JP2004039428A - Cell stack and its manufacturing method as well as fuel cell - Google Patents

Cell stack and its manufacturing method as well as fuel cell Download PDF

Info

Publication number
JP2004039428A
JP2004039428A JP2002194503A JP2002194503A JP2004039428A JP 2004039428 A JP2004039428 A JP 2004039428A JP 2002194503 A JP2002194503 A JP 2002194503A JP 2002194503 A JP2002194503 A JP 2002194503A JP 2004039428 A JP2004039428 A JP 2004039428A
Authority
JP
Japan
Prior art keywords
cell
fuel
insertion hole
support plate
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002194503A
Other languages
Japanese (ja)
Other versions
JP3894849B2 (en
Inventor
Noriaki Hamada
浜田 紀彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002194503A priority Critical patent/JP3894849B2/en
Publication of JP2004039428A publication Critical patent/JP2004039428A/en
Application granted granted Critical
Publication of JP3894849B2 publication Critical patent/JP3894849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long life cell stack of which manufacturing is easy due to its simple structure and its manufacturing method as well as a fuel cell. <P>SOLUTION: In the cell stack 35 constituted so that one end part of a plurality of fuel cells 33 is inserted into and fixed to a plurality of cell insertion holes 50a1 of a cell support plate 50a, a plurality of fuel cell 33 are established on the cell support plate 50a; the cell insertion hole 50a1 of the cell support plate 50a is formed in a tapering shape, moreover, a concave curved face is formed on at least one part of its inner wall, furthermore, an engaging projection 57 which is larger than the hole diameter of cell installing side of the cell insertion hole 50a1, and which has a convex curved face is formed. The convex curved face of the engaging projection 57 of the fuel cell 33 is joined to the concave curved face of the inner wall face of the cell insertion hole 50a1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数の燃料電池セルの一端部をセル支持板の複数のセル挿入孔にそれぞれ挿入固定してなるセルスタック及びその製法並びに燃料電池に関するものである。
【0002】
【従来技術】
次世代エネルギーとして、近年、固体電解質型燃料電池セルを収納容器内に複数収容した燃料電池が種々提案されている。固体電解質型燃料電池セルは、例えば、酸素側電極の表面に固体電解質、燃料側電極を順次形成して構成されており、燃料側電極側に燃料(水素)を流し、酸素側電極側に空気(酸素)を流して600〜1000℃程度で発電される。
【0003】
固体電解質型燃料電池セルは、上記したように、2種のガスを用い、しかも高温に曝されるため、高温においてもガスが漏出しないように、ガスの供給管やセルにおけるシール性について種々の改良がなされている。例えば、特開平8−287940号公報には、収納容器内のガスタンクにガス供給管を気密に接続する構造が開示されており、ガスは燃料電池セル内にガス供給管により供給されている。燃料電池セルは、一般に収納容器内に配置された隔壁に支持固定されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した特開平8−287940号公報に開示された燃料電池では、ガス供給管をガスタンクにガス封止した状態で接続するとともに、燃料電池セル自体も隔壁に固定する必要があり、燃料電池セルの固定法が複雑であり、燃料電池自体が複雑化し、製造工程が多いという問題があった。
【0005】
本発明は、簡単な構造で製造が容易な長寿命のセルスタック及びその製法並びに燃料電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のセルスタックは、複数の燃料電池セルの一端部をセル支持板の複数のセル挿入孔にそれぞれ挿入固定し、前記セル支持板に前記複数の燃料電池セルを立設してなるセルスタックであって、前記セル支持板のセル挿入孔をセル立設側に向けて先細形状に形成し、かつその内壁面の少なくとも一部に凹曲面を形成するとともに、前記燃料電池セルの一端部に、前記セル挿入孔のセル立設側の孔径よりも大きく、かつ凸曲面を有する係合突出部を形成し、前記燃料電池セルの係合突出部の凸曲面を前記セル挿入孔の内壁面の凹曲面に係合せしめた状態で接合してなるものである。
【0007】
このようなセルスタックは、複数の燃料電池セルの一端部をセル支持板の複数のセル挿入孔にそれぞれ挿入固定し、前記セル支持板に前記複数の燃料電池セルを立設してなるセルスタックの製法であって、前記セル挿入孔がセル立設側に向けて先細形状に形成され、かつその内壁面の少なくとも一部が凹曲面に形成されたセル支持板、及び一端部に、前記セル挿入孔のセル立設側の孔径よりも大きく、かつ凸曲面を有する係合突出部が形成された燃料電池セルを準備し、前記セル挿入孔に前記燃料電池セルの他端部をセル立設側に向けて挿入し、前記係合突出部の凸曲面を前記セル挿入孔の凹曲面に係合させ、この状態で接合して作製される。
【0008】
即ち、例えば、セル支持板をセル挿入孔の孔径が大きい方を上にして固定し、このセル支持板のセル挿入孔内に、燃料電池セルの他端部から挿入し、セル挿入孔内の凹曲面に燃料電池セルの一端部に形成された係合突出部の凸曲面を係合させ、セル支持板から突出した複数の燃料電池セル間の間隔を一定にし、この状態で、例えば、セル挿入孔内の凹曲面と係合突出部の凸曲面との間に介在されたガラス等の接着剤を加熱し、接合することができる。
【0009】
従って、簡単な構造のセルスタックを得ることができるとともに、セル支持板の複数のセル挿入孔内に燃料電池セルをそれぞれ挿入した後、加熱することにより一挙に複数の燃料電池セルを接合固定でき、容易にセルスタックを作製できる。
【0010】
また、一般に、燃料電池セルは内側電極の外面に固体電解質、外側電極が形成されており、内側電極に電気的に接続されたインターコネクタが外部に露出しており、対向する燃料電池セルは、一方の燃料電池セルのインターコネクタと、他方の外側電極の間にNiフェルトや金属板等の導電性板からなる集電部材を配置し、電気的に直列に接続されるが、本発明では、上記したように、セル支持板から突出した複数の燃料電池セル間の間隔を一定にした状態で燃料電池セルを固定できるため、燃料電池セル間に配置される集電部材の厚みは一定で良く、対向する燃料電池セル間のそれぞれの距離に対応するように集電部材の厚みを設定する必要がない。これにより、導電性板からなる集電部材を有効に用いることができる。
【0011】
また、本発明のセルスタックでは、セル立設側のセル挿入孔は、セル立設側に向けて拡径する傾斜面が形成されていることを特徴とする。このようなセルスタックでは、セル挿入孔内の凹曲面と燃料電池セルの係合突出部の凸曲面の係合部分を中心に燃料電池セルが揺動し易くなり、セル支持板から突出した複数の燃料電池セル間の間隔調整が容易となる。
