JP2004039506A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2004039506A
JP2004039506A JP2002196648A JP2002196648A JP2004039506A JP 2004039506 A JP2004039506 A JP 2004039506A JP 2002196648 A JP2002196648 A JP 2002196648A JP 2002196648 A JP2002196648 A JP 2002196648A JP 2004039506 A JP2004039506 A JP 2004039506A
Authority
JP
Japan
Prior art keywords
power
fuel cell
storage battery
load
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196648A
Other languages
Japanese (ja)
Inventor
Kenji Kubo
久保 謙二
Tomonori Hagio
萩尾 友紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2002196648A priority Critical patent/JP2004039506A/en
Publication of JP2004039506A publication Critical patent/JP2004039506A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grid-connected power system suitable for a system composed by combining power peak shift by storage into a storage battery and storage of nighttime power with peak power feed to a load having a value rapidly changing while preventing power stored in a power storage system from being reversely fed to the system, in a system with a fuel cell combined with power storage. <P>SOLUTION: This fuel cell system is equipped with: the fuel cell; the storage battery; a first power converter connected between the fuel cell and a power supply system for converting D.C. into A.C.; and a second power converter connected between the fuel cell and the storage battery for discharging power of the storage battery and for charging the storage battery from a power line between the fuel cell and the storage battery. The fuel cell system is provided with functions for feeding power to the load from the power supply system when required power for the load connected to the power system exceeds the generated power of the fuel cell; for feeding power to the load from the storage battery so as to prevent the power from the power supply system from exceeding a predetermined value; and for charging the storage battery with the power of the fuel cell when the consumption power of the load is smaller than the generation amount of the fuel cell. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電システムと蓄電システムとを併用した系統連系形の電源システムに関する。
【0002】
【従来の技術】
燃料電池発電システムは、燃料電池の発電電力を負荷に供給すると共に、余剰電力を電源系統に蓄電できる。一方、電力ピークシフト手段として、蓄電池を用い、電気料金の安い夜間電力を蓄電し、電力の利用度の大きい昼間に使用する蓄電システムが知られている。
【0003】
分散電源と蓄電とを組み合わせたシステムとして、特開平10−201129号公報に記載されているように、太陽光発電の入力に対して開閉器を介して蓄電池を接続し、受電端の電力検出値が所定の値を超えているとき、蓄電池に接続された開閉器をオンし、蓄電池から電力を放電させる方式がある。これにより、受電端の電力が所定の値を超えないようにする。
【0004】
【発明が解決しようとする課題】
しかし、本方式では、太陽光発電の直流電力と蓄電池の直流電力とを、同じ電力変換器で交流電力に変換して電源系統に出力する。このため、分散電源の電力と蓄電池からの放電電力をと独立に制御できず、最大電力追従制御のような太陽光発電に固有な制御と、蓄電池の放電制御とを両立するのが難しいという問題点がある。
【0005】
本発明の目的は、燃料電池と蓄電とを組み合わせたシステムにおいて、蓄電池への蓄電と、夜間電力の蓄電による電力ピークシフト、および蓄電システムに蓄積された電力を系統に逆潮流しないようにしながら負荷の大きさが急峻に変動する負荷へのピーク電力供給とを組み合わせたシステムに好適な系統連系形電源システムを提供することにある。
【0006】
