JP2004040066A - Method for producing gallium nitride based compound semiconductor - Google Patents

Method for producing gallium nitride based compound semiconductor Download PDF

Info

Publication number
JP2004040066A
JP2004040066A JP2002230617A JP2002230617A JP2004040066A JP 2004040066 A JP2004040066 A JP 2004040066A JP 2002230617 A JP2002230617 A JP 2002230617A JP 2002230617 A JP2002230617 A JP 2002230617A JP 2004040066 A JP2004040066 A JP 2004040066A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor
gallium indium
gallium nitride
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002230617A
Other languages
Japanese (ja)
Inventor
Toshiaki Sakaida
坂井田 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002230617A priority Critical patent/JP2004040066A/en
Publication of JP2004040066A publication Critical patent/JP2004040066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of high production efficiency that can efficiently produce a p-type aluminium nitride gallium indium compound semiconductor of low resistance in as-grown state without necessity for thermal annealing and the like from an aluminium nitride gallium indium compound semiconductor which is doped with a p-type impurity. <P>SOLUTION: In MOCVD, the aluminium nitride gallium indium compound semiconductor doped with the p-type impurity is grown from organic metals of aluminum, gallium, and indium. After the aluminium nitride gallium indium compound semiconductor highly doped with the p-type impurity having high resistance is grown on the aluminium nitride gallium indium compound semiconductor, cooling is performed to room temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、紫色、青色、または緑色発光ダイオード、紫色または青色レーザーダイオード等に使用される窒化ガリウム系化合物半導体の製造方法に係わり、特に気相成長後、アニーリング処理等の必要がなく、p型窒化アルミニウムガリウムインジウム化合物半導体を安定的に得る製造効率に優れた方法に関する。
【0002】
【従来の技術】
p型の窒化ガリウム系化合物半導体の作成方法として、アクセプター不純物であるMg等をドープして窒化ガリウム系化合物半導体を有機金属気相成長法(MOCVD法)で成長させたのち、実質的に水素を含まない雰囲気中、400℃以上の温度でアニーリングを行い、半導体から水素を放出させることにより低抵抗化する方法が知られている(特開平5−183189公報参照)。しかし、熱的アニーリング法では、熱処理の際に半導体の表面から酸素や炭素等の不純物が膜中に侵入しやすく、特に表面付近に不純物が多く存在することになる。又p型不純物と水素の結合を切断して水素を半導体から放出させることになるが、半導体表面では水素拡散に対する障壁が高いために、水素は完全には放出されず半導体表面付近に水素が偏在することは避けにくく、このために良好なオーミック特性を有する電極が形成しにくい。又半導体の熱的アニーリング処理には気相成長終了後、雰囲気ガスを置換して再度高温に加熱して、保持する必要があり、製造効率が劣る問題がある。
上記のような結晶成長後の付加的な工程により、低抵抗なp型窒化アルミニウムガリウムインジウム化合物半導体とするのではなく、MOCVD後に低抵抗なp型窒化アルミニウムガリウムインジウム化合物半導体を得る方法も知られている。例えばMg等のp型不純物をドープした窒化ガリウム系化合物半導体の気相成長後の冷却時に、大気圧下、400℃以上の温度で水素化ガスを含む雰囲気から水素または窒素の雰囲気に切り替え、水素パッシベーションを起こさずに熱処理なしで低抵抗なp型窒化ガリウム系化合物半導体を得る方法(特開平8−115880公報参照)、950℃から略700℃まで降下する間において、p型窒化物半導体がその低抵抗性を維持できる雰囲気と冷却時間の組合せにより冷却する方法(特開2002−33279公報参照)、キャリアガスとして実質的に窒素ガスを用い、インジウム源のガスを原料源のガスと同時に成長装置に流しp型III族窒化物半導体を得る製造方法(特開2001−94149公報参照)等が知られている。しかし、装置内に残存するキャリアガスの水素、或いは水素化ガスに基づく水素等が冷却時に窒化ガリウム系化合物半導体の膜内に拡散し、高い正孔キャリア濃度が得られにくく、又再現性も良くない等の製造効率上の問題がある。