【0012】
さらに、本発明の燃料電池は、上記セルスタックと、複数の燃料電池セルにガスを供給するためのガスタンクとを収納容器内に収納してなり、前記セルスタックのセル支持板が前記ガスタンクの一部を構成していることを特徴とする。このような燃料電池では、簡単な構造で製造が容易となり、さらに小型化を図ることができる。
【0013】
【発明の実施の形態】
図1は、本発明の燃料電池の一形態を示すもので、符号31は断熱構造を有する収納容器を示している。この収納容器31の内部には、複数の燃料電池セル33が集合したセルスタック35と、燃料電池セル33間に挿入される酸素含有ガス供給管39と、セルスタック35の上方に設けられた熱交換部41とから構成されている。
【0014】
収納容器31は、耐熱性金属からなる枠体31aと、この枠体31aの内面に設けられた断熱材31bとから構成されている。
【0015】
セルスタック35は、例えば、図2に示すように、複数の燃料電池セル33を3列に整列させ、隣設した2列の最外部の燃料電池セル33の電極同士が導電部材42で接続され、これにより3列に整列した複数の燃料電池セル33が電気的に直列に接続している。尚、図1では、複数の燃料電池セル33を4列に整列させている。
【0016】
具体的に説明すると、図2に示したように、燃料電池セル33は扁平状であり、その内部には複数の燃料ガス通過孔34が形成されている。この燃料電池セル33は、楕円柱状(扁平状)の多孔質な金属を主成分とする燃料側電極33aの外面に、緻密質な固体電解質33b、多孔質な導電性セラミックスからなる酸素側電極33cを順次積層し、酸素側電極33cと反対側の燃料側電極33aの外面にインターコネクタ33dを形成して構成されており、燃料側電極33aが支持体となっている。
【0017】
即ち、燃料電池セル33は、断面形状が、幅方向両端に設けられた弧状部Aと、これらの弧状部Aを連結する一対の平坦部Bとから構成されており、一対の平坦部Bは平坦であり、ほぼ平行に形成されている。これらの一対の平坦部Bは、燃料側電極33aの平坦部にインターコネクタ33d、又は固体電解質33b、酸素側電極33cを形成して構成されている。
【0018】
一方の燃料電池セル33と他方の燃料電池セル33との間には、金属フェルト、及び/又は金属板、導電性セラミックス等の導電性板からなる集電部材43を介在させ、一方の燃料電池セル33の燃料側電極33aを、該燃料側電極33aに設けられたインターコネクタ33d、集電部材43を介して他方の燃料電池セル33の酸素側電極33cに電気的に接続して、セルスタック35が構成されている。
【0019】
複数の燃料電池セル33の下端部は、図1に示したように、燃料ガスタンク50の天板を構成するセル支持板50aに支持固定されており、これにより燃料電池セル33の下端部が燃料ガスタンク50に支持固定され、立設している。燃料ガスタンク50には、燃料電池セル33内部に燃料ガスを供給するための燃料ガス供給管51が設けられている。
【0020】
燃料ガスタンク50のセル支持板50aには、図3に示すように、燃料電池セル33の下端部が挿入固定される複数のセル挿入孔50a1が形成され、これらのセル挿入孔50a1はセルが立設する側(以下セル立設側という)に向けて先細形状に形成されており、その内壁面は凹曲面とされている。
【0021】
即ち、セル挿入孔50a1の内壁面は、燃料電池セル33の平坦部B側が断面円弧状の凹曲面とされており、セル立設側のセル挿入孔50a1には、セル立設側に向けて拡径する傾斜面Sが形成されている。
【0022】
一方、燃料電池セル33の一端部には、セル挿入孔50a1のセル立設側の孔径よりも大きい、凸曲面を有する係合突出部57が形成されており、燃料電池セル33の係合突出部57の凸曲面をセル挿入孔50a1の内壁面の凹曲面に係合せしめた状態で、ガラス59で接合され、セルスタック35が構成されている。
【0023】
尚、凹曲面はセル挿入孔50a1の内壁面の一部に形成されていても良く、また、燃料電池セル33の係合突出部57の凸曲面も係合突出部57の一部に形成されていても良く、セル挿入孔50a1の凹曲面と係合突出部57の凸曲面が少なくとも係合し、燃料電池セル33が、対向する平坦部B方向にある程度揺動可能であれば良い。係合突出部57は半円柱であり、その曲面部には燃料電池セル33が挿通する孔が形成されている。
【0024】
このようなセルスタック35は、以下のようにして形成される。先ず、一端部に係合突出部57が形成された燃料電池セル33と、セル挿入孔50a1が形成されたセル支持板50aを準備し、図4に示すように、セル挿入孔50a1の傾斜面Sが形成された側を下にして、即ち、セル挿入孔59a1の孔径が大きい方を上にしてセル支持板50aを固定し、このセル支持板50aのセル挿入孔50a1内に、燃料電池セル33の他端部、即ち、係合突出部57が形成されていない側から挿入し、セル支持板50aから突出した複数の燃料電池セル33の平坦部B間の間隔がほぼ一定となるように燃料電池セル33を揺動して調整し、この状態で係合突出部57の凸曲面とセル挿入孔59a1の凹曲面との間をガラス59で接合して作製される。
【0025】
従って、複数の燃料電池セル33をセル支持板50aに一挙に接合固定することができるとともに、例えば、燃料電池セル33がセル製造工程で少々変形した場合でも、燃料電池セル33をその平坦部B方向に揺動させることにより、燃料電池セル33の平坦部B間の距離をほぼ一定に調整することができ、例えば、金属板等の導電性板からなる集電部材43を燃料電池セル33間に容易に介装することができる。或いは、集電部材43を複数の燃料電池セル33の平坦部B間に介装した後、係合突出部57の凸曲面とセル挿入孔50a1の凹曲面との間をガラス59で接合してセルスタック35を形成しても良い。
【0026】
そして、このセルスタック35は、図3に示したように、ガスタンク50の天板を構成しており、セルスタック35は、セル支持板50aを密封するようにガスタンク50を構成する枠体に螺着されたり、接合されている。
【0027】
図5は、金属板、合金板、導電性セラミックス等の導電性板からなる集電部材43を、燃料電池セル33間に介在せしめたもので、集電部材43は、矩形状板の一端部に複数のスリットを略平行に形成し、該スリット間の集電片43aを集電部材43の両側に交互に突出させ、基部43bの一端部に複数の集電片43aが形成された櫛歯形状とされ、複数の集電片43aが対向する燃料電池セル33の外面にそれぞれ当接している。
【0028】
即ち、集電片43aは、対向する燃料電池セル33の平坦部であるインターコネクタ33dと、酸素側電極33c間に配置され、燃料電池セル33同士が直列に接続されている。平坦部Bに集電片43aが当接しているため確実に当接し、電気的接続を確実に行うことができる。また、複数の集電片43aはAgペーストを介在して燃料電池セル33に接合している。このAgペーストは発電時に焼き付けられ、集電片43aと燃料電池セル33のインターコネクタ33dと酸素側電極33cに接合し、これにより、集電片43aと燃料電池セル33との電気的接続を十分にとることができる。集電片43aの幅は、集電特性を向上し、集電片43a間に十分に酸素含有ガスを供給するという点から、2mm以下が望ましい。
【0029】
これらの集電部材43は、対向する燃料電池セル33間に複数配置されており、対向する燃料電池セル33間に基部43bから挿入され、基部43bが下に位置している。これらの集電部材43は、導電性を有するCr、Feを主成分とするフェライト系ステンレスの表面をAgからなる耐酸化性物質で被覆して構成されている。尚、集電部材43は導電性を有する金属又は合金を主成分とするものの表面を耐酸化性物質で被覆したものであれば、上記したものに限定されるものではない。
【0030】
対向する燃料電池セル33間には、図6に示す集電部材44を介在せしめても良い。図6に示す集電部材44は、複数のスリットを略平行に形成し、その間の集電片44aを交互に集電部材44の両側に突出させて形成された集電片44a群を、長さ方向に所定間隔を置いて形成して構成し、基部44bと集電片44aを交互に形成しても良い。図6に示すような集電部材44では、図5の集電部材43よりも燃料電池セル間への配置を簡単に行うことができる。
【0031】
また、図6(c)に示すように、複数の集電片46a群を長さ方向に所定間隔を置いて形成し、一つの集電片46a群において集電片46aを一つおきに一方の燃料電池セル33の酸素側電極33c側に突出させて当接せしめ、その他の平坦な部分を他方の燃料電池セル33のインターコネクタ33dに当接せしめるようにしても良い。この場合、インターコネクタ33dとの接合を十分に行うことができる。
【0032】
酸素含有ガス供給管39は、図1に示したように、その先端部が燃料電池セル33間に位置している。
【0033】
熱交換部41は、熱交換器41aと、セルスタック35に対向して設けられた酸素含有ガス収容室41bとから構成されている。
【0034】
