JP4005837B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP4005837B2
JP4005837B2 JP2002116369A JP2002116369A JP4005837B2 JP 4005837 B2 JP4005837 B2 JP 4005837B2 JP 2002116369 A JP2002116369 A JP 2002116369A JP 2002116369 A JP2002116369 A JP 2002116369A JP 4005837 B2 JP4005837 B2 JP 4005837B2
Authority
JP
Japan
Prior art keywords
fuel
current collecting
fuel cell
cell
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002116369A
Other languages
Japanese (ja)
Other versions
JP2003308857A (en
Inventor
高志 重久
彰 小梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002116369A priority Critical patent/JP4005837B2/en
Publication of JP2003308857A publication Critical patent/JP2003308857A/en
Application granted granted Critical
Publication of JP4005837B2 publication Critical patent/JP4005837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に関するもので、特に複数の燃料電池セルの集電特性が良好な燃料電池に関するものである。
【0002】
【従来技術】
次世代エネルギーとして、近年、複数の燃料電池セルを収納容器内に収納した燃料電池が種々提案されている。
【0003】
従来の固体電解質型燃料電池は、複数の燃料電池セルを収納容器内に収納し、燃料電池セル同士を集電部材により電気的に直列又は並列に接続して構成されており、発電は燃料電池セルに酸素含有ガス及び燃料ガスを供給して600〜1000℃程度の高温で行われていた。
【0004】
そして、燃料電池セル間の電気的な接続を行う集電部材は、従来、繊維状の金属が集合した金属フェルト状のものが用いられていた。このようなフェルト状の集電部材を用いた燃料電池は、複数の燃料電池セルを配列集合させ、例えば、一方の燃料電池セルのインターコネクタと、他方の燃料電池セルの外側電極との間に、フェルト状の集電部材を詰め込み燃料電池セルを直列に接続してセルスタックを形成し、このセルスタックを収納容器内に収納して構成されていた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した燃料電池では、隣設する燃料電池セル間にフェルト状の集電部材を詰め込み、その集電部材の弾性力で隣設する燃料電池セルの側面を、隣設する燃料電池セルを広げるようにして押圧し、電気的な接続を確保していたため、燃料電池セルを押し広げるような力が作用し、燃料電池セルの固定部に力が作用し、折損したり、セルスタックが口開きするという問題があった。特に、燃料電池セル間の電気的な接続を確保するため、集電部材の弾性力を強くした場合にはその傾向が強い。
【0006】
本出願人は、先に、燃料電池セル間の電気的な接続を長期間において確実に確保し、燃料電池セル間の集電特性を向上するため、弾性力を長期間維持できる板状の集電部材を用いて燃料電池セルを電気的に接続した燃料電池を出願した。このような燃料電池では、強い弾性力で燃料電池セルを押し広げるようにして電気的な接続を確保していたため、燃料電池セルの折損を助長したり、経時的に集電部材による押圧部分が広がっていく傾向があった。
【0007】
本発明は、燃料電池セル間の集電特性を向上できるとともに、燃料電池セルの折損を防止でき、さらにセルスタックの口開きを防止できる燃料電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の燃料電池は、内部に燃料ガス通過孔を有する燃料電池セルを複数配列するとともに、前記燃料電池セルの一端部が、前記燃料電池セルに燃料ガスを供給するためのガスタンクに支持された状態で固定され、前記燃料電池セルの他端部が固定されていないセルスタックを収納容器内に収納してなる燃料電池であって、配列された複数の前記燃料電池セル間に集電部材を配置し、該集電部材の弾性力で前記隣設する燃料電池セルのそれぞれの側面を押圧して電気的に接続するとともに、前記セルスタックにおける前記燃料電池セルの配列方向両端に、前記セルスタックの広がりを阻止する拡幅阻止部材をそれぞれ該拡幅阻止部材の一端部が前記ガスタンクに支持された状態で立設していることを特徴とする。
【0009】
本発明の燃料電池では、集電部材の弾性力で隣設する燃料電池セルの側面を押し広げるようにして、燃料電池セル間を電気的に接続しているため、燃料電池セルの電気的な接続を確保できるとともに、セルスタックにおける燃料電池セルの配列方向両端に、セルスタックの広がりを阻止する拡幅阻止部材をそれぞれ設けたので、集電部材の弾性力で燃料電池セルの側面を押し広げるようにしたとしても、拡幅阻止部材によりセルスタックの拡幅阻止部材間の距離を一定に維持でき、燃料電池セルの広がりを阻止して燃料電池セルの変形が抑制され、燃料電池セルの折損を確実に防止できるとともに、セルスタックの口開きが抑制され、これにより集電部材による燃料電池セル間の電気的な接続を長期にわたって維持できる。
【0010】
また、燃料電池セルの一端部が、燃料電池セルに燃料ガスを供給するためのガスタンクに支持された状態で固定され、燃料電池セルの他端部を固定されていないセルスタックが形成されていることから、この場合には、他端部がフリーな状態であり、隣設する燃料電池セルの他端部間が広がりやすいが、セルスタックの広がりを阻止する拡幅阻止部材により、燃料電池セルの他端部間の広がりを確実に防止できる。
【0011】
また、セルスタックにおける燃料電池セルの配列方向両端に設けられたセルスタックの広がりを阻止する拡幅阻止部材の一端部ガスタンクに支持された状態で立設していることから、セルスタックの両側から中央部に対して確実に押圧力を付与できる。
【0012】
また、本発明の燃料電池は、収納容器内に複数の前記セルスタックが収容されており、前記セルスタック同士を電気的に接続する導電部材が、前記セルスタックを構成する前記燃料電池セルと前記拡幅阻止部材との間に介装されていることを特徴とする
【0013】
このような燃料電池では、複数のセルスタックの電気的な接続を導電部材により確実に行うことができる。
【0015】
また、本発明の燃料電池は、前記集電部材は板状であることを特徴とする。このような燃料電池では板状の集電部材を用いることにより、燃料電池セルの側面とは面接触となり、従来のようなフェルト状の集電部材よりも燃料電池セルに当接する面積が大きくなり、集電特性を向上できる。また、集電部材は板状であるため弾性力も大きく、振動等が生じたとしても燃料電池セルとの十分な接触を長期間確保できる。
【0016】
さらに、集電部材は板状であるため、収納容器内が高温となった場合でも、従来のフェルト状の集電部材よりも焼結しにくく、燃料電池セルとの十分な接触を長期間確保できる。また、例えば、一方の燃料電池セルのインターコネクタと他方の燃料電池セルの外側電極との間に集電部材を詰め込む際にも、一方の燃料電池セルと他方の燃料電池セルの外側電極同士の導通を確実に防止できる。
【0017】
【発明の実施の形態】
図1は、本発明の燃料電池の一形態を示すもので、符号31は断熱構造を有する収納容器を示している。この収納容器31の内部には、複数の燃料電池セル33を配列してなる複数のセルスタック35と、セルスタック35間に挿入される酸素含有ガス供給管39と、燃料電池セル33の上方に設けられた熱交換部41とが設けられている。