これを回避するために、p型不純物をドープした窒化ガリウム系化合物半導体を成長させたのち、該半導体上にn型窒化ガリウム系化合物半導体を成長させた状態で冷却し、水素原子等がp型半導体層に侵入することを防止する方法が知られている(特開平8−8460公報参照)。しかし成長後にn型窒化ガリウム系化合物半導体をリアクティブイオンエッチング(RIE)方式等で除去する必要があり、工程が複雑になり、製造効率が良くないという難点がある。
工程の複雑さを回避するために、n型窒化ガリウム系化合物半導体の代わりに2〜5nmの極く薄いZn金属膜を用いる方法が知られている(特開2001−156003公報参照)。しかし、Zn金属が酸化されやすく、素子の寿命が短いという問題がある。
【0003】
【発明が解決しようとする課題】
本発明は熱的アニーリング処理なしで、低抵抗のp型窒化アルミニウムガリウムインジウム化合物半導体を作成する製造効率に優れた方法を提供することを目的とする。
【0004】
【問題を解決するための手段】
上記の問題を解決するために、本発明は、MOCVD法で、950℃から1100℃の温度範囲にて、水素を主成分とする雰囲気中、p型不純物をドープしながら、p型の第1の窒化アルミニウムガリウムインジウム半導体(AlGaIn1−x−yN、ただし、0≦x<1,0<y≦1、0≦1−x−y<1)を成長させ、更に高濃度のMg等のアクセプター不純物がドープされた高抵抗の第2の窒化アルミニウムガリウムインジウム半導体(AlGaIn1−a−bN、ただし、0≦a<1、0<b≦1,0≦1−a−b<1)を薄く成長させた後、冷却させる方法である。ここで、高抵抗の窒化アルミニウムガリウムインジウム半導体とは、750℃、窒素ガス雰囲気中で30分間アニーリング処理後、ホール測定すると、抵抗率で10Ω・cm以上の高抵抗を示し、n,p型の判定ができない状態の半導体のことである。
第1の窒化アルミニウムガリウムインジウム半導体が形成される温度では水素は半導体内の窒素と結合していず、この水素が外部に放出される際、第2の半導体により表面での障壁が低くなり、放出されやすくなっていると考えられる。又半導体外の水素分子、水素化物に対しては、第1の半導体と第2の半導体の接合面、或いは第2の半導体がなんらかの障壁として機能して、水素が第1のp型窒化アルミニウムガリウムインジウム半導体に拡散侵入することを防止しているものと考えている。
【0005】
【発明の実施の形態】
本発明は、MOCVD法により、高抵抗の窒化アルミニウムガリウムインジウム半導体を成長させることで、アニーリング処理の必要ない低抵抗のp型窒化アルミニウムガリウムインジウム半導体を形成できることである。すなわち、as−grownの状態でp型窒化アルミニウムガリウムインジウム半導体を形成することである。
【0006】
サファイア基板上への成膜はMOCVD法で行う、なわち第1の窒化アルミニウムガリウムインジウム半導体を成長する温度範囲は900℃から1150℃である。2次元的成長がしやすい950℃以上が好ましく、又1150℃以上では、窒化アルミニウムガリウムインジウム半導体の分解が激しくなり、又活性層も劣化するので1100℃以下とする必要がある。好ましくは、950℃から1050℃である。第1の窒化アルミニウムガリウムインジウム半導体は水素等のキャリヤガスを主成分とした雰囲気中でAl、GaとInの有機金属原料からp型不純物をドープしながら0.5μ/Hrから2μ/Hrの成長速度で成長させる。上記の温度範囲ではInは結晶内には殆ど取り込まれず、X線回折結果は窒化アルミニウムガリウムのパターンを示す。SIMS分析では結晶膜のIn/Ga含有比は0.1%程度前後以下であり、混晶とは異なり、InがGaと置き換わるのではなく、窒化ガリウム中の転位の部分に取り込まれている状態と考えられる。
【0007】
第1のp型不純物をドープした窒化アルミニウムガリウムインジウム半導体を成長後、アクセプター不純物をドープし高抵抗の第2の窒化アルミニウムガリウムインジウム半導体を成長させる。発光ダイオード等を作成する場合は、第2の窒化アルミニウムガリウムインジウム半導体は高抵抗のため膜厚は50nm以下で1nmから20nmの範囲が好ましい。この膜は膜厚方向には電流が流れ、膜厚方向には大きな抵抗を示さない。機構は不明だが、従来とは違う機構、例えば、欠陥を介在するホッピング或いはトンネル的機構により、接触電位が低いと考えられる。従って、LEDのデバイス作成時に第2の窒化アルミニウムガリウムインジウム半導体をRIE方式等で除去する必要がなく、製造効率が高い。
【0008】
原料はトリメチルガリウム(以下TMGと記す。)、トリエチルガリウム等のトリアルキルガリウム、トリメチルアルミニウム(以下TMAと記す。)、トリエチルアルミニウム等のトリアルキルアルミニウム,トリメチルインジウム(以下TMIと記す。)等を使用する。p型不純物、アクセプター不純物はMg、Zn、Be等にアルキル基等の有機基を有する化合物、キレート化合物を用いるが、活性化効率の点ではビスシクロペンタジエニルマグネシウム(以下CpMgと記す。)、ビスエチルシクロペンタジエニルマグネシウム等の有機Mg化合物が好ましい。
【0009】
この新しいp型化の手法でLED用の半導体膜を堆積する場合、バッファ層は窒化ガリウム半導体に限らず、窒化アルミニウム半導体や窒化アルミニウムガリウム半導体を、アンドープ窒化ガリウム半導体は窒化アルミニウムガリウム半導体或いは漏洩電流を少なくするためにMgを微量ドープした窒化ガリウム半導体を、Siドープ窒化ガリウム半導体はSiドープ窒化アルミニウムガリウム半導体を用いてもよい。
【0010】
【実施例1】
c面から面方位が0.2度の傾いた、厚さ300μ程度の平滑なサファイア基板を110℃に加熱した混酸(硫酸:リン酸=3:1)中で30分処理し、純水でよく水洗、乾燥する基板処理を行った。
【0011】