熱交換器41aは、図7に示すように、平板61と波板63を交互に積層したプレートフィン型構造とされており、酸素含有ガス収容室41bと連通する通路を形成する波板63aは、図7(b)に示すように形成され、また、燃焼ガスの排出用の通路を形成する波板63bは、図7(c)に示すように形成されている。
【0035】
燃焼ガスは、図1に一点鎖線で示したように熱交換器41aの下部側面から導入され、熱交換器41aの上方へ排出され、一方、酸素含有ガスは配管73により、図1に破線で示したように熱交換器41aの上部側面から導入され、熱交換器41aの下方へ導かれ、酸素含有ガス収容室41b内に導入される。
【0036】
酸素含有ガス収容室41bは、図8に示すように、熱交換器41aの酸素含有ガスが導入される側の端面、即ちセルスタック側端面に設けられており、波板63aの各通路を通過した酸素含有ガスが一旦収容されるようになっている。
【0037】
酸素含有ガス収容室41bには、複数の酸素含有ガス供給管39が連通している。
【0038】
また、図1に示したように、酸素含有ガス収容室41bの側面と断熱材31bとの間、即ち酸素含有ガス収容室41bの周囲は、燃焼ガスを熱交換器41aに導入する燃焼ガス導入口71とされている。この燃焼ガス導入口71を介して燃焼ガスが熱交換器41aの波板63bの通路へ導出される。
【0039】
以上のように構成された燃料電池では、外部からの酸素含有ガス(例えば空気)を配管73により熱交換器41aに導入し、酸素含有ガス収容室41bに導入し、酸素含有ガス供給管39を介して燃料電池セル33間に噴出させるとともに、燃料ガス(例えば水素)を、燃料ガス供給管51、ガスタンク50を介して燃料電池セル33の燃料ガス通過孔34内に供給し、燃料電池セル33において発電させる。
【0040】
発電に用いられなかった余剰の燃料ガスは燃料ガス通過孔34の上端から噴出し、発電に用いれらなかった余剰の酸素含有ガスは燃料電池セル33間を介して上方に噴出し、余剰の燃料ガスと余剰の酸素含有ガスを反応させて燃焼させ、燃焼ガスを発生させ、この燃焼ガスが燃焼ガス導入口71を介して熱交換器41aに導出され、熱交換器41aの上端から排出される。
【0041】
そして、本発明の燃料電池では、セルスタック35を、複数の燃料電池セル33をセル支持板50aに一挙に接合固定することにより作製でき、例えば、金属板等の導電性板からなる集電部材43を燃料電池セル33間に容易に介装でき、セルスタック35を簡単な構造で容易に製造でき、これにより燃料電池も簡単な構造で容易に製造できる。さらに、燃料電池セル間の距離を自由に制御できるため、集電部材43との電気的な接合を確実に確保でき、長寿命の燃料電池を得ることができる。
【0042】
また、発電に寄与しなかった余剰の燃料ガスと酸素含有ガスが反応して燃焼し、この燃焼ガス及び外部の酸素含有ガスを熱交換器41aに導入し、この熱交換器41aで燃焼ガスと酸素含有ガスとの間で熱交換し、酸素含有ガスを予熱することができるため、燃料電池セル33を加熱して実質的に発電するまでの起動時間を大幅に短縮できる。
【0043】
さらに本発明では、セルスタック35の上方に酸素含有ガス収容室41b、熱交換器41aが隣接して形成されているため、燃焼した高温の燃焼ガスを、配管等を用いることなく熱交換器41aに直接導入でき、簡単な構造で酸素含有ガスの予熱効率を大きくできる。
【0044】
また、収納容器31内で、燃焼ガスと酸素含有ガスとを熱交換できるため、酸素含有ガスの予熱を行うためのバーナーを別途設ける必要がなく、小型にでき、しかも燃焼ガスを有効利用できる。
【0045】
さらに、熱交換器41aに酸素含有ガス収容室41bを設けたので、熱交換器41aと酸素含有ガス供給管39との接続を酸素含有ガス収容室41bを介して行うことができ、熱交換器41aからの酸素含有ガスを燃料電池セル33間に確実に供給できる。
【0046】
尚、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、上記形態では、図2に示したような楕円柱状で複数の燃料ガス通過孔34を有する燃料電池セル33を用いてセルスタック35を構成した例について説明したが、燃料電池セルは円筒状で、燃料ガス通過孔が一つであっても良く、燃料電池セルの形状は特に限定されるものではない。
【0047】
図9は、円筒状の燃料電池セル93をセル支持板95に接合する場合について記載したもので、燃料電池セル93の一端部には、球状の係合突出部97が設けられ、セル支持板95のセル挿入孔95a1の凹曲面に燃料電池セル93の係合突出部97の凸曲面が係合し、接合されている。係合突出部97は球体に燃料電池セル93が挿通する貫通孔が形成された構造とされている。このようなセルスタックでも、上記と同様の効果を得ることができる。
【0048】
図10は、本発明のセルスタック101のセル支持板103を燃料ガスタンク105に接合したもので、このセルスタック101は、燃料電池セル107の一端部に係合突出部109が形成されており、この係合突出部109の凸曲面の一部が、セル支持板103のセル挿入孔111の凹曲面に係合し、ガラス113で接合されている。
【0049】
係合突出部109は円柱体の側面に燃料電池セルが挿通する孔が形成された構造とされ、燃料電池セル107の一端と燃料ガスタンク105の天板との間には隙間が形成され、さらに燃料ガスタンク105の天板には、燃料ガスを燃料電池セル107のガス通過孔117に供給するための貫通孔119が形成されている。
【0050】
このようなセルスタック101はガスタンク105上に接合されているため、図3のセルスタックとほぼ同様の作用効果を有する。
【0051】
また、熱交換器41aとしてプレートフィン型を用いたが、本発明ではこれに限定されるものではなく、それ以外の熱交換器を用いても良いことは勿論である。
【0052】
【発明の効果】
本発明のセルスタックでは、セル支持板をセル挿入孔の孔径が大きい方を上にして固定し、このセル支持板のセル挿入孔内に、複数の燃料電池セルを、その他端部から挿入し、セル挿入孔内の凹曲面に燃料電池セルの一端部に形成された係合突出部の凸曲面を係合させ、セル支持板から突出した複数の燃料電池セル間の間隔を一定にし、この状態で、例えば、セル挿入孔内の凹曲面と係合突出部の凸曲面との間に介在されたガラス等の接合材を加熱し、接合することができ、簡単な構造のセルスタックを得ることができるとともに、セル支持板の複数のセル挿入孔内に燃料電池セルをそれぞれ挿入した後、加熱することにより一挙に複数の燃料電池セルを接合固定でき、容易にセルスタックを作製できる。
【0053】
さらに、燃料電池セル間の間隔が調整されているため、導電性板からなる集電部材が介装される場合でも、燃料電池セル間の電気的接続を確実に、かつ長期に渡って維持できる。
【図面の簡単な説明】
【図1】本発明の燃料電池を示す説明図である。
【図2】図1のセルスタックを示す横断面図である。
【図3】燃料ガスタンクの天板をセル支持板とし、燃料ガスタンクに燃料電池セルを立設した状態を示す一部切欠斜視図である。
【図4】本発明のセルスタックの製法を説明するための一部切欠斜視図である。
【図5】基部の一端部に複数の集電片が形成された櫛歯形状の集電部材を用いて、燃料電池セルを接続した状態を示すもので、(a)は側面図、(b)は集電部材を示す斜視図である。
【図6】複数の集電片群を長さ方向に所定間隔を置いて形成して構成した集電部材を用いて、燃料電池セルを接続した状態を示すもので、(a)は側面図、(b)は集電部材を示す斜視図、(c)は集電片を一方側のみ突出させた集電部材を示す斜視図である。
【図7】図1の熱交換器の概念を説明するための図であり、(a)は熱交換器の斜視図、(b)は酸素含有ガスの通路を形成するための波板を示す斜視図、(c)は燃焼ガスの通路を形成するための波板を示す斜視図である。
【図8】本発明の熱交換部を説明するための斜視図である。
【図9】円筒状の燃料電池セルをセル支持板に接合した状態を示す一部切欠斜視図である。
【図10】燃料ガスタンクの上面にセルスタックが立設された状態を示す一部切欠斜視図である。
【符号の説明】
31・・・収納容器
33、93、107・・・燃料電池セル
33a・・・燃料側電極(内側電極)
33b・・・固体電解質
33c・・・酸素側電極(外側電極)
50、105・・・燃料ガスタンク
35、101・・・セルスタック
50a、95、103・・・セル支持板
50a1、111・・・セル挿入孔
57、97、109・・・係合突出部
S・・・セル挿入孔の傾斜面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cell stack in which one end of a plurality of fuel cells is inserted and fixed in a plurality of cell insertion holes of a cell support plate, a method of manufacturing the same, and a fuel cell.
[0002]
[Prior art]