【0018】
収納容器31は、耐熱性金属からなる枠体31aと、この枠体31aの内面に設けられた断熱材31bとから構成されている。
【0019】
収納容器31内の燃料電池セル33は、図2に示すように、3列に整列しており、隣設した2列の最外部の燃料電池セル33の電極同士が導電部材42で接続され、これにより3列に整列した複数の燃料電池セル33が電気的に直列に接続している。尚、図1では燃料電池セルを4列に整列した状態を記載し、導電部材42については省略した。
【0020】
具体的に説明すると、燃料電池セル33は断面が扁平状で、全体的に見て楕円柱状であり、その内部には複数の燃料ガス通過孔34が形成されている。この燃料電池セル33は、断面が扁平状で、全体的に見て楕円柱状の多孔質な金属を主成分とする燃料側電極(内側電極)33aの外面に、緻密質な固体電解質33b、多孔質な導電性セラミックスからなる酸素側電極(外側電極)33cを順次積層し、酸素側電極33cと反対側の燃料側電極33aの外面にインターコネクタ33dを形成して構成されており、燃料側電極33aが支持体となっている。
【0021】
即ち、燃料電池セル33は、断面形状が、幅方向両端に設けられた弧状部と、これらの弧状部を連結する一対の平坦部とから構成されており、一対の平坦部は平坦であり、ほぼ平行に形成されている。これらの一対の平坦部は、燃料側電極33aの平坦部にインターコネクタ33d、又は固体電解質33b、酸素側電極33cを形成して構成されている。
【0022】
一方の燃料電池セル33と他方の燃料電池セル33との間には板状集電部材43が介在され、一方の燃料電池セル33の燃料側電極33aは、該燃料側電極33aに設けられたインターコネクタ33d、板状集電部材43を介して他方の燃料電池セル33の酸素側電極33cに電気的に接続されている。尚、図2では、集電部材43を簡略化して記載した。
【0023】
板状集電部材43は、図3に示すように、燃料電池セル33の平坦部(側面)に対向して設けられる帯状体43aと、この帯状体43aの対向するそれぞれの長辺に形成され、対向する燃料電池セル33側に突出して当接する複数の集電片43bとから構成されている。対向する燃料電池セル33間には、帯状体43aの長さ方向が、燃料電池セル33の軸長方向(長さ方向)となるように、1本の板状集電部材43が介装されている。尚、対向する燃料電池セル33間に複数の板状集電部材43を介装しても良い。
【0024】
このような板状集電部材43は、帯状母体の対向する長辺に複数のスリットを略平行に形成し、該スリット間の集電片43bを対向する燃料電池セル33側に交互に突出させて形成され、複数の集電片43bは対向する燃料電池セル33の外面にそれぞれ交互に当接している。
【0025】
即ち、集電片43bは、一方の燃料電池セル33の平坦部であるインターコネクタ33dと、他方の燃料電池セル33の酸素側電極33c間に配置され、燃料電池セル33同士が直列に接続されている。平坦部に集電片43bが当接しているため、電気的接続を確実に行うことができる。また、複数の集電片43bはAgペーストを介して燃料電池セル33に接合している。このAgペーストは発電時に焼き付けられ、集電片43bと燃料電池セル33のインターコネクタ33d、酸素側電極33cに接合し、これにより、集電片43bと燃料電池セル33との電気的接続を十分にとることができる。集電片43bの幅は、集電特性を向上し、集電片43b間に十分に酸素含有ガスを供給するという点から、2mm以下が望ましい。
【0026】
図4は、他の板状集電部材143を示すもので、この板状集電部材143は、矩形状板の一端部に複数のスリットを略平行に形成し、該スリット間の集電片143aを板状集電部材143の両側に交互に突出させ、基部143bの一端部に複数の集電片143aが形成された櫛歯形状とされ、複数の集電片143aが対向する燃料電池セル33の外面にそれぞれ当接している。
【0027】
これらの板状集電部材143は、対向する燃料電池セル33間に複数配置されており、対向する燃料電池セル33間に基部143bから挿入され、基部143bが下に位置している。
【0028】
対向する燃料電池セル33間には、図5に示す板状集電部材144を介在せしめても良い。図5に示す板状集電部材144は、複数のスリットを略平行に形成し、その間の集電片144aを交互に板状集電部材144の両側に突出させて形成された集電片144a群を、長さ方向に所定間隔を置いて形成して構成し、基部144bと集電片144aを交互に形成して構成されている。図5に示すような板状集電部材144では、図4の板状集電部材143よりも燃料電池セル33間への配置を簡単に行うことができる。
【0029】
また、図5(c)に示すように、複数の集電片146a群を長さ方向に所定間隔を置いて形成し、一つの集電片146a群において集電片146aを一つおきに一方の燃料電池セル33の酸素側電極33c側に突出させて当接せしめ、その他の平坦な部分を他方の燃料電池セル33のインターコネクタ33dに当接せしめるようにしても良い。この場合、インターコネクタ33dとの接合を十分に行うことができる。
【0030】
図6は、さらに他の板状集電部材243を示すもので、この板状集電部材243は、矩形状板をZ型形状に折曲して構成され、その両端部は略平行とされている。即ち、板状集電部材243は、中央部に形成されバネを付与するための連結部243aと、この連結部243aの両側に形成された略平行の当接部243bとから構成されており、板状集電部材243の両端部に形成された当接部243bが、対向する燃料電池セル33の外面にそれぞれ当接している。
【0031】
板状集電部材243の当接部243bには波形の凹凸が形成されており、当接部243bに形成された凹部243b1がガス流通方向に形成されている。図6(b)では、紙面に向かって垂直方向がガス流通方向となる。ガスは、板状集電部材243の当接部243bに形成された凹部243b1と酸素側電極33c外面との間を通過し、ガスの酸素側電極33c表面への供給を増加でき、発電性能を向上できる。板状集電部材243は、対向する燃料電池セル33間に複数配置することにより、燃料電池セル33間の集電特性を向上できる。
【0032】
板状集電部材243は、対向する燃料電池セル33の平坦部であるインターコネクタ33dと、酸素側電極33cとの間に配置され、燃料電池セル33同士が直列に接続されている。平坦部に板状集電部材243の当接部243bが当接しているため確実に当接し、電気的接続を確実に行うことができる。
【0033】
図6(c)は板状集電部材244の当接部244bに複数の凸部244b1を点在して形成したもので、このような板状集電部材244でも同様な効果を得ることができる。
【0034】
尚、当接部243b、244bは全面がインターコネクタ33dに当接し、酸素側電極33cには、上記したように、当接部243b、244bの酸素側電極33c側に突出した部分を当接させても良い。この場合には、当接部243b、244bのインターコネクタ33dへの接続固定をさらに確実に行うことができる。また、当接部243b、244bに複数のスリットを形成し、この部分から燃料ガスを酸素側電極33cに供給することもできる。
【0035】
これらの板状集電部材43、143、144、146、243、244は、導電性を有するCr、Feを主成分とするフェライト系ステンレスの表面をAgからなる耐酸化性物質で被覆して構成されている。尚、板状集電部材43、143、144、146、243、244は導電性を有する金属又は合金を主成分とするものの表面を耐酸化性物質で被覆したものであれば、上記したものに限定されるものではない。
【0036】
燃料電池セル33の下方には、図1に示したように、燃料ガスを燃料電池セル33に供給するための燃料ガスタンク45が設けられ、この燃料ガスタンク45には、外部から燃料ガスを燃料ガスタンク45に供給するための燃料ガス供給管51が接続されている。
【0037】
燃料ガスタンク45には、燃料電池セル33の下端部に取り付けられた取付治具53が螺着しており、これにより、燃料電池セル33が燃料ガスタンク45にそれぞれ立設している。即ち、取付治具53は、燃料電池セル33の端部に取り付けられたセル端部側取付治具53aと、両端部がセル端部側取付治具53a及び燃料ガスタンク45にそれぞれ螺着する連結部材53bとから構成されており、連結部材53bの両端部には向きが逆のねじ部が形成され、連結部材53bを一方側に回転させると、両端部がセル端部側取付治具53a及び燃料ガスタンク45にそれぞれ螺着するように形成されている。