サファイア基板を横型のMOCVD装置内部の基板ホルダに設置し、水素雰囲気中で、1100℃の高温に、10分間保持し基板の高温クリーニングを行なった。
【0012】
次に温度を550℃まで下げ、400トールの圧力下で主キャリアガスとして水素を6リットル/分、アンモニアを3.5リットル/分で流しながら、TMG用のキャリアガスを10cc/分で流して5分保持し、約20nmの厚みの窒化ガリウム低温バッファ半導体を作成した。
【0013】
ついでTMGのみ止めて、温度を1050℃まで上昇させた後、主キャリアガスとして水素8リットル/分、アンモニア3.5リットル/分を流しながら、TMG用キャリアガスを40cc/分で流し60分間保持し、1.5ミクロンの厚みのアンドープ窒化ガリウム半導体を得た。
【0014】
次に温度を1020℃まで下げ、主キャリアガスとして水素ガスを8リットル/分、アンモニアを3.5リットル/分、TMG用のキャリアガスを40cc/分で流しながら、In源ガスとしてTMIをGa源ガス1に対して10%、Mg源ガスとしてCpMgをGa源ガス1に対して0.2%となるように流し、10分保持し第1の窒化ガリウムインジウムを作成した。その後、TMG用のキャリアガスを10cc/分、CpMgをGa源ガス1に対して0.6%となるように変更し、20分間保持し第2の窒化ガリウムインジウム半導体を作成した。TMG,TMI,CpMgを停止し、主キャリアガスを水素ガスから窒素ガスに切り替え8.9リットル/分で流し、アンモニアを2.6リットル/分で流しながら、冷却速度11℃/分程度で850℃にした。850℃でアンモニアを停止し、700℃まで冷却速度10℃/分程度で冷却した。その後窒素ガスだけをそのまま流しながら常温まで自然冷却した。
【0015】
冷却後、MOCVD装置から、半導体膜のついた基板を取り出し、ホール測定を行うとキャリア濃度の測定は不可能であり、抵抗率は約10Ω・cm以上であった。また、窒素ガス雰囲気中で、750℃、30分間アニーリングし、ホール測定を行なったところ抵抗率は約10Ω・cm以上であった。
又第2の窒化ガリウムインジウム半導体作成時にCpMgをGa源ガス1に対して0.2,0.4,0.8,1%とした場合は、0.4,0.8%の半導体は成長、アニーリング後もホール測定を行うとキャリア濃度の測定は不可能であり、抵抗率は約10Ω・cm以上であり、窒素ガス雰囲気中で、750℃、30分間アニーリングし、ホール測定を行なっても抵抗率は約10Ω・cm以上であった。0.2%のは成長後は抵抗率は約10Ω・cm以上の高抵抗、アニーリング後は1Ω・cm程度の抵抗率を示した。一方1%のはn型を示した。
なお第2の半導体を形成せず、第1の半導体のみを作成した試料の抵抗率は約10Ω・cm以上であり、窒素ガス雰囲気中で、750℃、30分間アニーリングし、ホール測定を行なうと、p型を示し、キャリア濃度は約9×1017/cm、抵抗率は約1Ω・cmであった。
【0016】
【実施例2】
基板処理、基板クリーニング、低温バッファ半導体、アンドープ窒化ガリウム半導体形成、を実施例1に於いて述べたものと同一の方法で行った。温度を1020℃まで下げ、該アンドープ窒化ガリウム半導体上に以下の半導体を形成した。主キャリアガスとして水素ガスを8リットル/分、アンモニアを3.5リットル/分、TMG用のキャリアガスを40cc/分、水素で希釈された100ppmモノシランを2.5cc/分で流しながら60分間保持し、1.5ミクロンの厚みのSiドープ窒化ガリウム半導体を得た。その後、760℃、窒素雰囲気中で厚み8nmのSiドープGa0.97In0.03N障壁層と、厚み3nmのアンドープGa0.7In0.3N井戸層の5対の量子井戸層からなるMQWを障壁層、井戸層と順次積み最後に障壁層を作成した。最初と最後の障壁層はキャリアーの閉じこめ効果を高めるために窒化ガリウムにした。
ついでMg拡散防止のために厚さ10nmのアンドープ窒化ガリウム半導体を、Siドープをしないので活性層の成膜温度より若干低い750℃で積層した。ついで、主キャリアガスとして水素ガスを8リットル/分、アンモニアを3.5リットル/分、TMG用のキャリアガスを40cc/分で流しながら、h源ガスとしてTMIをGa源ガス1に対して10%、Mg源ガスとしてCpMgをGa源ガス1に対して0.2%となるように流し、5分保持し第1の窒化ガリウムインジウム半導体を125nm厚さに作成した。その後、TMG用のキャリアガスを2cc/分、CpMgをGa源ガス1に対して0.6%となるように変更し、4分間保持し第2の窒化ガリウムインジウム半導体を5nm厚さに作成した。TMG,TMI,CpMgを停止し、主キャリアガスを水素ガスから窒素ガスに切り替え8.9リットル/分で流し、アンモニアを2.6リットル/分で流しながら、冷却速度11℃/分程度で850℃にした。850℃でアンモニアを停止し、700℃まで冷却速度10℃/分程度で冷却した。その後窒素ガスだけをそのまま流しながら常温まで自然冷却した。
冷却後、第2のMgドープ高抵抗窒化ガリウムインジウム半導体表面に所定の形状のマスクを形成し、Ni、Auを順次蒸着し空気中で550℃、10分間アニーリングし透光性のp電極を形成した。次に高抵抗の第2の窒化ガリウムインジウム半導体の一部を表面からSiドープ窒化ガリウム半導体に達する深さまでRIE法で除去した。ついで、露出させたSiドープ窒化ガリウム半導体表面上に、Ti、Auを順次薄膜形成し、n電極を形成した。窒化ガリウム系半導体を堆積した側と反対側のサファイア基板面を研磨により、90μ程度の厚さにした。スクライブ後、各電極に金ワイヤーを接続し、常法に従って樹脂でモールドしてLEDとした。順方向電圧20mAにおいて発光させたところ、Vf3.2V、波長450nmの青色発光を示し、発光出力は6mWと非常に良好な特性を示した。
【0017】
【実施例3】
第2の窒化ガリウムインジウム半導体の作成時に、Mg源ガスとしてCpMgをGa源ガス1に対して0.4%となるように流す以外は、実施例2と同一の方法でLEDを作製した。
LEDを順方向電圧20mAにおいて発光させたところ、Vf3.3V、波長452nmの青色発光を示し、発光出力は5.5mWと非常に良好な特性を示した。
【0018】