In recent years, as a next-generation energy, various fuel cells in which a plurality of solid oxide fuel cells are housed in a storage container have been proposed. For example, a solid oxide fuel cell has a structure in which a solid electrolyte and a fuel electrode are sequentially formed on the surface of an oxygen electrode, fuel (hydrogen) flows on the fuel electrode, and air flows on the oxygen electrode. (Oxygen) is flowed to generate power at about 600 to 1000 ° C.
[0003]
As described above, since the solid oxide fuel cell uses two types of gases and is exposed to high temperatures, various sealing properties of gas supply pipes and cells are used so that gas does not leak even at high temperatures. Improvements have been made. For example, Japanese Patent Laying-Open No. 8-287940 discloses a structure in which a gas supply pipe is airtightly connected to a gas tank in a storage container, and gas is supplied into the fuel cell by the gas supply pipe. The fuel cell unit is generally supported and fixed to a partition wall arranged in a storage container.
[0004]
[Problems to be solved by the invention]
However, in the fuel cell disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-287940, it is necessary to connect the gas supply pipe to the gas tank in a gas-sealed state and to fix the fuel cell itself to the partition. There is a problem that the method of fixing the cells is complicated, the fuel cell itself is complicated, and there are many manufacturing steps.
[0005]
An object of the present invention is to provide a long-life cell stack having a simple structure, easy production, a method for producing the same, and a fuel cell.
[0006]
[Means for Solving the Problems]
The cell stack of the present invention is a cell stack in which one end of each of a plurality of fuel cells is inserted and fixed in each of a plurality of cell insertion holes of a cell support plate, and the plurality of fuel cells are erected on the cell support plate. Forming a cell insertion hole of the cell support plate in a tapered shape toward the cell standing side, and forming a concave curved surface on at least a part of an inner wall surface thereof, and at one end of the fuel cell. Forming an engagement protrusion having a larger diameter than the cell insertion hole on the cell standing side and having a convex curved surface, and forming the convex curved surface of the engagement protrusion of the fuel cell into an inner wall surface of the cell insertion hole. It is formed by joining with a concave curved surface.
[0007]
Such a cell stack is configured such that one end portions of a plurality of fuel cells are inserted and fixed in a plurality of cell insertion holes of a cell support plate, respectively, and the plurality of fuel cells are erected on the cell support plate. A cell support plate in which the cell insertion hole is formed in a tapered shape toward a cell standing side, and at least a part of an inner wall surface of the cell support plate is formed in a concave curved surface; A fuel cell having a larger diameter than the hole on the cell standing side of the insertion hole and having an engaging protrusion having a convex curved surface is prepared, and the other end of the fuel cell is set up in the cell insertion hole. Side, the convex curved surface of the engaging projection is engaged with the concave curved surface of the cell insertion hole, and the cell is joined in this state.
[0008]
That is, for example, the cell support plate is fixed with the larger hole diameter of the cell insertion hole facing up, and inserted into the cell insertion hole of the cell support plate from the other end of the fuel cell, and The convex curved surface of the engaging projection formed at one end of the fuel cell is engaged with the concave curved surface, and the interval between the plurality of fuel cells protruding from the cell support plate is made constant.In this state, for example, the cell The adhesive such as glass interposed between the concave curved surface in the insertion hole and the convex curved surface of the engagement projection can be heated and joined.