【0038】
セル端部側取付治具53a、連結部材53bには、燃料ガスタンク45と燃料電池セル33の燃料ガス通過孔34に連通するように貫通孔が形成されている。
【0039】
そして、上記したように、集電部材43、143、144、146、243、244が隣設する燃料電池セル33間に配置されており、集電部材43、143、144、243、244の弾性力で隣設する燃料電池セル33のそれぞれの側面を押圧して電気的に接続されているが、本発明では、セルスタック35の広がりを阻止するため、即ち、隣設する燃料電池セル33の上端部の広がりを防止するため、図2、図7に示すように、セルスタック35の両端、即ち、一列に整列した燃料電池セル33の配列方向両端に、セル列毎(セルスタック毎)に拡幅阻止部材57がそれぞれ設けられている。
【0040】
拡幅阻止部材57の下端部は、ガスタンク45の側面に支持固定されており、一端部がガスタンク45に支持された状態で立設している。拡幅阻止部材57とセルスタック35の最も外側に位置する燃料電池セル33との間には、導電部材42が介装されている。尚、図1では拡幅阻止部材57の記載は省略した。
【0042】
酸素含有ガス供給管39は、図1に示したように、その先端部が燃料電池セル33間に位置している。発電で用いられなかった余剰の酸素含有ガスは、燃料電池セル33間を通って燃料電池セル33の上方に流れ、発電で用いられなかった余剰の燃料ガスは、燃料電池セル33の燃料ガス通過孔34を通って燃料電池セル33の上方から吹き出し、燃料電池セル33の上端近傍において、燃料ガスと酸素含有ガスが反応して燃焼するように構成されている。
【0043】
熱交換部41は、熱交換器41aと、セルスタック35に対向して設けられた酸素含有ガス収容室41bとから構成されている。
【0044】
熱交換器41aは、図に示すように、平板61と波板63を交互に積層したプレートフィン型構造とされており、酸素含有ガス収容室41bと連通する通路を形成する波板63aは、図(b)に示すように形成され、また、燃焼ガスの排出用の通路を形成する波板63bは、図(c)に示すように形成されている。
【0045】
燃焼ガスは、図1に一点鎖線で示したように熱交換器41aの下部側面から導入され、熱交換器41aの上方へ排出され、一方、酸素含有ガスは、図1に破線で示したように熱交換器41aの上部側面から導入され、熱交換器41aの下方へ導かれ、酸素含有ガス収容室41b内に導入される。
【0046】
酸素含有ガス収容室41bは、図に示すように、熱交換器41aの酸素含有ガスが導入される側の端面、即ち燃料電池セル33側端面に設けられており、波板63aの各通路を通過した酸素含有ガスが一旦収容されるようになっている。
【0047】
酸素含有ガス収容室41bには、複数の酸素含有ガス供給管39の一端が開口し、連通している。
【0048】
また、図1に示したように、酸素含有ガス収容室41bの側面と断熱材31bとの間、即ち酸素含有ガス収容室41bの周囲は、燃焼ガスを熱交換器41aに導入する燃焼ガス導入口71とされている。この燃焼ガス導入口71を介して燃焼ガスが熱交換器41aの波板63bの通路へ導出される。
【0049】
以上のように構成された燃料電池では、外部からの酸素含有ガス(例えば空気)を酸素含有ガス管73を介して熱交換器41aに導入し、酸素含有ガス収容室41bに導入し、酸素含有ガス供給管39を介して燃料電池セル33間に噴出させるとともに、燃料ガス(例えば水素)を燃料ガス供給管51を介して燃料電池セル33の燃料ガス通過孔34内に供給し発電させる。
【0050】
発電に用いられなかった余剰の燃料ガスは燃料ガス通過孔34の上端から噴出し、発電に用いれらなかった余剰の酸素含有ガスは燃料電池セル33間を流れ、余剰の燃料ガスと余剰の酸素含有ガスを反応させて燃焼させ、燃焼ガスを発生させ、この燃焼ガスが燃焼ガス導入口71を介して熱交換器41aに導出され、熱交換器41aの上端から排出される。
【0051】
そして、本発明の燃料電池では、バネ性を有する板状集電部材43、143、144、146、243、244が燃料電池セル33間を押し広げるようにして対向する燃料電池セル33の平坦な側面間を機械的に接続しているため、燃料電池セル33とは面接触となり、従来のようなフェルト状の集電部材よりも燃料電池セル33に当接する面積が大きくなり、集電特性を向上できる。また、集電部材43、143、144、146、243、244は板状であるため弾性力も大きく、振動等が生じたとしても燃料電池セル33との十分な接触を長期間確保できる。
【0052】
また、一方の燃料電池セル33の側面と、この側面に当接した集電部材43、143、144、146、243、244間には隙間が形成されているので、酸素含有ガスが隙間、酸素側電極33cを介して、固体電解質33bへ供給され、発電が良好となる。
【0053】
さらに、集電部材43、143、144、146、243、244は板状であるため、収納容器31内が高温となった場合でも、従来のフェルト状の集電部材よりも焼結しにくく、また、燃料電池セル33との十分な接触を長期間確保できる。さらに、集電部材43、143、144、146、243、244が板状であるため、一方の燃料電池セル33のインターコネクタ33dと他方の燃料電池セル33の酸素側電極33cとの間に板状集電部材43、143、144、146、243、244を介装する際にも、一方の燃料電池セル33と他方の燃料電池セル33の酸素側電極33c同士の導通を確実に防止できる。
【0054】
また、発電に寄与しなかった余剰の燃料ガスと酸素含有ガスが反応して燃焼し、この燃焼ガス及び外部の酸素含有ガスを熱交換器41aに導入し、この熱交換器41aで燃焼ガスと酸素含有ガスとの間で熱交換させ、起動時に酸素含有ガスを予熱することができ、また、酸素含有ガス供給管39が燃焼ガス中を挿通することにより、燃焼ガスにより酸素含有ガス供給管39内の酸素含有ガスをさらに加熱することができるため、加熱した酸素含有ガスにより燃料電池セル33を間接的に加熱して実質的に発電するまでの起動時間を短縮できる。
【0055】
また、燃料電池セル33が燃焼ガスを発生する室に配置されているため、この燃焼ガスにより燃料電池セル33を直接加熱することができ、起動時間を短縮できる。
【0056】
さらに、燃料電池セル33の上部に酸素含有ガス収容室41b、熱交換器41aが隣接して形成されているため、高温の燃焼ガスを配管等を用いることなく熱交換器41aに直接導入でき、簡単な構造で酸素含有ガスの予熱効率を大きくできる。
【0057】
また、収納容器31内で、燃焼ガスと酸素含有ガスとを熱交換できるため、酸素含有ガスの予熱を行うためのバーナーを収納容器31内に別途設ける必要がなく、小型にでき、しかも燃焼ガスを有効利用できる。
【0058】
さらに、熱交換器41aに酸素含有ガス収容室41bを設けたので、熱交換器41aと酸素含有ガス供給管39との接続を酸素含有ガス収容室41bを介して行うことができ、熱交換器41aからの酸素含有ガスを燃料電池セル33間に確実に供給できる。
【0059】
尚、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、上記形態では、図2に示したような扁平状で複数の燃料ガス通過孔34を有する燃料電池セル33を用いて説明したが、燃料電池セルは燃料ガス通路が一つであっても良く、燃料電池セルの形状は特に限定されるものではない。
【0060】
また、熱交換器41aとしてプレートフィン型を用いたが、本発明ではこれに限定されるものではなく、それ以外の熱交換器を用いても良いことは勿論である。
【0061】
さらに、上記例では、燃料電池セル33を直列に接続した例について説明したが、並列接続しても良いことは勿論である。また、燃料側電極33aを内側電極としたが、酸素側電極33cを内側電極としても良い。
【0062】
【発明の効果】