【課題を解決するための手段】
上記目的は、燃料電池と、蓄電池と、前記燃料電池と電源系統との間に接続され、直流を交流に変換する第1の電力変換器と、前記燃料電池と前記蓄電池との間に接続され、前記蓄電池の電力を放電する第2の電力変換器とを備え、前記電力系統に接続された負荷の要求電力が前記燃料電池の発電電力を超えた場合、前記電源系統から電力を前記負荷に供給し、前記電源系統からの電力が予め決められた電力を超えないように前記蓄電池から電力を前記負荷に供給する機能を備えた燃料電池システムとすることにより達成される。
【0007】
また、上記目的は、燃料電池と、蓄電池と、前記燃料電池と電源系統との間に接続され、直流を交流に変換する第1の電力変換器と、前記燃料電池と前記蓄電池との間に接続され、前記蓄電池の電力を放電し、前記燃料電池と前記蓄電池との間の電力線から前記蓄電池に電力を充電する第2の電力変換器とを備え、前記電力系統に接続された負荷の要求電力が前記燃料電池の発電電力を超えた場合、前記電源系統から電力を前記負荷に供給し、前記電源系統からの電力が予め決められた電力を超えないように前記蓄電池から電力を前記負荷に供給し、前記燃料電池の発電量よりも前記負荷の消費電力が小さいとき前記燃料電池の電力を前記蓄電池に充電する機能を備えた燃料電池システムとすることにより達成される。
【0008】
負荷への電力の供給は基本的に燃料電池が行う。そして、負荷の消費電力が燃料電池の発電量を超えた場合、電力系統から電力を供給する。さらに、蓄電池から放電される電力は、電源系統から負荷に供給される電力が、所定の大きさを超えた場合に、蓄電池から電力を放電し、その放電電力は、電源系統側の電力が、所定の大きさを超えないように制御される。このため、燃料電池発電電力が負荷の消費電力より大きく、蓄電池に蓄電されるような条件では、電源系統側の電力が所定の設定値以下となるため、蓄電池からの放電はない。
【0009】
また、燃料電池の発電電力と負荷電力との差分が、蓄電池に対して蓄電される。これにより、燃料電池と蓄電池を組み合わせたシステムであっても、燃料電池の発電電力の大きさに係わらず、蓄電池に蓄電される電力は、燃料電池発電電力の余剰分のみとなり、蓄電池に蓄電された電力が系統に逆潮流されることはない。
【0010】
また、電源系統側の電力を常時監視し、燃料電池発電電力分とは独立して、蓄電池からの放電電力を制御するため、高精度に電源系統の電力ピークを抑制できる。
【0011】
【発明の実施の形態】
以下、本発明の第1の実施例を図1により説明する。電源系統1から負荷3に対して系統電力が供給されている。配線2の分電盤4に電源システム5が接続されており、また、電源システム5は、逆流防止ダイオード8を介して燃料電池7からの発電電力を入力する。電源システム5は、平滑コンデンサ501、第1の電力変換器である双方向AC/DC変換器502、蓄電池506、第2の電力変換器である双方向DC/DC変換器505、開閉器503、系統電圧検出用トランス504、交流電流検出器6からの検出信号と系統電圧検出用トランス504からの検出信号とから系統電力を演算する電力検出手段507、電力検出手段507の演算結果に応じ蓄電池506からの放電あるいは充電を制御するための充放電制御手段508から構成される。
【0012】
ここで、双方向DC/DC変換器505は、充放電制御手段508の演算結果に基づき、蓄電池506からの放電電流や蓄電池506への充電電流を制御する。一方、双方向AC/DC変換器502は、燃料電池7からの発電電力を交流電力に変換し電源系統1に出力する。また、双方向AC/DC変換器502は、平滑コンデンサ501の直流電圧Vdcを調整する機能を持っており、この平滑コンデンサ501の直流電圧を調整することで、燃料電池7から最大電力を取り出せるように制御する。なお、この第1の電力変換器505は、必ずしも双方向でなくても良い。
【0013】
分電盤4に設けた交流電流検出器6により検出された電源系統側の交流電流は、電力検出507において、系統電圧検出用トランス504の検出信号と乗算され、電源系統側の電力検出値となる。充放電制御508では、電力検出値の大きさに応じ、蓄電池506からの放電電流、あるいは、蓄電池506への充電電流を制御する。蓄電池506からの放電、あるいは充電は、双方向DC/DC変換器505により実行される。ここで、平滑コンデンサ501の直流電圧Vdcは、双方向AC/DC変換器502により、燃料電池7から取り出せる電力が最大になるように調整される。双方向DC/DC変換器505は、調整されたVdc値に対して、蓄電池506からの放電、あるいは充電を行う。
【0014】
次に、双方向AC/DC変換器502の構成を図2に示す。4個のIGBT(Insulated Gate Bipolar Transistor)をフルブリッジ接続した電力変換器5021、交流リアクトル5022、フィルタコンデンサ5023、電力変換器5021の相電流を検出するための電流検出器5024、相電流を検出して電力変換器5021へのゲートパルス信号を出力する交流電流制御手段5025、平滑コンデンサ5011,5012の直列電圧Vdcを検出し、その値が所定の値となるように制御する直流電圧制御手段5026、電力変換器5021の相電流と系統電圧の検出値を用い、電力変換器5021から出力あるいは入力する電力を演算する電力演算手段5027から構成される。電力変換器5021は単相3線出力で、平滑コンデンサ5011,5012の中点Nを単相3線の中点として出力する。
【0015】
また、双方向DC/DC変換器505の構成を図3に示す。2個のIGBTをハーフブリッジ接続した電力変換器5051、直流リアクトル5052、平滑コンデンサ5053、電流検出器5054、電流制御手段5055から構成されている。電流制御手段5055は、電力変換器5051のゲート信号を制御し、直列接続された平滑コンデンサ5011、5012と蓄電池506との間で、双方向(充電/放電)に電流を制御する。
【0016】
いま、図1に示す構成において、電源系統1からの配線2に接続された負荷3の電力が、燃料電池7の発電電力より大きい場合、燃料電池7の出力電力は、負荷3で使われ、不足する電力分は、電源系統側1から供給を受ける。電源系統1の電力を検出し、その検出値が所定のしきい値を超えないように、蓄電池506の電力を電源系統1に出力することで、負荷3の電力から燃料電池7の発電電力を引いた値がしきい値を超える分だけ、蓄電池506から出力することができる。ここで、充放電制御手段508は、電力検出手段507で検出された電源系統側電力から所定のしきい値を引いた値がゼロになるように、双方向DC/DC変換器を制御して蓄電池506からの放電電流を制御する。