[0009]
Therefore, it is possible to obtain a cell stack having a simple structure, and also, after inserting the fuel cells into the plurality of cell insertion holes of the cell support plate, respectively, and by heating, the plurality of fuel cells can be joined and fixed at once. Thus, a cell stack can be easily manufactured.
[0010]
Also, in general, a fuel cell has a solid electrolyte and an outer electrode formed on the outer surface of an inner electrode, an interconnector electrically connected to the inner electrode is exposed to the outside, and the opposing fuel cell has An interconnector of one fuel cell and a current collecting member made of a conductive plate such as Ni felt or a metal plate are arranged between the other outer electrodes, and are electrically connected in series. As described above, since the fuel cells can be fixed in a state where the interval between the plurality of fuel cells protruding from the cell support plate is constant, the thickness of the current collecting member disposed between the fuel cells can be constant. In addition, there is no need to set the thickness of the current collecting member so as to correspond to each distance between the opposed fuel cells. Thereby, the current collecting member made of the conductive plate can be used effectively.
[0011]
Further, the cell stack of the present invention is characterized in that the cell insertion hole on the cell standing side is formed with an inclined surface whose diameter increases toward the cell standing side. In such a cell stack, the fuel cell easily swings around the engaging portion between the concave curved surface in the cell insertion hole and the convex curved surface of the engaging projection of the fuel cell, and a plurality of cells protruding from the cell support plate. It becomes easy to adjust the distance between the fuel cells.
[0012]
Further, in the fuel cell according to the present invention, the cell stack and a gas tank for supplying gas to the plurality of fuel cells are housed in a housing, and the cell support plate of the cell stack is one of the gas tanks. It is characterized by constituting a unit. Such a fuel cell can be easily manufactured with a simple structure, and can be further downsized.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the fuel cell of the present invention, and reference numeral 31 denotes a storage container having a heat insulating structure. Inside the storage container 31, a cell stack 35 in which a plurality of fuel cells 33 are gathered, an oxygen-containing gas supply pipe 39 inserted between the fuel cells 33, and heat provided above the cell stack 35. And an exchange unit 41.
[0014]
The storage container 31 includes a frame 31a made of a heat-resistant metal and a heat insulating material 31b provided on an inner surface of the frame 31a.
[0015]
In the cell stack 35, for example, as shown in FIG. 2, a plurality of fuel cells 33 are arranged in three rows, and electrodes of the outermost fuel cells 33 in two adjacent rows are connected by a conductive member 42. Thus, a plurality of fuel cells 33 arranged in three rows are electrically connected in series. In FIG. 1, a plurality of fuel cells 33 are arranged in four rows.
[0016]
More specifically, as shown in FIG. 2, the fuel cell 33 has a flat shape, and has a plurality of fuel gas passage holes 34 formed therein. The fuel cell 33 has an elliptical cylindrical (flat) porous metal composed mainly of a fuel-side electrode 33a and a dense solid electrolyte 33b and an oxygen-side electrode 33c made of porous conductive ceramics. Are sequentially laminated, and an interconnector 33d is formed on the outer surface of the fuel-side electrode 33a opposite to the oxygen-side electrode 33c. The fuel-side electrode 33a serves as a support.
[0017]
That is, the fuel cell 33 has a cross-sectional shape including an arc-shaped portion A provided at both ends in the width direction and a pair of flat portions B connecting these arc-shaped portions A. It is flat and formed substantially parallel. The pair of flat portions B are formed by forming an interconnector 33d, a solid electrolyte 33b, and an oxygen-side electrode 33c on the flat portion of the fuel-side electrode 33a.
[0018]
A current collecting member 43 made of a metal felt and / or a conductive plate such as a metal plate or a conductive ceramic is interposed between one fuel cell 33 and the other fuel cell 33, and one fuel cell The fuel-side electrode 33a of the cell 33 is electrically connected to the oxygen-side electrode 33c of the other fuel cell 33 via an interconnector 33d provided on the fuel-side electrode 33a and a current collecting member 43, thereby forming a cell stack. 35 are configured.
[0019]
As shown in FIG. 1, the lower ends of the plurality of fuel cells 33 are supported and fixed to a cell support plate 50a constituting a top plate of the fuel gas tank 50, whereby the lower ends of the fuel cells 33 are It is supported and fixed to the gas tank 50 and stands upright. The fuel gas tank 50 is provided with a fuel gas supply pipe 51 for supplying a fuel gas into the fuel cell 33.
[0020]
As shown in FIG. 3, a plurality of cell insertion holes 50a1 into which the lower ends of the fuel cells 33 are inserted and fixed are formed in the cell support plate 50a of the fuel gas tank 50. It is formed in a tapered shape toward the installation side (hereinafter referred to as a cell standing side), and its inner wall surface is a concave curved surface.
[0021]
That is, the inner wall surface of the cell insertion hole 50a1 is formed such that the flat portion B side of the fuel cell 33 is a concave curved surface having an arc-shaped cross section, and the cell insertion hole 50a1 on the cell standing side faces the cell standing side. An inclined surface S whose diameter is increased is formed.
[0022]
On the other hand, at one end of the fuel cell 33, an engagement projection 57 having a convex curved surface larger than the diameter of the cell insertion hole 50 a 1 on the cell standing side is formed. The cell 57 is joined by the glass 59 in a state where the convex curved surface of the portion 57 is engaged with the concave curved surface of the inner wall surface of the cell insertion hole 50a1.
[0023]
Note that the concave curved surface may be formed on a part of the inner wall surface of the cell insertion hole 50a1, and the convex curved surface of the engagement projection 57 of the fuel cell 33 is also formed on a part of the engagement projection 57. It is only necessary that the concave curved surface of the cell insertion hole 50a1 and the convex curved surface of the engagement protrusion 57 engage at least, and the fuel cell 33 can swing to some extent in the direction of the opposed flat portion B. The engagement projection 57 is a semi-cylindrical column, and has a curved surface formed with a hole through which the fuel cell 33 is inserted.
[0024]
Such a cell stack 35 is formed as follows. First, a fuel cell 33 having an engagement protrusion 57 at one end and a cell support plate 50a having a cell insertion hole 50a1 are prepared. As shown in FIG. 4, the inclined surface of the cell insertion hole 50a1 is prepared. The cell support plate 50a is fixed with the side where S is formed downward, that is, with the larger hole diameter of the cell insertion hole 59a1 facing up, and the fuel cell is inserted into the cell insertion hole 50a1 of the cell support plate 50a. 33 is inserted from the other end, that is, the side where the engagement protrusion 57 is not formed, so that the interval between the flat portions B of the plurality of fuel cells 33 projecting from the cell support plate 50a is substantially constant. The fuel cell 33 is adjusted by rocking, and in this state, the glass 59 is used to join the convex curved surface of the engaging projection 57 and the concave curved surface of the cell insertion hole 59a1.