本発明の燃料電池では、セルスタックにおける燃料電池セルの配列方向両端に、セルスタックの広がりを阻止する拡幅阻止部材をそれぞれ設けたので、集電部材の弾性力で燃料電池セルの側面を押し広げるようにしたとしても、拡幅阻止部材によりセルスタックの拡幅阻止部材間の距離を一定に維持でき、燃料電池セルの広がりを阻止して燃料電池セルの変形が抑制され、燃料電池セルの折損を確実に防止できるとともに、セルスタックの口開きが抑制され、これにより集電部材による燃料電池セル間の電気的な接続を長期にわたって維持できる。
【図面の簡単な説明】
【図1】 本発明の燃料電池を示す説明図である。
【図2】 図1のセルスタックを示す横断面図である。
【図3】 板状集電部材を用いて燃料電池セルを接続した状態を示すもので、(a)は側面図、(b)は平面図、(c)は板状集電部材を示す斜視図である。
【図4】 基部の一端部に複数の集電片が形成された櫛歯形状の板状集電部材を用いて、燃料電池セルを接続した状態を示すもので、(a)は側面図、(b)は板状集電部材を示す斜視図である。
【図5】 複数の集電片群を長さ方向に所定間隔を置いて形成して構成した板状集電部材を用いて、燃料電池セルを接続した状態を示すもので、(a)は側面図、(b)は板状集電部材を示す斜視図、(c)は集電片を一方側のみ突出させた板状集電部材を示す斜視図である。
【図6】 Z型形状の板状集電部材を用いて燃料電池セルを接続した状態を示すもので、(a)は斜視図、(b)は(a)の平面図、(c)は当接部に凸部を点在して形成した板状集電部材を示す斜視図である。
【図7】 燃料電池セル間に集電部材が介装されたセルスタックの両端に拡幅阻止部材を設けた状態を示す側面図である
】 図1の熱交換器の概念を説明するための図であり、(a)は熱交換器の斜視図、(b)は酸素含有ガスの通路を形成するための波板を示す斜視図、(c)は燃焼ガスの通路を形成するための波板を示す斜視図である。
【図】 本発明の熱交換部を説明するための斜視図である。
【符号の説明】
31・・・収納容器
33・・・燃料電池セル
35・・・セルスタック
42・・・導電部材
43、143、144、146、243、244・・・集電部材
45・・・ガスタンク
57・・・拡幅阻止部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell, and more particularly to a fuel cell having a good current collection characteristic of a plurality of fuel cells.
[0002]
[Prior art]
In recent years, various fuel cells in which a plurality of fuel battery cells are stored in a storage container have been proposed as next-generation energy.
[0003]
A conventional solid oxide fuel cell is configured by storing a plurality of fuel cells in a storage container and electrically connecting the fuel cells to each other in series or in parallel by a current collecting member. It was performed at a high temperature of about 600 to 1000 ° C. by supplying an oxygen-containing gas and a fuel gas to the cell.
[0004]
Conventionally, a metal felt-like member in which fibrous metals are gathered has been used as a current collecting member for electrical connection between fuel cells. A fuel cell using such a felt-shaped current collecting member has a plurality of fuel cells arranged and assembled, for example, between an interconnector of one fuel cell and an outer electrode of the other fuel cell. Then, a felt-shaped current collecting member is packed and fuel cell cells are connected in series to form a cell stack, and this cell stack is stored in a storage container.
[0005]
[Problems to be solved by the invention]
However, in the above-described fuel cell, a felt-shaped current collecting member is packed between adjacent fuel cells, and the side surface of the adjacent fuel cell is arranged by the elastic force of the current collecting member. Since the electrical connection was ensured by expanding the pressure, a force that spreads the fuel cell acts, the force acts on the fixed portion of the fuel cell, breaks, and the cell stack opens. There was a problem of opening. In particular, when the elastic force of the current collecting member is increased in order to ensure electrical connection between the fuel cells, the tendency is strong.
[0006]
In order to ensure the electrical connection between the fuel cells over a long period of time and to improve the current collection characteristics between the fuel cells, the applicant of the present application has first made a plate-shaped collector that can maintain the elastic force for a long period of time. We have filed a fuel cell in which fuel cells are electrically connected using an electric member. In such a fuel cell, since the electrical connection is ensured by spreading the fuel cell with strong elastic force, the breakage of the fuel cell is promoted, or the pressing portion by the current collecting member over time is increased. There was a tendency to spread.