【実施例4】
第1の半導体の成膜条件に、TMAを10cc/分で流すことを加え、第2の半導体の成膜条件にTMAを2cc/分流すことを加える以外は、実施例2と同一の方法でLEDを作製した。
LEDを順方向電圧20mAにおいて発光させたところ、Vf3.5V、波長449nmの青色発光を示し、発光出力は4.5mWと非常に良好な特性を示した。
【0019】
【実施例5】
TMIを流さず、第1の窒化ガリウム半導体と第2の窒化ガリウム半導体を作成する以外は、実施例2と同一の方法でLEDを作製した。
LEDを順方向電圧20mAにおいて発光させたところ、Vf3.4V、波長453nmの青色発光を示し、発光出力は5mWと非常に良好な特性を示した。
【0020】
【実施例6】
第2の窒化ガリウム半導体を作成する際に、Mg源ガスとしてCpMgをGa源ガス1に対して0.8%となるように流す以外は実施例2と同一の方法でLEDを作製した。
LEDを順方向電圧20mAにおいて発光させたところ、Vf3.6V、波長455nmの青色発光を示し、発光出力は4mWと非常に良好な特性を示した。
【0021】
【比較例1】
第2の窒化ガリウムインジウム半導体の作成時に、Mg源ガスとしてCpMgをGa源ガス1に対して0.2%となるように流す以外は、実施例2と同一の方法でLEDを作製した。
作成したLEDは抵抗が高く光らなかった。
【0022】
【比較例2】
第2の窒化ガリウムインジウム半導体の作成時に、Mg源ガスとしてCpMgをGa源ガス1に対して1%となるように流す以外は、実施例2と同一の方法でLEDを作製した。
作成したLEDは青色発光をしたが、抵抗が高く、発光出力は0.5mW程度と低くかった。
【0023】
【発明の効果】
本発明の成長方法によると、半導体成膜後のアニーリング処理が必要なく、as−grownで、高い正孔濃度を有する低抵抗のp型窒化アルミニウムガリウムインジウム半導体を形成でき、製造効率に優れる方法を得ることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a gallium nitride-based compound semiconductor used for a violet, blue, or green light-emitting diode, a violet or blue laser diode, and the like. The present invention relates to a method for stably obtaining an aluminum gallium indium nitride compound semiconductor with excellent production efficiency.
[0002]
[Prior art]
As a method for forming a p-type gallium nitride-based compound semiconductor, a gallium nitride-based compound semiconductor is doped with Mg or the like as an acceptor impurity and grown by a metal organic chemical vapor deposition (MOCVD) method. There is known a method in which annealing is performed at a temperature of 400 ° C. or more in an atmosphere containing no hydrogen to release hydrogen from a semiconductor to lower the resistance (see Japanese Patent Application Laid-Open No. 5-183189). However, in the thermal annealing method, impurities such as oxygen and carbon easily enter the film from the surface of the semiconductor during the heat treatment, and a large amount of impurities is present particularly near the surface. In addition, hydrogen is released from the semiconductor by breaking the bond between the p-type impurity and hydrogen. However, since the barrier against hydrogen diffusion is high on the semiconductor surface, hydrogen is not completely released and hydrogen is unevenly distributed near the semiconductor surface. Therefore, it is difficult to form an electrode having good ohmic characteristics. Further, in the thermal annealing treatment of the semiconductor, after the vapor phase growth is completed, it is necessary to replace the atmospheric gas and heat the semiconductor to a high temperature again to maintain the temperature, which causes a problem that the manufacturing efficiency is deteriorated.