[0025]
Therefore, the plurality of fuel cells 33 can be joined and fixed to the cell support plate 50a at a time, and for example, even if the fuel cells 33 are slightly deformed in the cell manufacturing process, the fuel cells 33 are fixed to the flat portions B thereof. By swinging in the direction, the distance between the flat portions B of the fuel cells 33 can be adjusted to be substantially constant. For example, the current collecting member 43 made of a conductive plate such as a metal plate can be adjusted between the fuel cells 33. Can be easily interposed. Alternatively, after the current collecting member 43 is interposed between the flat portions B of the plurality of fuel cells 33, the convex curved surface of the engaging projection 57 and the concave curved surface of the cell insertion hole 50a1 are joined by the glass 59. The cell stack 35 may be formed.
[0026]
The cell stack 35 constitutes a top plate of the gas tank 50 as shown in FIG. 3, and the cell stack 35 is screwed onto a frame constituting the gas tank 50 so as to seal the cell support plate 50a. Weared or joined.
[0027]
FIG. 5 shows a current collecting member 43 made of a conductive plate such as a metal plate, an alloy plate, or a conductive ceramic interposed between the fuel cells 33. The current collecting member 43 is provided at one end of a rectangular plate. A plurality of slits are formed substantially in parallel with each other, and current collecting pieces 43a between the slits are alternately projected on both sides of the current collecting member 43, and a comb tooth having a plurality of current collecting pieces 43a formed at one end of a base 43b. The plurality of current collecting pieces 43a are in contact with the outer surfaces of the fuel cells 33 facing each other.
[0028]
That is, the current collecting piece 43a is disposed between the interconnector 33d, which is the flat portion of the fuel cell 33 facing the fuel cell, and the oxygen-side electrode 33c, and the fuel cells 33 are connected in series. Since the current collecting piece 43a is in contact with the flat portion B, the current collecting piece 43a is securely in contact with the current collecting piece 43a, and electrical connection can be reliably performed. The plurality of current collecting pieces 43a are joined to the fuel cell 33 with an Ag paste interposed. The Ag paste is baked at the time of power generation, and is joined to the current collecting piece 43a, the interconnector 33d of the fuel cell 33, and the oxygen-side electrode 33c, whereby the electrical connection between the current collecting piece 43a and the fuel cell 33 is sufficiently increased. Can be taken. The width of the current collecting piece 43a is desirably 2 mm or less from the viewpoint of improving current collecting characteristics and sufficiently supplying an oxygen-containing gas between the current collecting pieces 43a.
[0029]
A plurality of these current collecting members 43 are arranged between the opposed fuel cells 33, and are inserted from the base 43b between the opposed fuel cells 33, and the base 43b is located below. These current collecting members 43 are configured by coating the surface of a ferritic stainless steel mainly composed of conductive Cr and Fe with an oxidation resistant substance made of Ag. The current collecting member 43 is not limited to the above-described one as long as it has a conductive metal or alloy as a main component and the surface thereof is coated with an oxidation-resistant substance.
[0030]
A current collecting member 44 shown in FIG. 6 may be interposed between the opposed fuel cells 33. The current collecting member 44 shown in FIG. 6 has a plurality of slits formed substantially parallel to each other, and a current collecting piece 44a formed by alternately protruding current collecting pieces 44a on both sides of the current collecting member 44 to form a long group. The base 44b and the current collecting piece 44a may be alternately formed. With the current collecting member 44 as shown in FIG. 6, the arrangement between the fuel cells can be performed more easily than with the current collecting member 43 of FIG.
[0031]
Further, as shown in FIG. 6C, a plurality of current collecting pieces 46a are formed at predetermined intervals in the length direction, and every other current collecting piece 46a is formed in every other current collecting piece 46a. The fuel cell 33 may be made to protrude and contact the oxygen-side electrode 33c side, and the other flat part may be brought into contact with the interconnector 33d of the other fuel cell 33. In this case, the connection with the interconnector 33d can be sufficiently performed.
[0032]
The tip of the oxygen-containing gas supply pipe 39 is located between the fuel cells 33 as shown in FIG.
[0033]
The heat exchange section 41 includes a heat exchanger 41a and an oxygen-containing gas storage chamber 41b provided to face the cell stack 35.
[0034]
As shown in FIG. 7, the heat exchanger 41a has a plate-fin type structure in which flat plates 61 and corrugated plates 63 are alternately stacked, and a corrugated plate 63a forming a passage communicating with the oxygen-containing gas storage chamber 41b is The corrugated plate 63b formed as shown in FIG. 7B and forming a passage for discharging the combustion gas is formed as shown in FIG. 7C.
[0035]
The combustion gas is introduced from the lower side surface of the heat exchanger 41a and discharged above the heat exchanger 41a as shown by a dashed line in FIG. 1, while the oxygen-containing gas is discharged by a pipe 73 through a dashed line in FIG. As shown, it is introduced from the upper side surface of the heat exchanger 41a, is guided below the heat exchanger 41a, and is introduced into the oxygen-containing gas storage chamber 41b.
[0036]
As shown in FIG. 8, the oxygen-containing gas storage chamber 41b is provided on the end face of the heat exchanger 41a on the side where the oxygen-containing gas is introduced, that is, on the cell stack side end face, and passes through each passage of the corrugated plate 63a. The oxygen-containing gas is stored once.
[0037]
A plurality of oxygen-containing gas supply pipes 39 communicate with the oxygen-containing gas storage chamber 41b.
[0038]
Further, as shown in FIG. 1, between the side surface of the oxygen-containing gas storage chamber 41b and the heat insulating material 31b, that is, around the oxygen-containing gas storage chamber 41b, the combustion gas is introduced to introduce the combustion gas into the heat exchanger 41a. The mouth 71 is provided. The combustion gas is led out to the passage of the corrugated plate 63b of the heat exchanger 41a through the combustion gas inlet 71.
[0039]
In the fuel cell configured as described above, an oxygen-containing gas (for example, air) from the outside is introduced into the heat exchanger 41a via the pipe 73, introduced into the oxygen-containing gas storage chamber 41b, and the oxygen-containing gas supply pipe 39 is connected. Fuel gas (for example, hydrogen) is supplied into the fuel gas passage hole 34 of the fuel cell 33 via the fuel gas supply pipe 51 and the gas tank 50, and the fuel cell 33 is discharged. To generate electricity.
[0040]
Excess fuel gas not used for power generation blows out from the upper end of the fuel gas passage hole 34, and excess oxygen-containing gas not used for power generation blows upward through the space between the fuel cells 33, and surplus fuel The gas and the excess oxygen-containing gas are reacted and burned to generate combustion gas, which is led to the heat exchanger 41a through the combustion gas inlet 71 and discharged from the upper end of the heat exchanger 41a. .