[0007]
An object of the present invention is to provide a fuel cell that can improve current collection characteristics between fuel cells, can prevent breakage of fuel cells, and can prevent opening of a cell stack.
[0008]
[Means for Solving the Problems]
In the fuel cell of the present invention, a plurality of fuel cells each having a fuel gas passage hole are arranged , and one end of the fuel cell is supported by a gas tank for supplying fuel gas to the fuel cell. A fuel cell in which a cell stack, which is fixed in a state and the other end of the fuel cell is not fixed , is stored in a storage container, and a current collecting member is provided between the plurality of arranged fuel cells. The cell stack is arranged to be electrically connected by pressing each side surface of the adjacent fuel cell by the elastic force of the current collecting member, and at both ends of the cell stack in the arrangement direction of the fuel cell. the widening blocking member for preventing the spread, one end of the enlarged width blocking member respectively, characterized in that erected in a state of being supported on the gas tank.
[0009]
In the fuel cell of the present invention, the fuel cells are electrically connected so as to expand the side surfaces of the adjacent fuel cells by the elastic force of the current collecting member. Since the widening prevention members that prevent the cell stack from spreading are provided at both ends of the cell stack in the arrangement direction of the fuel cells in the cell stack, the side surfaces of the fuel cells are pushed and spread by the elastic force of the current collecting member. However, the widening prevention member can keep the distance between the widening prevention members of the cell stack constant, prevent the fuel cell from spreading, suppress deformation of the fuel cell, and reliably prevent the fuel cell from breaking. This can be prevented, and the opening of the cell stack is suppressed, whereby the electrical connection between the fuel cells by the current collecting member can be maintained for a long period of time.
[0010]
One end of the fuel cell is a fuel cell fuel gas is fixed while being supported by the gas tank to be supplied to, is the cell stack which is not fixed to the other end portion of the fuel cell is formed Therefore, in this case, the other end portion is in a free state, and the other end portion of the adjacent fuel cell is likely to spread, but the fuel cell unit is prevented by the widening prevention member that prevents the cell stack from spreading. It is possible to reliably prevent the other end portion from spreading.
[0011]
In addition, since one end portion of the widening prevention member that prevents the spread of the cell stack provided at both ends of the fuel cell in the cell stack in the arrangement direction is erected in a state supported by the gas tank, from both sides of the cell stack A pressing force can be reliably applied to the central portion.
[0012]
The fuel cell of the present invention is accommodated a plurality of the cell stack in storage container, a conductive member for electrically connecting the cell stack with each other, and the fuel cells constituting the cell stack the It is interposed between the widening prevention member.
In such a fuel cell, electrical connection of a plurality of cell stacks can be reliably performed by a conductive member.
[0015]
Further, fuel cells of the present invention, the current collecting member is characterized by a plate-shaped. In such a fuel cell, by using a plate-shaped current collecting member, the fuel cell comes into surface contact with the side surface of the fuel cell, and the area in contact with the fuel cell is larger than that of the conventional felt-shaped current collecting member. The current collecting characteristics can be improved. Further, since the current collecting member is plate-shaped, the elastic force is large, and even if vibration or the like occurs, sufficient contact with the fuel cell can be ensured for a long time.
[0016]
Furthermore, since the current collecting member is plate-shaped, it is harder to sinter than conventional felt-shaped current collecting members even when the temperature of the storage container becomes high, and sufficient contact with the fuel cells is ensured for a long period of time. it can. Further, for example, when a current collecting member is packed between the interconnector of one fuel cell and the outer electrode of the other fuel cell, the outer electrodes of one fuel cell and the other fuel cell are Conduction can be reliably prevented.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a fuel cell according to the present invention. Reference numeral 31 denotes a storage container having a heat insulating structure. Inside the storage container 31, a plurality of cell stacks 35 in which a plurality of fuel battery cells 33 are arranged, an oxygen-containing gas supply pipe 39 inserted between the cell stacks 35, and the fuel battery cells 33 are disposed above. The provided heat exchanging part 41 is provided.
[0018]
The storage container 31 includes a frame body 31a made of a heat-resistant metal and a heat insulating material 31b provided on the inner surface of the frame body 31a.
[0019]
As shown in FIG. 2, the fuel cells 33 in the storage container 31 are arranged in three rows, and the electrodes of the two outermost fuel cells 33 arranged adjacent to each other are connected by a conductive member 42. Thus, the plurality of fuel cells 33 arranged in three rows are electrically connected in series. In FIG. 1, a state in which the fuel cells are arranged in four rows is shown, and the conductive member 42 is omitted.
[0020]
More specifically, the fuel battery cell 33 has a flat cross section and an overall elliptical cylinder shape, and a plurality of fuel gas passage holes 34 are formed therein. This fuel battery cell 33 has a flat cross section and an outer surface of a fuel side electrode (inner electrode) 33a mainly composed of a porous metal having an elliptic cylinder shape as a whole. The oxygen side electrode (outer electrode) 33c made of high quality conductive ceramics is sequentially laminated, and the interconnector 33d is formed on the outer surface of the fuel side electrode 33a opposite to the oxygen side electrode 33c. 33a is a support.
[0021]
That is, the fuel cell 33 has a cross-sectional shape composed of arc-shaped portions provided at both ends in the width direction, and a pair of flat portions that connect these arc-shaped portions, and the pair of flat portions are flat, They are formed almost in parallel. The pair of flat portions is configured by forming an interconnector 33d, a solid electrolyte 33b, and an oxygen side electrode 33c on the flat portion of the fuel side electrode 33a.
[0022]
A plate-like current collecting member 43 is interposed between one fuel battery cell 33 and the other fuel battery cell 33, and a fuel side electrode 33a of one fuel battery cell 33 is provided on the fuel side electrode 33a. It is electrically connected to the oxygen side electrode 33 c of the other fuel battery cell 33 through the interconnector 33 d and the plate-like current collecting member 43. In FIG. 2, the current collecting member 43 is simplified.
[0023]
As shown in FIG. 3, the plate-like current collecting member 43 is formed on a belt-like body 43 a provided to face the flat portion (side surface) of the fuel battery cell 33 and the long sides of the belt-like body 43 a facing each other. , And a plurality of current collecting pieces 43b that protrude and come into contact with the opposing fuel battery cell 33 side. One plate-like current collecting member 43 is interposed between the fuel cells 33 facing each other so that the length direction of the strip 43a is the axial length direction (length direction) of the fuel cells 33. ing. A plurality of plate-like current collecting members 43 may be interposed between the opposed fuel cells 33.
[0024]
In such a plate-like current collecting member 43, a plurality of slits are formed substantially in parallel on the opposed long sides of the belt-shaped base body, and the current collecting pieces 43b between the slits are alternately projected toward the opposed fuel cell 33 side. The plurality of current collecting pieces 43b are in contact with the outer surfaces of the opposed fuel cells 33 alternately.