【0017】
一方、燃料電池7の発電電力が負荷3の電力より大きい場合には、負荷で消費される電力に対する余剰分は蓄電池に蓄電される。この場合は、電力検出手段507により検出される電源系統側の電力は負の値となり、所定のしきい値以下であるため、蓄電池506からの放電は行われない。
【0018】
このように、電源系統側の電力を検出し、その値に応じて、蓄電池506からの放電電力を制御することにより、燃料電池7の発電状態や、負荷3の負荷状態に係わらず、電源系統側の電力を所定のしきい値を超えないように、電力ピーク補償できる。
【0019】
以上、述べたように、本実施例によれば、燃料電池と蓄電とを組み合わせたシステムにおいて、電源系統1側の電力を交流電流検出器6より検出し、電源系統1の電力が所定の上限値を超えないように、蓄電池506からの放電電力を制御する。このため、燃料電池7の発電電力が蓄電されるような場合であっても、蓄電池506からの放電は、電源系統1から購入する電力が所定の値以上の場合に行う。この状態では、電力の蓄電はないので、蓄電池506からの放電電力が逆潮流されることはない。また、燃料電池7の発電電力が得られる場合でも、負荷電力が大きく購入電力が大きくなる場合には、蓄電池506から放電することで、電気料金の安い夜間電力を負荷電力のピーク時に使用することができるという利点もある。
【0020】
また、電源系統の電力値、電源系統への交流電力出力値、電源系統からの交流電力入力値、蓄電手段から放電される電力値、蓄電手段に充電される電力値を演算し、表示器に表示することで、蓄電池506からのピークカット放電運転をモニタすることができ、本システムの導入効果を示すことができる。また、各電力値を積算して電力量として表示することで、月間や年間のピークカット電力量を表示することができる。また、それらの値を外部からモニタできるようにすることで、本システムの導入による改善効果を数値として管理することができる。
【0021】
本発明による第2の実施例の構成を図4に示す。第1の実施例との相違点は、燃料電池7の出力電圧を、DC/DC変換器509を用いて昇圧させた出力を、平滑コンデンサ501、および双方向DC/DCに供給していることにある。これにより、燃料電池7の出力電圧が低い場合でも、DC/DC変換器509により燃料電池電圧を調整し、双方向AC/DC変換器502で交流電力に変換できる。これにより、燃料電池発電システムを広い運転領域で稼動させることができる。このとき、蓄電池506からの放電電力は、第1の実施例と同様に、双方向DC/DC変換器505により実行される。
【0022】
以上、本実施例によれば、燃料電池発電システムを広範な運転状態で動作させることができ、蓄電池506による電力ピークカット補償の利用範囲を拡大することができる。
【0023】
【発明の効果】
本発明によれば、燃料電池と蓄電とを組み合わせたシステムにおいて、蓄電池への蓄電と、夜間電力の蓄電による電力ピークシフト、および蓄電システムに蓄積された電力を系統に逆潮流しないようにしながら負荷の大きさが急峻に変動する負荷へのピーク電力供給とを組み合わせたシステムに好適な系統連系形電源システムを提供することができる。
【図面の簡単な説明】
【図1】第1の実施例による構成図。
【図2】双方向AC/DC変換器の構成図。
【図3】双方向DC/DC変換器の構成図。
【図4】第2の実施例の構成図。
【符号の説明】
1…電源系統、3…負荷、4…分電盤、5…電源システム、6…交流電流検出器、7…燃料電池、502…双方向AC/DC変換器、505…双方向AC/DC変換器、506…蓄電池、9…表示器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply system of a system interconnection type using both a fuel cell power generation system and a power storage system.
[0002]
[Prior art]
The fuel cell power generation system can supply the power generated by the fuel cell to the load and store the surplus power in the power supply system. On the other hand, there is known a power storage system that uses a storage battery as power peak shift means, stores nighttime power at a low electricity rate, and uses the power during the daytime when power usage is high.
[0003]
As described in Japanese Patent Application Laid-Open No. H10-201129, a storage battery is connected to a solar power generation input via a switch, and a power detection value at a power receiving end is described as a system combining a distributed power supply and a power storage. There is a method in which a switch connected to a storage battery is turned on when the value exceeds a predetermined value to discharge power from the storage battery. This prevents the power at the power receiving end from exceeding a predetermined value.
[0004]
[Problems to be solved by the invention]