[0041]
In the fuel cell of the present invention, the cell stack 35 can be manufactured by joining and fixing a plurality of fuel cells 33 to the cell support plate 50a at a time. For example, a current collecting member made of a conductive plate such as a metal plate 43 can be easily interposed between the fuel cells 33, and the cell stack 35 can be easily manufactured with a simple structure, whereby the fuel cell can be easily manufactured with a simple structure. Further, since the distance between the fuel cells can be freely controlled, electrical connection with the current collecting member 43 can be reliably ensured, and a long-life fuel cell can be obtained.
[0042]
In addition, excess fuel gas and oxygen-containing gas that have not contributed to power generation react and burn, and this combustion gas and an external oxygen-containing gas are introduced into the heat exchanger 41a, where the heat gas and the oxygen-containing gas are combined. Since heat can be exchanged with the oxygen-containing gas and the oxygen-containing gas can be preheated, the startup time until the fuel cell 33 is heated to substantially generate power can be greatly reduced.
[0043]
Further, in the present invention, since the oxygen-containing gas storage chamber 41b and the heat exchanger 41a are formed adjacently above the cell stack 35, the burned high-temperature combustion gas can be transferred to the heat exchanger 41a without using piping or the like. And the preheating efficiency of the oxygen-containing gas can be increased with a simple structure.
[0044]
Further, since the combustion gas and the oxygen-containing gas can be heat-exchanged in the storage container 31, there is no need to separately provide a burner for preheating the oxygen-containing gas, and the size can be reduced, and the combustion gas can be effectively used.
[0045]
Further, since the oxygen-containing gas storage chamber 41b is provided in the heat exchanger 41a, the connection between the heat exchanger 41a and the oxygen-containing gas supply pipe 39 can be performed through the oxygen-containing gas storage chamber 41b. The oxygen-containing gas from 41a can be reliably supplied between the fuel cells 33.
[0046]
Note that the present invention is not limited to the above-described embodiment, and various changes can be made without changing the gist of the present invention. For example, in the above-described embodiment, the example in which the cell stack 35 is configured using the fuel cell 33 having an elliptical column shape and a plurality of fuel gas passage holes 34 as illustrated in FIG. 2 has been described, but the fuel cell has a cylindrical shape. The fuel gas passage hole may be one, and the shape of the fuel cell is not particularly limited.
[0047]
FIG. 9 illustrates a case in which a cylindrical fuel cell 93 is joined to a cell support plate 95. One end of the fuel cell 93 is provided with a spherical engaging projection 97, The convex curved surface of the engaging projection 97 of the fuel cell 93 is engaged with and joined to the concave curved surface of the cell insertion hole 95a1 of the fuel cell 93. The engagement projection 97 has a structure in which a through hole through which the fuel cell 93 is inserted is formed in a sphere. Even with such a cell stack, the same effect as described above can be obtained.
[0048]
FIG. 10 shows a structure in which the cell support plate 103 of the cell stack 101 of the present invention is joined to a fuel gas tank 105. The cell stack 101 has an engagement projection 109 formed at one end of a fuel cell 107. A part of the convex curved surface of the engaging projection 109 is engaged with the concave curved surface of the cell insertion hole 111 of the cell support plate 103, and is joined by the glass 113.
[0049]
The engaging protrusion 109 has a structure in which a hole through which the fuel cell is inserted is formed on the side surface of the cylindrical body, and a gap is formed between one end of the fuel cell 107 and the top plate of the fuel gas tank 105. In the top plate of the fuel gas tank 105, a through hole 119 for supplying fuel gas to the gas passage hole 117 of the fuel cell 107 is formed.
[0050]
Since such a cell stack 101 is joined on the gas tank 105, it has substantially the same operation and effect as the cell stack of FIG.
[0051]
Further, although the plate fin type is used as the heat exchanger 41a, the present invention is not limited to this, and it goes without saying that other heat exchangers may be used.
[0052]
【The invention's effect】
In the cell stack of the present invention, the cell support plate is fixed with the larger diameter of the cell insertion hole facing upward, and a plurality of fuel cells are inserted into the cell insertion hole of the cell support plate from the other end. The convex curved surface of the engaging projection formed at one end of the fuel cell is engaged with the concave curved surface in the cell insertion hole, and the interval between the plurality of fuel cells protruding from the cell support plate is made constant. In this state, for example, a bonding material such as glass interposed between the concave curved surface in the cell insertion hole and the convex curved surface of the engagement protrusion can be heated and bonded, thereby obtaining a cell stack having a simple structure. After the fuel cells are inserted into the plurality of cell insertion holes of the cell support plate, respectively, the plurality of fuel cells can be joined and fixed at once by heating, and a cell stack can be easily manufactured.
[0053]
Further, since the distance between the fuel cells is adjusted, even when a current collecting member made of a conductive plate is interposed, the electrical connection between the fuel cells can be reliably maintained for a long time. .
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a fuel cell of the present invention.
FIG. 2 is a cross-sectional view showing the cell stack of FIG.
FIG. 3 is a partially cutaway perspective view showing a state in which a top plate of a fuel gas tank is used as a cell support plate and fuel cells are erected on the fuel gas tank.
FIG. 4 is a partially cutaway perspective view for explaining a method of manufacturing the cell stack of the present invention.
5A and 5B show a state in which fuel cells are connected by using a comb-shaped current collecting member having a plurality of current collecting pieces formed at one end of a base; FIG. 5A is a side view, and FIG. () Is a perspective view showing a current collecting member.
FIG. 6 shows a state in which fuel cells are connected by using a current collecting member formed by forming a plurality of current collecting piece groups at predetermined intervals in the length direction, and FIG. (B) is a perspective view showing a current collecting member, and (c) is a perspective view showing a current collecting member in which a current collecting piece protrudes only on one side.
FIGS. 7A and 7B are views for explaining the concept of the heat exchanger of FIG. 1, wherein FIG. 7A is a perspective view of the heat exchanger, and FIG. 7B shows a corrugated sheet for forming a passage for an oxygen-containing gas. FIG. 3C is a perspective view showing a corrugated plate for forming a passage of a combustion gas.
FIG. 8 is a perspective view for explaining a heat exchange unit of the present invention.
FIG. 9 is a partially cutaway perspective view showing a state in which a cylindrical fuel cell unit is joined to a cell support plate.
FIG. 10 is a partially cutaway perspective view showing a state in which a cell stack is erected on the upper surface of a fuel gas tank.