[0025]
That is, the current collecting piece 43b is disposed between the interconnector 33d which is a flat portion of one fuel battery cell 33 and the oxygen side electrode 33c of the other fuel battery cell 33, and the fuel battery cells 33 are connected in series. ing. Since the current collecting piece 43b is in contact with the flat portion, the electrical connection can be reliably performed. Further, the plurality of current collecting pieces 43b are joined to the fuel cell 33 via an Ag paste. This Ag paste is baked at the time of power generation, and joined to the current collecting piece 43b, the interconnector 33d of the fuel cell 33, and the oxygen side electrode 33c, thereby sufficiently connecting the current collecting piece 43b and the fuel cell 33 to each other. Can be taken. The width of the current collecting piece 43b is desirably 2 mm or less from the viewpoint of improving the current collecting characteristics and sufficiently supplying the oxygen-containing gas between the current collecting pieces 43b.
[0026]
FIG. 4 shows another plate-like current collecting member 143. This plate-like current collecting member 143 has a plurality of slits formed substantially in parallel at one end of a rectangular plate, and a current collecting piece between the slits. 143a is made to protrude alternately on both sides of the plate-like current collecting member 143, has a comb-like shape in which a plurality of current collecting pieces 143a are formed at one end of the base portion 143b, and the fuel cell unit facing the plurality of current collecting pieces 143a Each abuts against the outer surface of 33.
[0027]
A plurality of these plate-like current collecting members 143 are arranged between the opposed fuel cells 33, inserted between the opposed fuel cells 33 from the base portion 143b, and the base portion 143b is positioned below.
[0028]
A plate-like current collecting member 144 shown in FIG. 5 may be interposed between the opposed fuel cells 33. The plate-like current collecting member 144 shown in FIG. 5 is formed by forming a plurality of slits substantially in parallel, and the current collecting pieces 144a therebetween alternately projecting on both sides of the plate-like current collecting member 144. The group is formed by forming a predetermined interval in the length direction, and the base portion 144b and the current collecting piece 144a are alternately formed. In the plate-like current collecting member 144 as shown in FIG. 5, the arrangement between the fuel cells 33 can be performed more easily than the plate-like current collecting member 143 in FIG.
[0029]
Further, as shown in FIG. 5 (c), a plurality of current collecting pieces 146a are formed at predetermined intervals in the length direction, and one current collecting piece 146a is arranged every other current collecting piece 146a. The fuel cell 33 may be protruded and brought into contact with the oxygen side electrode 33c, and the other flat portion may be brought into contact with the interconnector 33d of the other fuel cell 33. In this case, it is possible to sufficiently join the interconnector 33d.
[0030]
FIG. 6 shows still another plate-like current collecting member 243. This plate-like current collecting member 243 is formed by bending a rectangular plate into a Z shape, and both end portions thereof are substantially parallel. ing. That is, the plate-like current collecting member 243 includes a connecting portion 243a that is formed at the center portion for applying a spring, and substantially parallel contact portions 243b that are formed on both sides of the connecting portion 243a. Contact portions 243 b formed at both ends of the plate-like current collecting member 243 are in contact with the outer surfaces of the opposed fuel cells 33.
[0031]
Corrugated irregularities are formed in the contact portion 243b of the plate-like current collecting member 243, and a recess 243b1 formed in the contact portion 243b is formed in the gas flow direction. In FIG. 6B, the direction perpendicular to the paper surface is the gas flow direction. The gas passes between the concave portion 243b1 formed in the contact portion 243b of the plate-like current collecting member 243 and the outer surface of the oxygen side electrode 33c, and the supply of gas to the surface of the oxygen side electrode 33c can be increased. It can be improved. By arranging a plurality of the plate-like current collecting members 243 between the opposed fuel cells 33, the current collecting characteristics between the fuel cells 33 can be improved.
[0032]
The plate-like current collecting member 243 is disposed between the interconnector 33d, which is a flat portion of the opposing fuel battery cell 33, and the oxygen side electrode 33c, and the fuel battery cells 33 are connected in series. Since the contact portion 243b of the plate-like current collecting member 243 is in contact with the flat portion, it can be surely contacted and electrical connection can be reliably performed.
[0033]
FIG. 6C shows the contact portion 244b of the plate-like current collecting member 244 formed with a plurality of convex portions 244b1, and the plate-like current collecting member 244 can obtain the same effect. it can.
[0034]
The entire contact portions 243b and 244b are in contact with the interconnector 33d, and the oxygen side electrode 33c is in contact with the portion of the contact portions 243b and 244b that protrudes toward the oxygen side electrode 33c as described above. May be. In this case, the connection and fixing of the contact portions 243b and 244b to the interconnector 33d can be more reliably performed. Also, a plurality of slits can be formed in the contact portions 243b and 244b, and fuel gas can be supplied to the oxygen side electrode 33c from these portions.
[0035]
These plate-like current collecting members 43, 143, 144, 146, 243, and 244 are configured by covering the surface of a ferritic stainless steel mainly composed of conductive Cr and Fe with an oxidation-resistant substance made of Ag. Has been. The plate-like current collecting members 43, 143, 144, 146, 243, and 244 are the same as described above as long as the surface is made of a conductive metal or alloy and the surface is covered with an oxidation-resistant substance. It is not limited.
[0036]
As shown in FIG. 1, a fuel gas tank 45 for supplying fuel gas to the fuel battery cell 33 is provided below the fuel battery cell 33, and the fuel gas tank 45 receives fuel gas from the outside. A fuel gas supply pipe 51 for supplying to 45 is connected.
[0037]
An attachment jig 53 attached to the lower end portion of the fuel battery cell 33 is screwed into the fuel gas tank 45, whereby the fuel battery cell 33 is erected on the fuel gas tank 45, respectively. That is, the attachment jig 53 is connected to the cell end side attachment jig 53a attached to the end of the fuel cell 33 and the both ends screwed to the cell end side attachment jig 53a and the fuel gas tank 45, respectively. The screw 53 is formed in opposite ends at both ends of the connecting member 53b. When the connecting member 53b is rotated to one side, both ends are attached to the cell end side mounting jig 53a and The fuel gas tank 45 is formed so as to be screwed thereto.
[0038]
A through hole is formed in the cell end side mounting jig 53 a and the connecting member 53 b so as to communicate with the fuel gas tank 45 and the fuel gas passage hole 34 of the fuel cell 33.
[0039]
As described above, the current collecting members 43, 143, 144, 146, 243, 244 are disposed between the adjacent fuel cells 33, and the elasticity of the current collecting members 43, 143, 144, 243, 244 is arranged. The side surfaces of the adjacent fuel cells 33 are pressed and electrically connected by force, but in the present invention, in order to prevent the cell stack 35 from spreading, that is, the adjacent fuel cells 33 In order to prevent the upper end from spreading, as shown in FIG. 2 and FIG. 7, at both ends of the cell stack 35, that is, at both ends in the arrangement direction of the fuel cells 33 aligned in a row, for each cell row (each cell stack). A widening prevention member 57 is provided.