There is also known a method of obtaining a low-resistance p-type aluminum gallium indium nitride compound semiconductor after MOCVD, instead of using a low-resistance p-type aluminum gallium indium nitride compound semiconductor by an additional step after the crystal growth as described above. ing. For example, when cooling after vapor phase growth of a gallium nitride-based compound semiconductor doped with a p-type impurity such as Mg, the atmosphere is switched from an atmosphere containing a hydride gas to an atmosphere of hydrogen or nitrogen at a temperature of 400 ° C. or more under atmospheric pressure, A method for obtaining a low-resistance p-type gallium nitride-based compound semiconductor without heat treatment without causing passivation (see Japanese Patent Application Laid-Open No. HEI 8-115880). A method of cooling with a combination of an atmosphere capable of maintaining low resistance and a cooling time (see JP-A-2002-33279), a growth apparatus using substantially a nitrogen gas as a carrier gas and simultaneously using an indium source gas and a source source gas. And a method for producing a p-type group III nitride semiconductor (see JP-A-2001-94149). However, the hydrogen of the carrier gas remaining in the apparatus or the hydrogen based on the hydride gas diffuses into the gallium nitride-based compound semiconductor film during cooling, and it is difficult to obtain a high hole carrier concentration, and the reproducibility is also good. There is a problem in manufacturing efficiency such as no.
In order to avoid this, a gallium nitride-based compound semiconductor doped with a p-type impurity is grown, and then cooled while the n-type gallium nitride-based compound semiconductor is grown on the semiconductor. A method for preventing intrusion into a semiconductor layer is known (see JP-A-8-8460). However, it is necessary to remove the n-type gallium nitride-based compound semiconductor by a reactive ion etching (RIE) method or the like after the growth, and the process becomes complicated, and the manufacturing efficiency is not good.
In order to avoid the complexity of the process, a method of using an extremely thin Zn metal film of 2 to 5 nm in place of the n-type gallium nitride-based compound semiconductor has been known (see JP-A-2001-156003). However, there is a problem that Zn metal is easily oxidized and the life of the element is short.
[0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a low-resistance p-type aluminum gallium indium nitride compound semiconductor with excellent manufacturing efficiency without thermal annealing.
[0004]
[Means to solve the problem]
In order to solve the above-described problem, the present invention provides a p-type first impurity doped by a MOCVD method in a temperature range of 950 ° C. to 1100 ° C. in an atmosphere containing hydrogen as a main component. the aluminum gallium nitride indium semiconductor (Al x Ga y in 1- x-y N, however, 0 ≦ x <1,0 <y ≦ 1,0 ≦ 1-x-y <1) is grown, higher concentrations the high resistance of the second aluminum gallium nitride indium semiconductor (Al a acceptor impurity is doped such as Mg Ga b in 1-a-b N, however, 0 ≦ a <1,0 <b ≦ 1,0 ≦ 1-ab <1) is a method of growing thinly and then cooling it. Here, a high-resistance aluminum gallium indium nitride semiconductor means a high resistance of 10 6 Ω · cm or more in resistivity after annealing at 750 ° C. in a nitrogen gas atmosphere for 30 minutes, and then measuring holes. A semiconductor whose type cannot be determined.
At the temperature at which the first aluminum gallium indium nitride semiconductor is formed, hydrogen is not bonded to nitrogen in the semiconductor, and when this hydrogen is released to the outside, the barrier at the surface is lowered by the second semiconductor, and the hydrogen is released. It is thought that it is easy to be done. Also, for hydrogen molecules and hydrides outside the semiconductor, the junction surface between the first semiconductor and the second semiconductor, or the second semiconductor functions as a barrier, and hydrogen is converted into the first p-type aluminum gallium nitride. It is thought that it prevents diffusion into the indium semiconductor.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
An object of the present invention is to grow a high-resistance aluminum gallium indium nitride semiconductor by MOCVD to form a low-resistance p-type aluminum gallium indium nitride semiconductor that does not require annealing. That is, it is to form a p-type aluminum gallium indium nitride semiconductor in an as-grown state.
[0006]
The film is formed on the sapphire substrate by the MOCVD method, that is, the temperature range for growing the first aluminum gallium indium nitride semiconductor is 900 ° C. to 1150 ° C. The temperature is preferably 950 ° C. or higher, which facilitates two-dimensional growth. If the temperature is 1150 ° C. or higher, the decomposition of the aluminum gallium indium semiconductor becomes severe and the active layer is deteriorated. Preferably, it is 950 ° C to 1050 ° C. The first aluminum gallium indium nitride semiconductor is grown from 0.5 μ / Hr to 2 μ / Hr while doping p-type impurities from an organic metal material of Al, Ga and In in an atmosphere mainly containing a carrier gas such as hydrogen. Grow at a rate. In the above temperature range, In is hardly taken into the crystal, and the X-ray diffraction result shows a pattern of aluminum gallium nitride. According to SIMS analysis, the In / Ga content ratio of the crystal film is about 0.1% or less, and unlike the mixed crystal, In is not replaced by Ga but is incorporated into dislocations in gallium nitride. it is conceivable that.
[0007]
After growing an aluminum gallium indium nitride semiconductor doped with a first p-type impurity, an acceptor impurity is doped to grow a second aluminum gallium indium nitride semiconductor having a high resistance. In the case of manufacturing a light emitting diode or the like, the second aluminum gallium indium nitride semiconductor has a high resistance, and thus preferably has a thickness of 50 nm or less and a range of 1 nm to 20 nm. In this film, current flows in the film thickness direction, and does not show a large resistance in the film thickness direction. The mechanism is unknown, but it is considered that the contact potential is low due to a mechanism different from the conventional one, for example, a hopping or tunneling mechanism involving a defect. Therefore, it is not necessary to remove the second aluminum gallium indium nitride semiconductor by the RIE method or the like at the time of manufacturing an LED device, and the manufacturing efficiency is high.
[0008]
Raw materials include trimethylgallium (hereinafter referred to as TMG), trialkylgallium such as triethylgallium, trimethylaluminum (hereinafter referred to as TMA), trialkylaluminum such as triethylaluminum, and trimethylindium (hereinafter referred to as TMI). I do. As the p-type impurity and the acceptor impurity, a compound having an organic group such as an alkyl group in Mg, Zn, Be or the like, or a chelate compound is used. In terms of activation efficiency, biscyclopentadienyl magnesium (hereinafter referred to as Cp 2 Mg) is used. ) And organic Mg compounds such as bisethylcyclopentadienyl magnesium.
[0009]
When depositing a semiconductor film for an LED using this new p-type method, the buffer layer is not limited to a gallium nitride semiconductor, but may be an aluminum nitride semiconductor or an aluminum gallium nitride semiconductor, and the undoped gallium nitride semiconductor may be an aluminum gallium nitride semiconductor or a leakage current. In order to reduce the amount, a gallium nitride semiconductor doped with a small amount of Mg may be used, and a Si-doped gallium nitride semiconductor may be used as the Si-doped gallium nitride semiconductor.
[0010]
Embodiment 1
A smooth sapphire substrate having a thickness of about 300 μ and a plane orientation inclined by 0.2 degrees from the c-plane is treated in a mixed acid (sulfuric acid: phosphoric acid = 3: 1) heated to 110 ° C. for 30 minutes, and purified water is used. Substrate processing of washing and drying well was performed.
[0011]
The sapphire substrate was placed on a substrate holder inside a horizontal MOCVD apparatus, and held at a high temperature of 1100 ° C. for 10 minutes in a hydrogen atmosphere to perform high-temperature cleaning of the substrate.
[0012]
Next, the temperature was lowered to 550 ° C., and at a pressure of 400 Torr, a carrier gas for TMG was flowed at 10 cc / min while flowing hydrogen as a main carrier gas at 6 L / min and ammonia at 3.5 L / min. After holding for 5 minutes, a gallium nitride low temperature buffer semiconductor having a thickness of about 20 nm was formed.
[0013]
Then, after stopping only TMG and raising the temperature to 1050 ° C., a carrier gas for TMG was flowed at 40 cc / min and maintained for 60 minutes while flowing 8 L / min of hydrogen and 3.5 L / min of ammonia as the main carrier gas. Thus, an undoped gallium nitride semiconductor having a thickness of 1.5 μm was obtained.
[0014]
Next, the temperature was lowered to 1020 ° C., and TMI was used as an In source gas while using TMI as a source gas while flowing hydrogen gas as a main carrier gas at 8 L / min, ammonia at 3.5 L / min, and a carrier gas for TMG at 40 cc / min. A first gallium indium nitride was prepared by flowing 10% of the source gas 1 and Cp 2 Mg as a Mg source gas at a rate of 0.2% of the Ga source gas, and holding for 10 minutes. Thereafter, the carrier gas for TMG was changed to 10 cc / min, and the Cp 2 Mg was changed to 0.6% with respect to the Ga source gas 1, and held for 20 minutes to prepare a second gallium indium nitride semiconductor. TMG, TMI, and Cp 2 Mg were stopped, the main carrier gas was switched from hydrogen gas to nitrogen gas, and the cooling gas flowed at 8.9 liters / min. To 850 ° C. The ammonia was stopped at 850 ° C., and cooled to 700 ° C. at a cooling rate of about 10 ° C./min. Thereafter, the mixture was naturally cooled to room temperature while flowing nitrogen gas alone.
[0015]
After cooling, the substrate with the semiconductor film was taken out of the MOCVD apparatus, and when the hole was measured, the carrier concentration could not be measured, and the resistivity was about 10 6 Ω · cm or more. Further, annealing was performed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere, and a hole measurement was performed. As a result, the resistivity was about 10 6 Ω · cm or more.
When Cp 2 Mg is set to 0.2, 0.4, 0.8, and 1% with respect to the Ga source gas 1 at the time of preparing the second gallium indium nitride semiconductor, a semiconductor of 0.4 and 0.8% is used. It is impossible to measure the carrier concentration if hole measurement is performed after growth and annealing, and the resistivity is about 10 6 Ω · cm or more. Annealing is performed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere to measure the hole. Was carried out, the resistivity was about 10 6 Ω · cm or more. After growth, the resistivity of 0.2% showed high resistivity of about 10 6 Ω · cm or more, and after annealing, the resistivity was about 1 Ω · cm. On the other hand, 1% showed n-type.
The resistivity of a sample in which only the first semiconductor was formed without forming the second semiconductor was about 10 6 Ω · cm or more, and annealing was performed at 750 ° C. for 30 minutes in a nitrogen gas atmosphere, and hole measurement was performed. When performed, it showed a p-type, a carrier concentration of about 9 × 10 17 / cm 3 and a resistivity of about 1 Ω · cm.