[Explanation of symbols]
31 ... storage containers 33, 93, 107 ... fuel cell 33a ... fuel side electrode (inside electrode)
33b: solid electrolyte 33c: oxygen side electrode (outer electrode)
50, 105 ... fuel gas tanks 35, 101 ... cell stacks 50a, 95, 103 ... cell support plates 50a1, 111 ... cell insertion holes 57, 97, 109 ... engagement protrusions S ..Slope of cell insertion hole

Claims (4)

複数の燃料電池セルの一端部をセル支持板の複数のセル挿入孔にそれぞれ挿入固定し、前記セル支持板に前記複数の燃料電池セルを立設してなるセルスタックであって、前記セル支持板のセル挿入孔をセル立設側に向けて先細形状に形成し、かつその内壁面の少なくとも一部に凹曲面を形成するとともに、前記燃料電池セルの一端部に、前記セル挿入孔のセル立設側の孔径よりも大きく、かつ凸曲面を有する係合突出部を形成し、前記燃料電池セルの係合突出部の凸曲面を前記セル挿入孔の内壁面の凹曲面に係合せしめた状態で接合してなることを特徴とするセルスタック。A cell stack in which one end of each of the plurality of fuel cells is inserted and fixed in each of a plurality of cell insertion holes of a cell support plate, and the plurality of fuel cells are erected on the cell support plate. A cell insertion hole of the plate is formed in a tapered shape toward the cell standing side, and a concave curved surface is formed on at least a part of the inner wall surface, and a cell of the cell insertion hole is formed at one end of the fuel cell. An engaging projection having a diameter larger than the hole on the standing side and having a convex curved surface was formed, and the convex curved surface of the engaging projecting portion of the fuel cell was engaged with the concave curved surface of the inner wall surface of the cell insertion hole. A cell stack characterized by being joined in a state. セル立設側のセル挿入孔には、セル立設側に向けて拡径する傾斜面が形成されていることを特徴とする請求項1記載のセルスタック。2. The cell stack according to claim 1, wherein the cell insertion hole on the cell standing side is formed with an inclined surface whose diameter increases toward the cell standing side. 複数の燃料電池セルの一端部をセル支持板の複数のセル挿入孔にそれぞれ挿入固定し、前記セル支持板に前記複数の燃料電池セルを立設してなるセルスタックの製法であって、前記セル挿入孔がセル立設側に向けて先細形状に形成され、かつその内壁面の少なくとも一部が凹曲面に形成されたセル支持板、及び一端部に、前記セル挿入孔のセル立設側の孔径よりも大きく、かつ凸曲面を有する係合突出部が形成された燃料電池セルを準備し、前記セル挿入孔に前記燃料電池セルの他端部をセル立設側に向けて挿入し、前記係合突出部の凸曲面を前記セル挿入孔の凹曲面に係合させ、この状態で接合することを特徴とするセルスタックの製法。A method of manufacturing a cell stack, wherein one end of each of a plurality of fuel cells is inserted and fixed in a plurality of cell insertion holes of a cell support plate, and the plurality of fuel cells are erected on the cell support plate. A cell support plate in which a cell insertion hole is formed in a tapered shape toward the cell standing side, and at least a part of the inner wall surface is formed in a concave curved surface, and at one end, a cell standing side of the cell insertion hole. Prepare a fuel cell in which an engagement protrusion having a larger diameter than the hole diameter and a convex curved surface is formed, and insert the other end of the fuel cell into the cell insertion hole toward the cell standing side, A method of manufacturing a cell stack, wherein a convex curved surface of the engaging projection is engaged with a concave curved surface of the cell insertion hole, and the cells are joined in this state. 請求項1又は2記載のセルスタックと、複数の燃料電池セルにガスを供給するためのガスタンクとを収納容器内に収納してなり、前記セルスタックのセル支持板が前記ガスタンクの一部を構成していることを特徴とする燃料電池。The cell stack according to claim 1 or 2, and a gas tank for supplying gas to the plurality of fuel cells are housed in a housing, and a cell support plate of the cell stack forms a part of the gas tank. A fuel cell, comprising:
JP2002194503A 2002-07-03 2002-07-03 Cell stack manufacturing method Expired - Fee Related JP3894849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194503A JP3894849B2 (en) 2002-07-03 2002-07-03 Cell stack manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194503A JP3894849B2 (en) 2002-07-03 2002-07-03 Cell stack manufacturing method

Publications (2)

Publication Number Publication Date
JP2004039428A true JP2004039428A (en) 2004-02-05
JP3894849B2 JP3894849B2 (en) 2007-03-22

Family

ID=31703183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194503A Expired - Fee Related JP3894849B2 (en) 2002-07-03 2002-07-03 Cell stack manufacturing method

Country Status (1)

Country Link
JP (1) JP3894849B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063932A (en) * 2003-01-29 2005-03-10 Kyocera Corp Fuel cell
JP2006019059A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solid electrolyte fuel battery cell, cell stack, and fuel battery
JP2007180000A (en) * 2005-11-30 2007-07-12 Kyocera Corp Fuel cell
EP2819231A1 (en) * 2013-06-27 2014-12-31 Toto Ltd. Solid oxide fuel cell and manufacturing method and manufacturing apparatus for same
JP2019016538A (en) * 2017-07-07 2019-01-31 日本碍子株式会社 Cell stack device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063932A (en) * 2003-01-29 2005-03-10 Kyocera Corp Fuel cell
JP4623974B2 (en) * 2003-01-29 2011-02-02 京セラ株式会社 Fuel cell
JP2006019059A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solid electrolyte fuel battery cell, cell stack, and fuel battery
JP2007180000A (en) * 2005-11-30 2007-07-12 Kyocera Corp Fuel cell
EP2819231A1 (en) * 2013-06-27 2014-12-31 Toto Ltd. Solid oxide fuel cell and manufacturing method and manufacturing apparatus for same
CN104253279A (en) * 2013-06-27 2014-12-31 Toto株式会社 Solid oxide fuel cell and manufacturing method and manufacturing apparatus for same
JP2019016538A (en) * 2017-07-07 2019-01-31 日本碍子株式会社 Cell stack device

Also Published As

Publication number Publication date
JP3894849B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3580455B2 (en) Molten carbonate fuel cell and power generator using the same
JP3894860B2 (en) Fuel cell
JP2005158531A (en) Fuel cell stack and its manufacturing method, and fuel cell
JP4005837B2 (en) Fuel cell
JP3894817B2 (en) Fuel cell
JP3898539B2 (en) Fuel cell
JP4192017B2 (en) Cell stack and fuel cell
JP2005100687A (en) Fuel cell
JP2007214135A (en) Separator for molten carbonate type fuel cell provided with fuel reforming chamber and its manufacturing method
JP3894849B2 (en) Cell stack manufacturing method
JP3898647B2 (en) Cell stack and fuel cell
JP4018921B2 (en) Fuel cell
JP2005063932A (en) Fuel cell
JP3894820B2 (en) Fuel cell
JP4018922B2 (en) Fuel cell
JP4424765B2 (en) Cylindrical cell type solid oxide fuel cell
JP3764693B2 (en) Fuel cell
JP2003297396A (en) Fuel cell
JP3894842B2 (en) Fuel cell
JP4018916B2 (en) Fuel cell, cell stack and fuel cell
JP4031674B2 (en) Fuel cell
JP3898541B2 (en) Cell stack and fuel cell
JP4416729B2 (en) Fuel cell
JP3894814B2 (en) Fuel cell
JP4485859B2 (en) Fuel cell stack and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees