVD−Cu薄膜の形成方法を提供することを目的とする。
In order to improve this adhesion problem, as described above, it has been proposed to form a thin sputter-Cu film on a barrier metal film before forming a CVD-Cu thin film. However, this method is not effective for improving the adhesion. This is because, in the sputtering method, the film thickness is different depending on the geometrical shape of the surface on which the film is to be formed, and when the width of the wiring groove is small, the film formation on the side surface and the bottom surface of the deep hole or groove becomes incomplete, and a sufficient This is because a film thickness cannot be obtained. As described above, not only is it not possible to obtain a film thickness effective for improving the adhesiveness at the side and bottom portions, but also because the Cu film is thick at the field portion (the upper plane of the holes and grooves), the subsequent CVD-Cu thin film In the formation process, the nucleation of CVD-Cu is selectively performed in the field portion, which is a factor of poor coverage of the side and bottom portions. In addition, since the sputter-Cu film on the side surface is agglomerated in a granular form due to a small incident angle, a CVD-Cu thin film formed thereon has a rough surface.
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional process, and an object of the present invention is to provide a method of forming a CVD-Cu thin film having both excellent adhesion and a smooth planar shape.

 本発明のCVD−Cu薄膜の形成方法は、絶縁膜中へのCuの拡散を防止するバリアメタル膜が予めCVD法により形成された基板を用い、この基板上に、有機チタン材料または有機タンタル材料を用いて、CVD法により所定の厚さのTiN薄膜またはTaN薄膜を密着増強層として形成した後、引き続きその上にCVD−Cu薄膜を形成する方法からなる。 The method of forming a CVD-Cu thin film of the present invention uses a substrate on which a barrier metal film for preventing diffusion of Cu into an insulating film is formed in advance by a CVD method, and an organic titanium material or an organic tantalum material is formed on the substrate. Is used to form a TiN thin film or TaN thin film of a predetermined thickness as an adhesion enhancing layer by a CVD method, and subsequently, a CVD-Cu thin film is formed thereon.

 本発明のCu薄膜の形成方法によれば、CVD−Cu薄膜の成膜前に、CVD法によりバリアメタル膜が形成されている基板上に、チタンまたはタンタルを金属成分とする有機金属材料を用いて、密着増強層としての金属窒化物薄膜をCVD法により形成しているので、優れた密着性と平滑性を併せ持つCVD−Cu薄膜を形成することができる。 According to the method of forming a Cu thin film of the present invention, before forming a CVD-Cu thin film, an organic metal material containing titanium or tantalum as a metal component is used on a substrate on which a barrier metal film is formed by a CVD method. Since the metal nitride thin film as the adhesion enhancing layer is formed by the CVD method, a CVD-Cu thin film having both excellent adhesion and smoothness can be formed.

 TiN薄膜のCVD用原料である有機チタン材料としては、例えば、Ti[N-(CH3)2]4(TDMAT)、Ti[N-(C25)2]4(TDEAT)、およびTi[N-(CH3)(i-C37)]4(TiPMAT)から選ばれる1種または2種以上が挙げられ、有機チタン材料に NH3ガスを添加して成膜してもよい。また、TaN薄膜のCVD用原料である有機タンタル材料としては、例えば、Ta[N-(CH3)2]5、およびTa[[N-(t-C49)2]2 [N-(C25)2]3]の1種または2種が挙げられる。
 Cu薄膜のCVD用原料としては、例えば、ヘキサフルオロアセチルアセトナト銅ビニルトリメチルシラン[CuI(HFAC)VTMS] またはビスヘキサフルオロアセチルアセトナト銅[CuII(HFAC)2] が挙げられる。
Examples of the organic titanium material that is a raw material for CVD of a TiN thin film include Ti [N- (CH 3 ) 2 ] 4 (TDDMAT), Ti [N- (C 2 H 5 ) 2 ] 4 (TDEAT), and Ti One or more selected from [N- (CH 3 ) (i-C 3 H 7 )] 4 (TiPMAT) may be used, and a film may be formed by adding NH 3 gas to an organic titanium material. . Examples of the organic tantalum material which is a raw material for CVD of the TaN thin film include Ta [N- (CH 3 ) 2 ] 5 and Ta [[N- (t-C 4 H 9 ) 2 ] 2 [N- (C 2 H 5 ) 2 ] 3 ].
Examples of the raw material for the CVD of the Cu thin film include hexafluoroacetylacetonato copper vinyltrimethylsilane [Cu I (HFAC) VTMS] and bishexafluoroacetylacetonato copper [Cu II (HFAC) 2 ].

 本発明においては、密着増強層としてのCVD−TiN薄膜またはCVD−TaN薄膜を薄く形成することができる。具体的には、密着増強層の厚さは50nm以下であることが望ましい。厚さが50nmを超えると、TiN薄膜またはTaN薄膜に対して低抵抗化処理する必要が生じる。
 CVD−TiNまたはCVD−TaN薄膜は、高アスペクト比の穴や溝に対しても段差被覆性に優れているので、スパッタ−Cu膜を密着増強層として用いた場合のように、フィールド部と側・底面部との間に著しい膜厚差が生じない。従って、反応律速領域のCu薄膜用原料ガスにとっては、全ての成膜面が均等でCVD−Cuのコンフォーマリティーが阻害されることはない。また、本発明者らは、CVD−TiNまたはCVD−TaNの金属窒化物薄膜の表面にはCuの核形成を促進する作用があることを見い出した。そのメカニズムは明らかでないが、膜表面に析出したTi、Taまたは有機残基から取り込まれた炭素が触媒作用を行っているものと推測される。いずれにせよ、本発明によれば、CVD−TiN薄膜またはCVD−TaN薄膜表面でCuの核密度が増大することから、平滑な鏡面様の薄い連続膜を得ることができる。
In the present invention, a thin CVD-TiN film or a thin CVD-TaN film as an adhesion enhancing layer can be formed. Specifically, the thickness of the adhesion enhancing layer is desirably 50 nm or less. When the thickness exceeds 50 nm, it is necessary to reduce the resistance of the TiN thin film or the TaN thin film.
Since the CVD-TiN or CVD-TaN thin film is excellent in step coverage even for holes and grooves having a high aspect ratio, the field portion and the side portion are formed as in the case where the sputter-Cu film is used as the adhesion enhancing layer. -There is no significant difference in film thickness between the bottom and the bottom. Therefore, for the source gas for the Cu thin film in the reaction rate-determining region, all the deposition surfaces are uniform, and the conformity of CVD-Cu is not hindered. Further, the present inventors have found that the surface of a metal nitride thin film of CVD-TiN or CVD-TaN has an effect of promoting nucleation of Cu. Although the mechanism is not clear, it is presumed that Ti or Ta deposited on the film surface or carbon incorporated from organic residues is catalyzing. In any case, according to the present invention, the nucleus density of Cu increases on the surface of the CVD-TiN thin film or the CVD-TaN thin film, so that a smooth mirror-like thin continuous film can be obtained.

 本発明によれば、CVD−Cu薄膜の密着性も同時に改善される。これは、核密度の増大により膜が微結晶化して、内部応力が減少し、更に初期核形成部分の密着性が高いためと考えられるが、膜の密着性そのものに対する物理的解明が進んでいないので、真の原因は不明である。
 本発明において用いる基板上に形成されるバリアメタル膜としては、熱化学蒸着法またはプラズマ化学蒸着法を用いて成膜されたタンタル、窒化タンタル、タングステン、窒化タングステン、チタンもしくは窒化チタン等の金属膜、窒化金属膜、またはこれらの膜が積層された複合膜が挙げられる。
 また、Cu薄膜を電解メッキのシード層として使用する際、微細な配線孔に対応するにはCu薄膜の膜厚の薄いことが、また、メッキ液の濡れ性を保持するにはCu薄膜表面の平滑性が重要な因子となることから、本発明により形成されるCVD−Cu薄膜はシード層としても優れている。
According to the present invention, the adhesion of the CVD-Cu thin film is simultaneously improved. This is thought to be due to the fact that the film is microcrystallized due to the increase in nucleus density, the internal stress is reduced, and the adhesion of the initial nucleation part is high, but the physical clarification of the adhesion itself of the film has not been advanced. So the true cause is unknown.
As the barrier metal film formed on the substrate used in the present invention, a metal film such as tantalum, tantalum nitride, tungsten, tungsten nitride, titanium or titanium nitride formed by a thermal chemical vapor deposition method or a plasma chemical vapor deposition method , A metal nitride film, or a composite film in which these films are laminated.
When a Cu thin film is used as a seed layer for electrolytic plating, the thickness of the Cu thin film must be small in order to cope with fine wiring holes, and in order to maintain the wettability of the plating solution, Since smoothness is an important factor, the CVD-Cu thin film formed according to the present invention is also excellent as a seed layer.

 以下、本発明を図面を参照して説明する。
 図1に示す真空成膜装置を使用して、本発明のCu薄膜の形成方法を実施した。この装置は、バリアメタル膜が形成された基板を格納するカセット室1、CVD−TiN薄膜を形成するための反応室2、およびCVD−Cu薄膜を形成するための反応室3が、それぞれ仕切バルブ5、6および7を介して、真空ロボットを搭載した搬送室4と連結するように構成されている。また、図1には図示していないが、反応室2および3は、基板を加熱するための適当な加熱手段と、N2、H2、Ar、He等のキャリアガス導入手段と、反応室内を真空に排気するための真空ポンプ等を備え、反応室2は、更にプラズマを発生する手段としての高周波電源を具備している。
Hereinafter, the present invention will be described with reference to the drawings.
The method of forming a Cu thin film of the present invention was performed using the vacuum film forming apparatus shown in FIG. In this apparatus, a cassette chamber 1 for storing a substrate on which a barrier metal film is formed, a reaction chamber 2 for forming a CVD-TiN thin film, and a reaction chamber 3 for forming a CVD-Cu thin film are each a gate valve. It is configured to be connected via 5, 6, and 7 to a transfer chamber 4 in which a vacuum robot is mounted. Although not shown in FIG. 1, the reaction chambers 2 and 3 are provided with an appropriate heating means for heating the substrate, a means for introducing a carrier gas such as N 2 , H 2 , Ar, and He; The reaction chamber 2 further includes a high-frequency power source as a means for generating plasma.

参考例
 配線溝が形成された絶縁膜(SiO2 膜等)を有し、バリアメタル膜としてスパッタ−TaNが形成された基板を、カセット室1から仕切バルブ5、6を経て、先ず反応室2へ真空ロボットにより搬送し、そこで該基板を400℃に加熱して、67Paの圧力下にTDMATを3秒間流し、基板上に7〜8nmのCVD−TiN薄膜を形成した。次いで、この基板を仕切バルブ6、7を経て反応室3へ真空ロボットにより搬送し、そこで基板温度を170℃に保持して、400Paの圧力下に CuI(HFAC)VTMSを流し、CVD−Cu薄膜を形成した。図2(A)、(B)および(C)にCVD−Cu薄膜の成長の様子を模式的に示す。
比較例
 比較のために、反応室2でのCVD−TiN薄膜の形成を行わずに、バリアメタル膜としてスパッタ−TaNが形成された基板上に直接CVD−Cu薄膜を上記と同じ条件下で成長させた(比較例1)。また、上記バリアメタル膜上にスパッタ−Cu膜を形成し、次いでその上にCVD−Cu薄膜を上記と同じ条件下で成長させた(比較例2)。形成されたCVD−Cu薄膜の成長の様子を、それぞれ図3ならびに図4(A)、(B)および(C)に模式的に示す。
REFERENCE EXAMPLE A substrate having an insulating film (SiO 2 film or the like) in which a wiring groove is formed and having a sputter-TaN film formed as a barrier metal film is first transferred from the cassette chamber 1 through the partition valves 5 and 6 to the reaction chamber 2. The substrate was heated to 400 ° C., and TDMAT was flowed under a pressure of 67 Pa for 3 seconds to form a 7-8 nm CVD-TiN thin film on the substrate. Next, the substrate is transferred to the reaction chamber 3 via the partition valves 6 and 7 by a vacuum robot, where the substrate temperature is maintained at 170 ° C., Cu I (HFAC) VTMS is flowed under a pressure of 400 Pa, and the CVD-Cu A thin film was formed. FIGS. 2A, 2B and 2C schematically show how a CVD-Cu thin film is grown.
Comparative Example For comparison, a CVD-Cu thin film was grown directly on a substrate on which sputtered TaN was formed as a barrier metal film without forming a CVD-TiN thin film in the reaction chamber 2 under the same conditions as described above. (Comparative Example 1). Further, a sputter-Cu film was formed on the barrier metal film, and then a CVD-Cu thin film was grown thereon under the same conditions as described above (Comparative Example 2). The growth of the formed CVD-Cu thin film is schematically shown in FIGS. 3 and 4A, 4B and 4C, respectively.

 図2から明らかなように、参考例では、配線溝11の形成された SiO2絶縁膜12を有する基板において(図2(A))、スパッタで成膜されたバリアメタル膜13をCVD−TiN薄膜14で被覆することで(図2(B))、次の工程において被成膜面全体で均等なCuの初期核の形成が促進され、平滑な平面を有するCu連続薄膜15を得ることができた(図2(C))。このようにして得られた微結晶薄膜は、テープ剥離テスト(JIS H 8661−8)に準拠した密着性試験を行ったところ、優れた密着性を有していることが判明した。
 一方、バリアメタル膜13上に直接CVD−Cu薄膜16を成長させた比較例1では、図3から明らかなように、Cuの初期核の分布が疎であるため、隣接した核同士の成長合体によってCu連続膜16となる際、膜表面は必然的に粗面となった。また、バリアメタル膜13をスパッタ−Cu膜17で被覆した比較例2でも、図4から明らかなように、CVD−Cu薄膜18の表面は、図3の場合と同様に疎面であった。
As is clear from FIG. 2, in the reference example, on the substrate having the SiO 2 insulating film 12 in which the wiring groove 11 is formed (FIG. 2A), the barrier metal film 13 formed by sputtering is formed by CVD-TiN. By coating with the thin film 14 (FIG. 2B), the formation of uniform initial nuclei of Cu is promoted over the entire surface on which the film is to be formed in the next step, and a Cu continuous thin film 15 having a smooth flat surface can be obtained. It was completed (FIG. 2 (C)). The microcrystalline thin film thus obtained was subjected to an adhesion test based on a tape peel test (JIS H 8661-8), and it was found that the microcrystalline thin film had excellent adhesion.
On the other hand, in Comparative Example 1 in which the CVD-Cu thin film 16 was grown directly on the barrier metal film 13, as is clear from FIG. Thus, when the Cu continuous film 16 was formed, the film surface was necessarily roughened. Also, in Comparative Example 2 in which the barrier metal film 13 was covered with the sputter-Cu film 17, the surface of the CVD-Cu thin film 18 was rough as in FIG.

 スパッタバリアメタル膜に直接CVD−Cu薄膜を形成した比較例1、およびCVD−Cu薄膜の形成前にバリアメタル膜上にスパッタ−Cu膜を形成した比較例2では、初期核は、1μm2当たり 50〜200個程度であるのに対し、バリアメタル膜上にCVD−TiN薄膜を形成した参考例ではその10倍以上の核が観測された。更に、参考例の場合は、CuI(HFAC)VTMSを流し始めて8秒後には 既に連続膜が形成され、その時の膜厚は約20nmであった。得られたCu薄膜は、従来技術におけるCVD−Cu薄膜を直接形成した比較例1およびスパッタCu膜を形成した比較例2と比較して、密着性が向上すると共に膜面が平滑化(鏡面化)していた。 In Comparative Example 1 in which a CVD-Cu thin film was formed directly on a sputtered barrier metal film, and in Comparative Example 2 in which a sputter-Cu film was formed on a barrier metal film before the formation of a CVD-Cu thin film, the initial nucleus was 1 μm 2 . While the number is about 50 to 200, the nucleus more than 10 times that of the reference example in which the CVD-TiN thin film is formed on the barrier metal film was observed. Further, in the case of the reference example, a continuous film was already formed 8 seconds after the flow of Cu I (HFAC) VTMS was started, and the film thickness at that time was about 20 nm. The obtained Cu thin film has improved adhesion and a smoother film surface (mirror finish) as compared with Comparative Example 1 in which a CVD-Cu thin film was directly formed in the prior art and Comparative Example 2 in which a sputtered Cu film was formed. )Was.

 次に、初期核密度nと膜粗さSとの関係を説明するために、簡単な数学的モデルの説明図を図5に示す。数密度n[個/μm2]の核間平均距離d(μm)は、d〜1/n1/2である(図5(A))。それぞれの核が接触角θを一定に保つように等方的に成長すると仮定すると(図5(B))、隣接した核が合体する条件は、核球の半径をaとしたとき2a・sinθ≧dで与えられる。このとき、粗さSはS〜(1/2n1/2)・tanθ/2(図5(C))となる。θとして70゜、nとしてスパッタバリアメタル膜の代表値100個/μm2、CVD−TiN薄膜の代表値2000個/μm2を 代入すると、S(スパッタバリアメタル)〜35nm、S(CVD−TiN)〜8nmが得られる。CVD−TiN薄膜を設けることにより、CVD−Cu薄膜の表面荒れは小さくなることが分かる。 Next, in order to explain the relationship between the initial nuclear density n and the film roughness S, FIG. 5 is an explanatory diagram of a simple mathematical model. The average internuclear distance d (μm) of the number density n [pieces / μm 2 ] is d〜1 / n1 / 2 (FIG. 5 (A)). Assuming that each nucleus grows isotropically so as to keep the contact angle θ constant (FIG. 5B), the condition under which adjacent nuclei coalesce is 2a · sin θ when the radius of the nucleus sphere is a. ≧ d. At this time, the roughness S is S〜 (1 / n 1/2 ) · tan θ / 2 (FIG. 5C). 70 ° as theta, by substituting the representative value 2,000 / [mu] m 2 of the representative value 100 / μm 2, CVD-TiN film of sputtered barrier metal film as a n, S (sputtered barrier metal) ~35nm, S (CVD-TiN ) To 8 nm. It is understood that the surface roughness of the CVD-Cu thin film is reduced by providing the CVD-TiN thin film.