[0016]
Embodiment 2
Substrate processing, substrate cleaning, low-temperature buffer semiconductor formation, and undoped gallium nitride semiconductor formation were performed in the same manner as described in Example 1. The temperature was lowered to 1020 ° C., and the following semiconductor was formed on the undoped gallium nitride semiconductor. Maintain 60 minutes while flowing hydrogen gas at 8 liters / minute, ammonia at 3.5 liters / minute, carrier gas for TMG at 40 cc / minute, and 100 ppm monosilane diluted with hydrogen at 2.5 cc / minute as the main carrier gas. Thus, a Si-doped gallium nitride semiconductor having a thickness of 1.5 μm was obtained. Then, at 760 ° C. in a nitrogen atmosphere, a five-pair quantum well layer including a Si-doped Ga 0.97 In 0.03 N barrier layer having a thickness of 8 nm and an undoped Ga 0.7 In 0.3 N well layer having a thickness of 3 nm is used. An MQW was sequentially stacked with a barrier layer and a well layer, and finally a barrier layer was formed. The first and last barrier layers were gallium nitride to enhance the carrier confinement effect.
Then, an undoped gallium nitride semiconductor having a thickness of 10 nm was laminated at 750 ° C. slightly lower than the film formation temperature of the active layer because no Si doping was performed to prevent Mg diffusion. Then, while flowing 8 liters / minute of hydrogen gas, 3.5 liters / minute of ammonia, and 40 cc / minute of a carrier gas for TMG as a main carrier gas, TMI was added as an h source gas to the Ga source gas 10 at a rate of 10 liters. %, And Cp 2 Mg as a Mg source gas was flowed so as to be 0.2% with respect to the Ga source gas 1, and held for 5 minutes to form a first gallium indium nitride semiconductor having a thickness of 125 nm. After that, the carrier gas for TMG was changed to 2 cc / min, and Cp 2 Mg was changed to 0.6% with respect to the Ga source gas 1, and held for 4 minutes, and the thickness of the second gallium indium nitride semiconductor was changed to 5 nm. Created. TMG, TMI, and Cp 2 Mg were stopped, the main carrier gas was switched from hydrogen gas to nitrogen gas, and the cooling gas flowed at 8.9 liters / min. To 850 ° C. The ammonia was stopped at 850 ° C., and cooled to 700 ° C. at a cooling rate of about 10 ° C./min. Thereafter, the mixture was naturally cooled to room temperature while flowing nitrogen gas alone.
After cooling, a mask having a predetermined shape is formed on the surface of the second Mg-doped high-resistance gallium indium nitride semiconductor, Ni and Au are sequentially deposited, and annealed in air at 550 ° C. for 10 minutes to form a translucent p-electrode. did. Next, part of the high-resistance second gallium indium nitride semiconductor was removed by RIE from the surface to a depth reaching the Si-doped gallium nitride semiconductor. Next, a thin film of Ti and Au was sequentially formed on the exposed surface of the Si-doped gallium nitride semiconductor to form an n-electrode. The surface of the sapphire substrate on the side opposite to the side on which the gallium nitride based semiconductor was deposited was polished to a thickness of about 90 μm. After scribing, a gold wire was connected to each electrode and molded with a resin according to a conventional method to obtain an LED. When the device was made to emit light at a forward voltage of 20 mA, it emitted blue light having a Vf of 3.2 V and a wavelength of 450 nm, and showed a very good light emission output of 6 mW.
[0017]
Embodiment 3
An LED was manufactured in the same manner as in Example 2, except that Cp 2 Mg was flowed as a Mg source gas at a concentration of 0.4% with respect to the Ga source gas 1 when the second gallium indium nitride semiconductor was formed. .
When the LED was made to emit light at a forward voltage of 20 mA, it emitted blue light with a Vf of 3.3 V and a wavelength of 452 nm, and showed a very good light emission output of 5.5 mW.
[0018]
Embodiment 4
The same method as in Example 2 was adopted except that TMA was flowed at 10 cc / min to the first semiconductor film formation conditions and TMA was flowed at 2 cc / min to the second semiconductor film formation conditions. An LED was fabricated.
When the LED was allowed to emit light at a forward voltage of 20 mA, it emitted blue light with a Vf of 3.5 V and a wavelength of 449 nm, and the light emission output was 4.5 mW, exhibiting excellent characteristics.
[0019]
Embodiment 5
An LED was manufactured in the same manner as in Example 2 except that a first gallium nitride semiconductor and a second gallium nitride semiconductor were formed without flowing TMI.
When the LED was made to emit light at a forward voltage of 20 mA, it emitted blue light with a Vf of 3.4 V and a wavelength of 453 nm, and showed a very good light emission output of 5 mW.
[0020]
Embodiment 6
An LED was manufactured in the same manner as in Example 2 except that when manufacturing the second gallium nitride semiconductor, Cp 2 Mg was flowed as the Mg source gas so as to be 0.8% with respect to the Ga source gas 1. .
When the LED was made to emit light at a forward voltage of 20 mA, it emitted blue light with a Vf of 3.6 V and a wavelength of 455 nm, and showed a very good light emission output of 4 mW.
[0021]
[Comparative Example 1]
An LED was manufactured in the same manner as in Example 2, except that Cp 2 Mg was flowed as a Mg source gas at a concentration of 0.2% with respect to the Ga source gas 1 when the second gallium indium nitride semiconductor was formed. .
The prepared LED had high resistance and did not emit light.