However, in this method, the DC power of the photovoltaic power generation and the DC power of the storage battery are converted into AC power by the same power converter and output to the power supply system. For this reason, the power of the distributed power source and the discharge power from the storage battery cannot be controlled independently of each other, and it is difficult to achieve both control unique to solar power generation such as maximum power tracking control and discharge control of the storage battery. There are points.
[0005]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a system in which a fuel cell and a power storage device are combined, in which power storage in the storage battery and power peak shift due to storage of nighttime power, and load while preventing power stored in the power storage system from flowing back to the system. It is an object of the present invention to provide a system interconnection type power supply system suitable for a system in which peak power supply to a load whose magnitude fluctuates rapidly is combined.
[0006]
[Means for Solving the Problems]
The above object is achieved by connecting a fuel cell, a storage battery, a first power converter that is connected between the fuel cell and a power supply system and converts direct current to alternating current, and is connected between the fuel cell and the storage battery. A second power converter that discharges the power of the storage battery, and when the required power of a load connected to the power system exceeds the power generated by the fuel cell, the power from the power system to the load. This is achieved by providing a fuel cell system having a function of supplying power from the power supply system to the load so that the power from the power supply system does not exceed a predetermined power.
[0007]
Further, the object is to provide a fuel cell, a storage battery, a first power converter that is connected between the fuel cell and a power supply system, and converts a direct current into an alternating current, and between the fuel cell and the storage battery. And a second power converter connected to the power system for discharging power from the storage battery and charging the storage battery with power from a power line between the fuel cell and the storage battery. When the power exceeds the power generated by the fuel cell, the power is supplied from the power supply system to the load, and the power from the storage battery is supplied to the load so that the power from the power supply system does not exceed a predetermined power. This is achieved by providing a fuel cell system having a function of supplying the power of the fuel cell to the storage battery when the power consumption of the load is smaller than the power generation amount of the fuel cell.