 膜の表面荒れは、CVD−Cu薄膜で溝または穴部を埋め込む際に、溝(または穴)部の開口部を閉塞させ、Cu配線部にボイドを生じせしめる原因となる。また、CVD−Cu薄膜をシード層としてCuメッキを行う際も、メッキ液の濡れ性を阻害し、やはり配線溝(穴)内部にボイドを生じせしめる。
 前記参考例では、CVD−TiN薄膜形成のための有機材料としてTDMATを用いたが、TDEAT、TiPMATまたはTDMATを含むこれらの組合せを用いても、また、CVD−TaN薄膜形成のための有機タンタル材料としてTa[N-(CH3)2]5、Ta[[N-(t-C49)2]2[N-(C25)2]3] またはこれらの組合せを用いても同様の効果が得られたことは言うまでもない。また、Cu薄膜の形成のための原料としてCuI(HFAC)VTMSに代えて CuII(HFAC)2を用いた場合も同様の結果が得られた。
The surface roughness of the film causes the opening of the groove (or hole) to be closed when the groove or hole is buried with the CVD-Cu thin film, causing a void in the Cu wiring portion. Also, when performing Cu plating using a CVD-Cu thin film as a seed layer, the wettability of the plating solution is impaired, and voids are also generated inside the wiring grooves (holes).
In the above reference example, TDMAT was used as an organic material for forming a CVD-TiN thin film. However, an organic tantalum material for forming a CVD-TaN thin film may be used even if TDEAT, TiPMAT or a combination thereof including TDMAT is used. Ta [N- (CH 3 ) 2 ] 5 , Ta [[N- (t-C 4 H 9 ) 2 ] 2 [N- (C 2 H 5 ) 2 ] 3 ] or a combination thereof Needless to say, the same effect was obtained. Similar results were obtained when Cu II (HFAC) 2 was used as the raw material for forming the Cu thin film instead of Cu I (HFAC) VTMS.

実施例
 バリアメタル膜として、前記参考例ではスパッタ−TaN薄膜が形成された基板を用いた場合を示したが、スパッタ−TaN薄膜に代えて、CVD−TaN薄膜が形成された基板を用い、参考例と同様にして、バリアメタル膜上に、CVD−TiN薄膜を形成した後、その上にCu薄膜をCVD法により形成した。このCu薄膜は、参考例と同様に、密着増強層としてのCVD−TiN薄膜を介して、バリアメタル膜との密着性が向上しているだけでなく、膜表面が平滑化(鏡面化)していた。
 また、CVD−Cu薄膜を形成する際、上述の熱CVD法の他に、キャリアガスとしてN2、H2またはその混合ガスを用い、ガスノズルに高周波電圧を印加してプラズマを励起したPECVD法、更に熱CVD法で堆積した膜を上記ガス種のプラズマに暴露する方法など種々の変形を試みた。いずれの場合にも、上記実施例と同様に密着性の改善と核形成密度の増大が確認された。
 CVD−TaN薄膜以外のバリアメタル膜、例えば熱化学蒸着法またはプラズマ化学蒸着法を用いて成膜されたTa、W、WN、TiもしくはTiN等の膜、またはこれらの膜を積層した複合膜が形成された基板を用いても、同様の結果が得られることは言うまでもない。
Example In the above reference example, a case where a substrate on which a sputter-TaN thin film was formed was used as the barrier metal film, but a substrate on which a CVD-TaN thin film was formed was used instead of the sputter-TaN thin film. In the same manner as in the example, after forming a CVD-TiN thin film on the barrier metal film, a Cu thin film was formed thereon by the CVD method. This Cu thin film not only has improved adhesion to the barrier metal film via the CVD-TiN thin film as the adhesion enhancing layer, but also has a smooth (mirror) surface as in the reference example. I was
In addition, when forming a CVD-Cu thin film, in addition to the above-described thermal CVD method, N 2 , H 2 or a mixed gas thereof is used as a carrier gas, and a high frequency voltage is applied to a gas nozzle to excite the plasma, Further, various modifications such as a method of exposing a film deposited by a thermal CVD method to plasma of the above-mentioned gas species were attempted. In each case, it was confirmed that the adhesion was improved and the nucleation density was increased as in the above examples.
A barrier metal film other than the CVD-TaN thin film, for example, a film of Ta, W, WN, Ti or TiN formed using a thermal chemical vapor deposition method or a plasma chemical vapor deposition method, or a composite film obtained by laminating these films. It goes without saying that the same result can be obtained by using the formed substrate.

 本発明の銅薄膜の形成方法は、LSI等のIC製造の際のCVD法による配線埋め込み工程、および銅電解メッキにおけるシード層の形成に適用される。 The method of forming a copper thin film of the present invention is applied to a wiring embedding step by a CVD method in the manufacture of an IC such as an LSI, and a seed layer in copper electrolytic plating.

本発明を実施するための真空成膜装置の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a vacuum film forming apparatus for implementing the present invention. (A)〜(C)は本発明によるCVD−Cu薄膜の成長プロセスを説明するための模式的断面図である。(A)-(C) are typical sectional views for explaining a growth process of a CVD-Cu thin film according to the present invention. 従来技術によるCVD−Cu薄膜の成長の様子を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing a state of growth of a CVD-Cu thin film according to a conventional technique. (A)〜(C)は従来技術によるCVD−Cu薄膜の成長プロセスを説明するための模式的断面図である。(A)-(C) are typical sectional views for explaining a growth process of a conventional CVD-Cu thin film. (A)〜(C)は初期核密度と膜粗さとの相関をモデル化した説明図である。(A)-(C) are explanatory diagrams modeling the correlation between the initial nuclear density and the film roughness.

符号の説明Explanation of reference numerals

 1・・・ カセット室、 2・・・ 反応室、 3・・・ 反応室、 4・・・ 搬送室、 5,6,7・・・ 仕切バルブ、 11・・・ 配線溝、 12・・・ 絶縁膜、 13・・・ バリアメタル膜、 14・・・ CVD−TiN薄膜、 15,16,18・・・ CVD−Cu薄膜、 17・・・ スパッタ−Cu膜、
 a・・・ 核球の半径、 d・・・ 核間平均距離、 S・・・ 膜粗さ、 θ・・・ 接触角。
DESCRIPTION OF SYMBOLS 1 ... Cassette room, 2 ... Reaction room, 3 ... Reaction room, 4 ... Transport room, 5, 6, 7 ... Divider valve, 11 ... Wiring groove, 12 ... Insulating film, 13 ... barrier metal film, 14 ... CVD-TiN thin film, 15, 16, 18 ... CVD-Cu thin film, 17 ... sputter-Cu film,
a: radius of nucleus sphere, d: average distance between nuclei, S: film roughness, θ: contact angle.

Claims (3)

化学蒸着法によりバリアメタル膜が形成された基板上に銅薄膜を化学蒸着法で形成する方法において、バリアメタル膜上に、有機チタン材料または有機タンタル材料を用いて化学蒸着法により窒化チタン薄膜または窒化タンタル薄膜を形成した後、その上に引き続き化学蒸着法により銅薄膜を形成することを特徴とする銅薄膜の形成方法。 In a method of forming a copper thin film by a chemical vapor deposition method on a substrate on which a barrier metal film is formed by a chemical vapor deposition method, a titanium nitride thin film or a titanium nitride thin film is formed on the barrier metal film by a chemical vapor deposition method using an organic titanium material or an organic tantalum material. A method for forming a copper thin film, comprising: forming a tantalum nitride thin film, and subsequently forming a copper thin film thereon by a chemical vapor deposition method. 前記有機チタン材料として、Ti[N-(CH3)2]4、Ti[N-(C25)2]4、およびTi[N-(CH3)(i-C37)]4から選ばれる1種または2種以上が用いられ、前記有機タンタル材料として、Ta[N-(CH3)2]5 およびTa[[N-(t-C49)2]2[N-(C25)2]3]の1種または2種が用いられることを特徴とする請求項1記載の銅薄膜の形成方法。 As the organic titanium material, Ti [N- (CH 3) 2] 4, Ti [N- (C 2 H 5) 2] 4, and Ti [N- (CH 3) ( i-C 3 H 7)] one or more is used selected from 4, as the organic tantalum material, Ta [N- (CH 3) 2] 5 and Ta [[N- (t-C 4 H 9) 2] 2 [N - (C 2 H 5) 2 ] 3] 1 kind or two kinds method of forming a copper thin film according to claim 1, wherein the used of. 前記窒化チタン薄膜または窒化タンタル薄膜が厚さ50nm以下の極薄膜であることを特徴とする請求項1または2記載の銅薄膜の形成方法。
3. The method according to claim 1, wherein the titanium nitride thin film or the tantalum nitride thin film is an ultrathin film having a thickness of 50 nm or less.
JP2003306183A 2003-08-29 2003-08-29 Method for forming copper thin film by chemical vapor deposition method Pending JP2004040128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306183A JP2004040128A (en) 2003-08-29 2003-08-29 Method for forming copper thin film by chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306183A JP2004040128A (en) 2003-08-29 2003-08-29 Method for forming copper thin film by chemical vapor deposition method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP37060398A Division JP3490317B2 (en) 1998-12-25 1998-12-25 Copper thin film formation by chemical vapor deposition

Publications (1)

Publication Number Publication Date
JP2004040128A true JP2004040128A (en) 2004-02-05

Family

ID=31712651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306183A Pending JP2004040128A (en) 2003-08-29 2003-08-29 Method for forming copper thin film by chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JP2004040128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003760A1 (en) * 2004-06-30 2006-01-12 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing same
KR100796929B1 (en) * 2006-12-28 2008-01-22 주식회사 포스코 Device for removing adhered slag in flange of furnace
EP2221864A2 (en) 2005-12-02 2010-08-25 Ulvac, Inc. Method for forming Cu film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003760A1 (en) * 2004-06-30 2006-01-12 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing same
CN100447979C (en) * 2004-06-30 2008-12-31 松下电器产业株式会社 Semiconductor device and method for manufacturing same
US7663239B2 (en) 2004-06-30 2010-02-16 Panasonic Corporation Semiconductor device and method for fabricating the same
US7893535B2 (en) 2004-06-30 2011-02-22 Panasonic Corporation Semiconductor device and method for fabricating the same
EP2221864A2 (en) 2005-12-02 2010-08-25 Ulvac, Inc. Method for forming Cu film
KR100796929B1 (en) * 2006-12-28 2008-01-22 주식회사 포스코 Device for removing adhered slag in flange of furnace

Similar Documents

Publication Publication Date Title
TWI333234B (en) Integration of ald/cvd barriers with porous low k materials
US9048294B2 (en) Methods for depositing manganese and manganese nitrides
US5972179A (en) Silicon IC contacts using composite TiN barrier layer
US7799674B2 (en) Ruthenium alloy film for copper interconnects
TWI645511B (en) Doped tantalum nitride for copper barrier applications
US9076661B2 (en) Methods for manganese nitride integration
JP2005513813A (en) Method for forming copper wiring for semiconductor integrated circuit on substrate
JP2000133715A (en) Tungsten film manufacturing method of semiconductor element
JP3381774B2 (en) Method of forming CVD-Ti film
JP5526189B2 (en) Method for forming Cu film
TW201920735A (en) Seed layers for copper interconnects
US20050003663A1 (en) Integrated circuit having barrier metal surface treatment prior to Cu deposition
US7846839B2 (en) Film forming method, semiconductor device manufacturing method, semiconductor device, program and recording medium
JP3490317B2 (en) Copper thin film formation by chemical vapor deposition
JPH0922907A (en) Forming method for buried conductive layer
JP2004040128A (en) Method for forming copper thin film by chemical vapor deposition method
JPH09283463A (en) Barrier metal layer and its formation
JPH1032248A (en) Formation of tungsten film
TWI283006B (en) Method for forming tungsten nitride film
JP2002329682A (en) Cu THIN FILM MANUFACTURING METHOD
JPH09260306A (en) Formation of thin film
JPH10256252A (en) Method of growing copper film
JP2007258390A (en) Semiconductor device and manufacturing method therefor
JPH06283606A (en) Semiconductor device and its manufacture
JPH05226282A (en) Method for tungsten film formation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A521 Written amendment

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327