[0022]
[Comparative Example 2]
An LED was manufactured in the same manner as in Example 2, except that when the second gallium indium nitride semiconductor was formed, Cp 2 Mg was flowed as a Mg source gas at 1% with respect to the Ga source gas 1.
The produced LED emitted blue light, but had high resistance and low emission output of about 0.5 mW.
[0023]
【The invention's effect】
According to the growth method of the present invention, there is no need for annealing treatment after film formation of a semiconductor, an as-grown, low-resistance p-type aluminum gallium indium nitride semiconductor having a high hole concentration can be formed, and a method excellent in manufacturing efficiency can be achieved. Obtainable.

Claims (2)

有機金属気相成長方法を使用して窒化ガリウム系化合物半導体を製造する方法であって、アルミニウム、ガリウム及びインジウムの各金属を含む有機金属原料を使用し、先ずp型不純物をドープした第1の窒化アルミニウムガリウムインジウム化合物半導体を成長させ、引き続き該窒化アルミニウムガリウムインジウム化合物半導体上に、アクセプター不純物を高ドープした高抵抗の第2の窒化アルミニウムガリウムインジウム化合物半導体を成長させた後、常温まで冷却することを特徴とする窒化ガリウム系化合物半導体の製造方法。A method for producing a gallium nitride-based compound semiconductor using an organic metal vapor phase epitaxy method, comprising using an organometallic raw material containing each metal of aluminum, gallium and indium, and first doping a p-type impurity. Growing an aluminum gallium indium nitride compound semiconductor, and subsequently growing a high resistance second aluminum gallium indium nitride compound semiconductor doped with an acceptor impurity on the aluminum gallium indium compound semiconductor, and then cooling to room temperature. A method for producing a gallium nitride-based compound semiconductor, comprising: 前記第2の窒化アルミニウムガリウムインジウム化合物半導体が、抵抗率が10Ω・cm以上の高抵抗の化合物半導体であることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体の製造方法。2. The method according to claim 1, wherein the second aluminum gallium indium compound semiconductor is a high-resistance compound semiconductor having a resistivity of 10 6 Ω · cm or more. 3.
JP2002230617A 2002-07-05 2002-07-05 Method for producing gallium nitride based compound semiconductor Pending JP2004040066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230617A JP2004040066A (en) 2002-07-05 2002-07-05 Method for producing gallium nitride based compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230617A JP2004040066A (en) 2002-07-05 2002-07-05 Method for producing gallium nitride based compound semiconductor

Publications (1)

Publication Number Publication Date
JP2004040066A true JP2004040066A (en) 2004-02-05

Family

ID=31711695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230617A Pending JP2004040066A (en) 2002-07-05 2002-07-05 Method for producing gallium nitride based compound semiconductor

Country Status (1)

Country Link
JP (1) JP2004040066A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239145A (en) * 2010-06-07 2010-10-21 Shin Etsu Handotai Co Ltd Method of manufacturing epitaxial wafer
JP2013129597A (en) * 2008-03-31 2013-07-04 Ngk Insulators Ltd Method for manufacturing epitaxial substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129597A (en) * 2008-03-31 2013-07-04 Ngk Insulators Ltd Method for manufacturing epitaxial substrate
JP2010239145A (en) * 2010-06-07 2010-10-21 Shin Etsu Handotai Co Ltd Method of manufacturing epitaxial wafer

Similar Documents

Publication Publication Date Title
JP3846150B2 (en) Group III nitride compound semiconductor device and electrode forming method
JP2011222728A (en) Nitrogen compound semiconductor light-emitting element and method of manufacturing the same
KR100806262B1 (en) Method for manufacturing p-type group iii nitride semiconductor, and group iii niride semiconductor light-emitting device
JP3603598B2 (en) Method for manufacturing group 3-5 compound semiconductor
JP2919788B2 (en) Semiconductor device, method of manufacturing semiconductor device, and method of growing gallium nitride based semiconductor
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR101125408B1 (en) Compound semiconductor and method for producing same
JP4103309B2 (en) Method for manufacturing p-type nitride semiconductor
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3522610B2 (en) Method for manufacturing p-type nitride semiconductor
JP3064891B2 (en) Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device
KR100604617B1 (en) Manufacturing Method of Group III-V Compound Semiconductor
KR101026952B1 (en) 3-5 Group compound semiconductor, process for producing the same, and compound semiconductor element using the same
JP4705384B2 (en) Gallium nitride semiconductor device
JP2809045B2 (en) Nitride semiconductor light emitting device
JP2006128653A (en) Group iii-v compound semiconductor, its manufacturing method and its use
JP4609917B2 (en) Method for producing aluminum gallium nitride layer, method for producing group III nitride semiconductor light emitting device, and group III nitride semiconductor light emitting device
JP2006140530A (en) Method of manufacturing p-type nitride semiconductor
JP2004040066A (en) Method for producing gallium nitride based compound semiconductor
JP3669091B2 (en) Method for producing electrode for group 3-5 compound semiconductor
JP2001308017A (en) Method for manufacturing p-type iii-v nitride compound semiconductor, and method for manufacturing semiconductor element
JP2003008059A (en) Nitride-family semiconductor light-emitting element
JPH06209121A (en) Indium gallium nitride semiconductor and growing method thereof
JP4906341B2 (en) Group III nitride p-type semiconductor manufacturing method