[0008]
The power supply to the load is basically performed by the fuel cell. When the power consumption of the load exceeds the amount of power generated by the fuel cell, power is supplied from the power system. Further, the electric power discharged from the storage battery discharges power from the storage battery when the power supplied from the power supply system to the load exceeds a predetermined magnitude, and the discharged power is the power on the power supply system side, Control is performed so as not to exceed a predetermined size. Therefore, under the condition that the power generated by the fuel cell is larger than the power consumption of the load and stored in the storage battery, the power on the power supply system side is equal to or less than the predetermined set value, and the storage battery does not discharge.
[0009]
The difference between the power generated by the fuel cell and the load power is stored in the storage battery. Thus, even in a system in which the fuel cell and the storage battery are combined, the power stored in the storage battery is only a surplus of the fuel cell power generation, regardless of the amount of power generated by the fuel cell, and is stored in the storage battery. The power flow will not flow back to the grid.
[0010]
Further, since the power on the power supply system side is constantly monitored and the discharge power from the storage battery is controlled independently of the power generated by the fuel cell, the power peak of the power supply system can be suppressed with high accuracy.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. System power is supplied from the power system 1 to the load 3. The power supply system 5 is connected to the distribution board 4 of the wiring 2, and the power supply system 5 inputs the power generated from the fuel cell 7 via the backflow prevention diode 8. The power supply system 5 includes a smoothing capacitor 501, a bidirectional AC / DC converter 502 as a first power converter, a storage battery 506, a bidirectional DC / DC converter 505 as a second power converter, a switch 503, System voltage detection transformer 504, power detection means 507 for calculating system power from a detection signal from AC current detector 6 and a detection signal from system voltage detection transformer 504, and storage battery 506 according to the calculation result of power detection means 507. Charge / discharge control means 508 for controlling discharge or charge from the battery.
[0012]
Here, the bidirectional DC / DC converter 505 controls the discharge current from the storage battery 506 and the charging current to the storage battery 506 based on the calculation result of the charge / discharge control unit 508. On the other hand, bidirectional AC / DC converter 502 converts the power generated from fuel cell 7 into AC power and outputs it to power supply system 1. The bidirectional AC / DC converter 502 has a function of adjusting the DC voltage Vdc of the smoothing capacitor 501. By adjusting the DC voltage of the smoothing capacitor 501, the maximum power can be extracted from the fuel cell 7. To control. The first power converter 505 does not necessarily have to be bidirectional.
[0013]
The AC current on the power supply system side detected by the AC current detector 6 provided on the distribution board 4 is multiplied by a detection signal of the system voltage detection transformer 504 in a power detection 507 to obtain a power detection value on the power supply system side. Become. The charge / discharge control 508 controls a discharge current from the storage battery 506 or a charging current to the storage battery 506 according to the magnitude of the detected power value. Discharge or charging from the storage battery 506 is executed by the bidirectional DC / DC converter 505. Here, the DC voltage Vdc of the smoothing capacitor 501 is adjusted by the bidirectional AC / DC converter 502 so that the power that can be extracted from the fuel cell 7 is maximized. The bidirectional DC / DC converter 505 discharges or charges the storage battery 506 with respect to the adjusted Vdc value.
[0014]
Next, the configuration of the bidirectional AC / DC converter 502 is shown in FIG. A power converter 5021 in which four IGBTs (Insulated Gate Bipolar Transistors) are connected in full bridge, an AC reactor 5022, a filter capacitor 5023, a current detector 5024 for detecting a phase current of the power converter 5021, and a phase current are detected. An AC current control means 5025 for outputting a gate pulse signal to the power converter 5021, a DC voltage control means 5026 for detecting a series voltage Vdc of the smoothing capacitors 5011 and 5012, and controlling the value to a predetermined value. The power converter 5021 includes a power calculation unit 5027 that calculates the power output or input from the power converter 5021 using the phase current of the power converter 5021 and the detected value of the system voltage. The power converter 5021 is a single-phase three-wire output, and outputs the midpoint N of the smoothing capacitors 5011 and 5012 as the midpoint of the single-phase three-wire.
[0015]
FIG. 3 shows the configuration of the bidirectional DC / DC converter 505. It comprises a power converter 5051 in which two IGBTs are half-bridge connected, a DC reactor 5052, a smoothing capacitor 5053, a current detector 5054, and a current control means 5055. The current control means 5055 controls the gate signal of the power converter 5051, and controls the current bidirectionally (charge / discharge) between the storage capacitors 506 and the smoothing capacitors 5011 and 5012 connected in series.
[0016]
Now, in the configuration shown in FIG. 1, if the power of the load 3 connected to the wiring 2 from the power supply system 1 is larger than the power generated by the fuel cell 7, the output power of the fuel cell 7 is used by the load 3. Insufficient power is supplied from the power supply system side 1. By detecting the power of the power supply system 1 and outputting the power of the storage battery 506 to the power supply system 1 so that the detected value does not exceed a predetermined threshold value, the power generated by the fuel cell 7 is converted from the power of the load 3 by the power. Only the amount by which the subtracted value exceeds the threshold value can be output from the storage battery 506. Here, the charge / discharge control unit 508 controls the bidirectional DC / DC converter so that a value obtained by subtracting a predetermined threshold value from the power supply side power detected by the power detection unit 507 becomes zero. The discharge current from the storage battery 506 is controlled.
[0017]
On the other hand, when the power generated by the fuel cell 7 is larger than the power of the load 3, a surplus of the power consumed by the load is stored in the storage battery. In this case, since the power on the power supply system side detected by the power detection unit 507 has a negative value and is equal to or less than a predetermined threshold value, the storage battery 506 is not discharged.
[0018]
As described above, by detecting the power on the power supply system side and controlling the discharge power from the storage battery 506 according to the value, the power supply system can be operated regardless of the power generation state of the fuel cell 7 or the load state of the load 3. Power peak compensation can be performed so that the power on the side does not exceed a predetermined threshold.
[0019]
As described above, according to the present embodiment, in the system in which the fuel cell and the power storage are combined, the power of the power supply system 1 is detected by the AC current detector 6 and the power of the power supply system 1 is set to the predetermined upper limit. The discharge power from storage battery 506 is controlled so as not to exceed the value. For this reason, even when the power generated by the fuel cell 7 is stored, the discharge from the storage battery 506 is performed when the power purchased from the power supply system 1 is equal to or more than a predetermined value. In this state, power is not stored, so that the discharged power from storage battery 506 does not flow backward. Even when the power generated by the fuel cell 7 can be obtained, when the load power is large and the purchased power is large, the nighttime power with a low electricity rate can be used at the peak load power by discharging from the storage battery 506. There is also an advantage that can be.
[0020]
Also, the power value of the power supply system, the AC power output value to the power supply system, the AC power input value from the power supply system, the power value discharged from the power storage means, and the power value charged to the power storage means are calculated and displayed on the display. By displaying, the peak cut discharge operation from the storage battery 506 can be monitored, and the introduction effect of the present system can be shown. In addition, by integrating each power value and displaying it as a power amount, a monthly or yearly peak cut power amount can be displayed. In addition, by enabling those values to be monitored from the outside, the improvement effect of the introduction of the present system can be managed as a numerical value.
[0021]
FIG. 4 shows the configuration of the second embodiment according to the present invention. The difference from the first embodiment is that an output obtained by boosting the output voltage of the fuel cell 7 using the DC / DC converter 509 is supplied to the smoothing capacitor 501 and the bidirectional DC / DC. It is in. Thus, even when the output voltage of the fuel cell 7 is low, the fuel cell voltage can be adjusted by the DC / DC converter 509 and converted into AC power by the bidirectional AC / DC converter 502. Thereby, the fuel cell power generation system can be operated in a wide operation range. At this time, the discharge power from the storage battery 506 is executed by the bidirectional DC / DC converter 505 as in the first embodiment.
[0022]
As described above, according to the present embodiment, the fuel cell power generation system can be operated in a wide range of operating states, and the range of use of the power peak cut compensation by the storage battery 506 can be expanded.
[0023]
【The invention's effect】
According to the present invention, in a system in which a fuel cell and a power storage are combined, power storage in the storage battery, power peak shift due to storage of nighttime power, and load while preventing power stored in the power storage system from flowing back to the system. It is possible to provide a grid-connected power supply system suitable for a system that combines peak power supply to a load whose magnitude fluctuates sharply.
[Brief description of the drawings]
FIG. 1 is a configuration diagram according to a first embodiment.
FIG. 2 is a configuration diagram of a bidirectional AC / DC converter.
FIG. 3 is a configuration diagram of a bidirectional DC / DC converter.
FIG. 4 is a configuration diagram of a second embodiment.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 power supply system 3 load 4 distribution board 5 power supply system 6 alternating current detector 7 fuel cell 502 bidirectional AC / DC converter 505 bidirectional AC / DC conversion 506: storage battery, 9: display.

Claims (5)

燃料電池と、蓄電池と、前記燃料電池と電源系統との間に接続され、直流を交流に変換する第1の電力変換器と、前記燃料電池と前記蓄電池との間に接続され、前記蓄電池の電力を放電する第2の電力変換器とを備え、前記電力系統に接続された負荷の要求電力が前記燃料電池の発電電力を超えた場合、前記電源系統から電力を前記負荷に供給し、前記電源系統からの電力が予め決められた電力を超えないように前記蓄電池から電力を前記負荷に供給する機能を備えた燃料電池システム。A fuel cell, a storage battery, a first power converter connected between the fuel cell and the power supply system for converting direct current to alternating current, and a first power converter connected between the fuel cell and the storage battery; A second power converter that discharges power, when the required power of a load connected to the power system exceeds the power generated by the fuel cell, supplies power from the power system to the load; A fuel cell system having a function of supplying power from the storage battery to the load so that power from a power supply system does not exceed predetermined power. 燃料電池と、蓄電池と、前記燃料電池と電源系統との間に接続され、直流を交流に変換する第1の電力変換器と、前記燃料電池と前記蓄電池との間に接続され、前記蓄電池の電力を放電し、前記燃料電池と前記蓄電池との間の電力線から前記蓄電池に電力を充電する第2の電力変換器とを備え、前記電力系統に接続された負荷の要求電力が前記燃料電池の発電電力を超えた場合、前記電源系統から電力を前記負荷に供給し、前記電源系統からの電力が予め決められた電力を超えないように前記蓄電池から電力を前記負荷に供給し、前記燃料電池の発電量よりも前記負荷の消費電力が小さいとき前記燃料電池の電力を前記蓄電池に充電する機能を備えた燃料電池システム。A fuel cell, a storage battery, a first power converter connected between the fuel cell and the power supply system for converting direct current to alternating current, and a first power converter connected between the fuel cell and the storage battery; A second power converter that discharges power and charges the storage battery with power from a power line between the fuel cell and the storage battery, and a required power of a load connected to the power system is a power supply of the fuel cell. When the generated power is exceeded, power is supplied from the power supply system to the load, and power is supplied from the storage battery to the load so that power from the power supply system does not exceed a predetermined power. A fuel cell system having a function of charging the storage battery with the power of the fuel cell when the power consumption of the load is smaller than the power generation amount of the fuel cell. 請求項1または2において、前記燃料電池の発電電力と前記蓄電手段の出力電力とを直流側で連系する燃料電池システム。3. The fuel cell system according to claim 1, wherein the power generated by the fuel cell and the output power of the power storage unit are interconnected on the DC side. 請求項1または2において、前記燃料電池の発電電力と前記蓄電手段の出力電力とを電源系統側で個別に連系する燃料電池システム。3. The fuel cell system according to claim 1, wherein the power generated by the fuel cell and the output power of the power storage unit are individually interconnected on a power system side. 4. 請求項1において、電源系統の電力値、電源系統への交流電力出力値、電源系統からの交流電力入力値、蓄電手段から放電される電力値、蓄電手段に充電される電力値、あるいは各電力値の積算値を計測、もしくは演算する機能を備え、それらの値を表示、もしくは外部からモニタできるようにした燃料電池システム。The power value of the power supply system, the AC power output value to the power supply system, the AC power input value from the power supply system, the power value discharged from the power storage means, the power value charged to the power storage means, or each power according to claim 1. A fuel cell system having a function of measuring or calculating an integrated value of a value, so that the value can be displayed or externally monitored.
JP2002196648A 2002-07-05 2002-07-05 Fuel cell system Pending JP2004039506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196648A JP2004039506A (en) 2002-07-05 2002-07-05 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196648A JP2004039506A (en) 2002-07-05 2002-07-05 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2004039506A true JP2004039506A (en) 2004-02-05

Family

ID=31704623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196648A Pending JP2004039506A (en) 2002-07-05 2002-07-05 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2004039506A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073503A (en) * 2004-08-06 2006-03-16 Sanyo Electric Co Ltd Fuel cell system
JP2006262613A (en) * 2005-03-16 2006-09-28 Meidensha Corp Power supply system, power supply method, and building
JP2009181824A (en) * 2008-01-31 2009-08-13 Aisin Seiki Co Ltd Fuel cell system
JP2009545944A (en) * 2006-08-04 2009-12-24 セレス インテレクチュアル プラパティ コンパニー リミテッド Power control for generator
US7946365B2 (en) 2006-02-03 2011-05-24 Honda Motor Co., Ltd. Control method for fuel cell vehicle, and fuel cell vehicle
JP7509010B2 (en) 2020-11-27 2024-07-02 株式会社アイシン Power System

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073503A (en) * 2004-08-06 2006-03-16 Sanyo Electric Co Ltd Fuel cell system
US7767353B2 (en) 2004-08-06 2010-08-03 Sanyo Electric Co., Ltd. Fuel cell system
US8012638B2 (en) 2004-08-06 2011-09-06 Sanyo Electric Co. Ltd. Fuel cell system
JP2006262613A (en) * 2005-03-16 2006-09-28 Meidensha Corp Power supply system, power supply method, and building
JP4496112B2 (en) * 2005-03-16 2010-07-07 株式会社明電舎 Power supply system, power supply method, and building
US7946365B2 (en) 2006-02-03 2011-05-24 Honda Motor Co., Ltd. Control method for fuel cell vehicle, and fuel cell vehicle
JP2009545944A (en) * 2006-08-04 2009-12-24 セレス インテレクチュアル プラパティ コンパニー リミテッド Power control for generator
JP2009181824A (en) * 2008-01-31 2009-08-13 Aisin Seiki Co Ltd Fuel cell system
JP7509010B2 (en) 2020-11-27 2024-07-02 株式会社アイシン Power System

Similar Documents

Publication Publication Date Title
JP2004180467A (en) Systematically interconnecting power supply system
JP2002369406A (en) System-interconnected power system
JP4765162B2 (en) Power storage type solar power generation system
JP5882845B2 (en) Power storage type solar power generation system
JP5612196B2 (en) Battery power supply device and power control method thereof
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP5709275B2 (en) Power transmission system
JP5887426B2 (en) Power storage system
JP4570245B2 (en) Distributed power system
CN107332270B (en) Energy management device for photovoltaic grid-connected power generation system
JP2013021792A (en) Power supply system
JP2018019481A (en) Power conversion device
JP2015198555A (en) Power control method, power control unit, and power control system
JP2022179781A (en) power conversion system
JP2004362787A (en) Fuel cell system with power storing means
US11196290B2 (en) Uninterruptible power supply apparatus
JP6536346B2 (en) Power converter and control method thereof
JP2018098820A (en) Power conversion system
KR102157700B1 (en) Power conversion device with protection circuit and control method of power conversion device
JP2004039506A (en) Fuel cell system
JP2003116225A (en) Distributed power supply system
JP2004112954A (en) Power storage device
JP4430292B2 (en) Power control device, power generation system, and control method of power control device
JP2004222341A (en) Power supply system
JP2003299247A (en) Ac power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304