[0040]
The lower end portion of the widening prevention member 57 is supported and fixed to the side surface of the gas tank 45 and is erected with one end portion supported by the gas tank 45. A conductive member 42 is interposed between the widening prevention member 57 and the fuel cell 33 located on the outermost side of the cell stack 35. In FIG. 1, the illustration of the widening prevention member 57 is omitted.
[0042]
As shown in FIG. 1, the oxygen-containing gas supply pipe 39 has a tip portion located between the fuel cells 33. Excess oxygen-containing gas that has not been used in power generation flows between the fuel cells 33 and flows above the fuel cell 33, and excess fuel gas that has not been used in power generation passes through the fuel gas in the fuel cell 33. The fuel gas is blown out from above the fuel cell 33 through the hole 34, and in the vicinity of the upper end of the fuel cell 33, the fuel gas and the oxygen-containing gas react and burn.
[0043]
The heat exchange unit 41 includes a heat exchanger 41 a and an oxygen-containing gas storage chamber 41 b provided to face the cell stack 35.
[0044]
As shown in FIG. 8 , the heat exchanger 41a has a plate fin type structure in which flat plates 61 and corrugated plates 63 are alternately stacked. The corrugated plate 63a that forms a passage communicating with the oxygen-containing gas storage chamber 41b The corrugated plate 63b that is formed as shown in FIG. 8 (b) and forms a passage for discharging combustion gas is formed as shown in FIG. 8 (c).
[0045]
The combustion gas is introduced from the lower side surface of the heat exchanger 41a as shown by a one-dot chain line in FIG. 1, and is discharged to the upper side of the heat exchanger 41a, while the oxygen-containing gas is shown by a broken line in FIG. Is introduced from the upper side surface of the heat exchanger 41a, led to the lower side of the heat exchanger 41a, and introduced into the oxygen-containing gas storage chamber 41b.
[0046]
As shown in FIG. 9 , the oxygen-containing gas storage chamber 41b is provided on the end surface of the heat exchanger 41a on the side where the oxygen-containing gas is introduced, that is, the end surface on the fuel cell 33 side. The oxygen-containing gas that has passed through is temporarily stored.
[0047]
One ends of a plurality of oxygen-containing gas supply pipes 39 are opened and communicated with the oxygen-containing gas storage chamber 41b.
[0048]
Further, as shown in FIG. 1, the combustion gas introduction that introduces the combustion gas into the heat exchanger 41a is provided between the side surface of the oxygen-containing gas storage chamber 41b and the heat insulating material 31b, that is, around the oxygen-containing gas storage chamber 41b. It is a mouth 71. The combustion gas is led out to the passage of the corrugated plate 63b of the heat exchanger 41a through the combustion gas introduction port 71.
[0049]
In the fuel cell configured as described above, an oxygen-containing gas (for example, air) from the outside is introduced into the heat exchanger 41a through the oxygen-containing gas pipe 73, and is introduced into the oxygen-containing gas storage chamber 41b. The fuel gas (for example, hydrogen) is ejected between the fuel cells 33 through the gas supply pipe 39 and the fuel gas (for example, hydrogen) is supplied into the fuel gas passage hole 34 of the fuel cell 33 through the fuel gas supply pipe 51 to generate power.
[0050]
Excess fuel gas that has not been used for power generation is ejected from the upper end of the fuel gas passage hole 34, and excess oxygen-containing gas that has not been used for power generation flows between the fuel cells 33, so that excess fuel gas and excess oxygen are flown. The contained gas is caused to react and burn to generate combustion gas. This combustion gas is led to the heat exchanger 41a through the combustion gas inlet 71 and discharged from the upper end of the heat exchanger 41a.
[0051]
In the fuel cell of the present invention, the plate-like current collecting members 43, 143, 144, 146, 243, 244 having spring properties push the space between the fuel cells 33 so that the opposing fuel cells 33 are flat. Since the side surfaces are mechanically connected to each other, the fuel cell 33 is in surface contact, and the area in contact with the fuel cell 33 is larger than that of the conventional felt-shaped current collecting member. It can be improved. Further, since the current collecting members 43, 143, 144, 146, 243, and 244 are plate-shaped, they have a large elastic force, and even if vibrations occur, sufficient contact with the fuel cell 33 can be ensured for a long period of time.
[0052]
In addition, since a gap is formed between the side surface of one fuel battery cell 33 and the current collecting members 43, 143, 144, 146, 243, 244 in contact with the side surface, It is supplied to the solid electrolyte 33b via the side electrode 33c, and power generation is improved.
[0053]
Furthermore, since the current collecting members 43, 143, 144, 146, 243, 244 are plate-shaped, even when the inside of the storage container 31 becomes high temperature, it is harder to sinter than the conventional felt-shaped current collecting members, Further, sufficient contact with the fuel battery cell 33 can be ensured for a long time. Furthermore, since the current collecting members 43, 143, 144, 146, 243, and 244 are plate-shaped, a plate is provided between the interconnector 33 d of one fuel cell 33 and the oxygen side electrode 33 c of the other fuel cell 33. Even when the current collectors 43, 143, 144, 146, 243, and 244 are interposed, it is possible to reliably prevent conduction between the oxygen-side electrodes 33 c of one fuel cell 33 and the other fuel cell 33.
[0054]
Further, the surplus fuel gas that did not contribute to power generation and the oxygen-containing gas react and burn, and the combustion gas and the external oxygen-containing gas are introduced into the heat exchanger 41a. Heat exchange can be performed with the oxygen-containing gas so that the oxygen-containing gas can be preheated at the time of start-up, and the oxygen-containing gas supply pipe 39 is inserted into the combustion gas so that the oxygen-containing gas supply pipe 39 is used by the combustion gas. Since the oxygen-containing gas can be further heated, it is possible to shorten the startup time until the fuel cell 33 is indirectly heated by the heated oxygen-containing gas to substantially generate power.
[0055]
Further, since the fuel cell 33 is disposed in the chamber that generates the combustion gas, the fuel cell 33 can be directly heated by the combustion gas, and the startup time can be shortened.
[0056]
Furthermore, since the oxygen-containing gas storage chamber 41b and the heat exchanger 41a are formed adjacent to each other at the upper part of the fuel cell 33, high-temperature combustion gas can be directly introduced into the heat exchanger 41a without using pipes or the like, A simple structure can increase the preheating efficiency of the oxygen-containing gas.
[0057]
In addition, since the combustion gas and the oxygen-containing gas can be heat-exchanged in the storage container 31, there is no need to separately provide a burner for preheating the oxygen-containing gas in the storage container 31, and the combustion gas can be reduced in size. Can be used effectively.
[0058]
Further, since the oxygen-containing gas storage chamber 41b is provided in the heat exchanger 41a, the heat exchanger 41a and the oxygen-containing gas supply pipe 39 can be connected via the oxygen-containing gas storage chamber 41b. The oxygen-containing gas from 41 a can be reliably supplied between the fuel cells 33.
[0059]
In addition, this invention is not limited to the said form, A various change is possible in the range which does not change the summary of invention. For example, in the above embodiment, the fuel cell 33 having a flat shape and a plurality of fuel gas passage holes 34 as shown in FIG. 2 has been described. However, the fuel cell has a single fuel gas passage. The shape of the fuel cell is not particularly limited.
[0060]
Moreover, although the plate fin type | mold was used as the heat exchanger 41a, it is not limited to this in this invention, Of course, you may use another heat exchanger.
[0061]
Furthermore, in the above example, the example in which the fuel cells 33 are connected in series has been described, but it is needless to say that they may be connected in parallel. Further, although the fuel side electrode 33a is an inner electrode, the oxygen side electrode 33c may be an inner electrode.
[0062]
【The invention's effect】
In the fuel cell according to the present invention, the widening prevention members that prevent the cell stack from spreading are provided at both ends of the cell stack in the arrangement direction of the fuel cell, so that the side surface of the fuel cell is spread by the elastic force of the current collecting member. Even in this case, the widening prevention member can keep the distance between the widening prevention members of the cell stack constant, and the fuel cell can be prevented from spreading and deformation of the fuel cell can be suppressed, and the fuel cell can be reliably broken. In addition, the opening of the cell stack is suppressed, whereby the electrical connection between the fuel cells by the current collecting member can be maintained for a long time.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a fuel cell of the present invention.
FIG. 2 is a cross-sectional view showing the cell stack of FIG.
FIGS. 3A and 3B show a state in which fuel cells are connected using a plate-like current collecting member. FIG. 3A is a side view, FIG. 3B is a plan view, and FIG. FIG.
FIG. 4 shows a state in which fuel cells are connected using a comb-shaped plate-like current collecting member in which a plurality of current collecting pieces are formed at one end of a base, (a) is a side view; (B) is a perspective view which shows a plate-shaped current collection member.
FIG. 5 shows a state in which fuel cells are connected using a plate-like current collecting member formed by forming a plurality of current collecting piece groups at predetermined intervals in the length direction. A side view, (b) is a perspective view which shows a plate-shaped current collection member, (c) is a perspective view which shows the plate-shaped current collection member which made the current collection piece protrude only one side.
FIGS. 6A and 6B show a state in which fuel cells are connected using a Z-shaped plate-shaped current collecting member. FIG. 6A is a perspective view, FIG. 6B is a plan view of FIG. It is a perspective view which shows the plate-shaped current collection member formed by interposing a convex part in the contact part.
FIG. 7 is a side view showing a state in which widening prevention members are provided at both ends of a cell stack in which a current collecting member is interposed between fuel cells .
8 is a diagram for explaining the concept of the heat exchanger of Figure 1, shows a (a) is a perspective view of a heat exchanger, (b) is corrugated for forming a passageway of an oxygen-containing gas A perspective view and (c) are perspective views showing a corrugated plate for forming a passage of combustion gas.
FIG. 9 is a perspective view for explaining a heat exchanging portion of the present invention.
[Explanation of symbols]
31 ... Storage container 33 ... Fuel cell 35 ... Cell stack 42 ... Conductive members 43, 143, 144, 146, 243, 244 ... Current collecting member 45 ... Gas tank 57 ... -Widening prevention member

Claims (3)

内部に燃料ガス通過孔を有する燃料電池セルを複数配列するとともに、前記燃料電池セルの一端部が、前記燃料電池セルに燃料ガスを供給するためのガスタンクに支持された状態で固定され、前記燃料電池セルの他端部が固定されていないセルスタックを収納容器内に収納してなる燃料電池であって、配列された複数の前記燃料電池セル間に集電部材を配置し、該集電部材の弾性力で前記隣設する燃料電池セルのそれぞれの側面を押圧して電気的に接続するとともに、前記セルスタックにおける前記燃料電池セルの配列方向両端に、前記セルスタックの広がりを阻止する拡幅阻止部材をそれぞれ該拡幅阻止部材の一端部が前記ガスタンクに支持された状態で立設していることを特徴とする燃料電池。 A plurality of fuel cells having fuel gas passage holes therein are arranged , and one end of the fuel cell is fixed in a state supported by a gas tank for supplying fuel gas to the fuel cell, and the fuel A fuel cell in which a cell stack in which the other end of the battery cell is not fixed is accommodated in a storage container, wherein a current collecting member is disposed between the plurality of arranged fuel cells, and the current collecting member Widening prevention that presses and electrically connects each side surface of the adjacent fuel cell with elastic force and prevents the cell stack from spreading at both ends of the cell stack in the arrangement direction of the fuel cell. fuel cell, characterized in that the member, one end portion of the enlarged width blocking member respectively provided upright while being supported by the gas tank. 収納容器内に複数の前記セルスタックが収容されており、前記セルスタック同士を電気的に接続する導電部材が、前記セルスタックを構成する前記燃料電池セルと前記拡幅阻止部材との間に介装されていることを特徴とする請求項1に記載の燃料電池。A plurality of said in storage container and the cell stack is accommodated, a conductive member for electrically connecting the cell stack to each other, interposed between the wider blocking member and the fuel cells constituting the cell stack The fuel cell according to claim 1, wherein the fuel cell is provided. 前記集電部材は板状であることを特徴とする請求項1または請求項2に記載の燃料電池。 The current collecting member The fuel cell according to claim 1 or claim 2, characterized in that a plate-shaped.
JP2002116369A 2002-04-18 2002-04-18 Fuel cell Expired - Fee Related JP4005837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116369A JP4005837B2 (en) 2002-04-18 2002-04-18 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116369A JP4005837B2 (en) 2002-04-18 2002-04-18 Fuel cell

Publications (2)

Publication Number Publication Date
JP2003308857A JP2003308857A (en) 2003-10-31
JP4005837B2 true JP4005837B2 (en) 2007-11-14

Family

ID=29397140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116369A Expired - Fee Related JP4005837B2 (en) 2002-04-18 2002-04-18 Fuel cell

Country Status (1)

Country Link
JP (1) JP4005837B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312419B2 (en) * 2003-11-28 2013-10-09 京セラ株式会社 Fuel cell
JP4623994B2 (en) * 2003-12-05 2011-02-02 京セラ株式会社 Fuel cell
JP2005190980A (en) * 2003-12-05 2005-07-14 Kyocera Corp Fuel battery
JP4546766B2 (en) * 2004-05-31 2010-09-15 京セラ株式会社 Current collecting member, fuel cell stack and fuel cell
JP4745622B2 (en) * 2004-05-31 2011-08-10 京セラ株式会社 Current collecting member, fuel cell stack and fuel cell
JP4776224B2 (en) * 2004-12-24 2011-09-21 京セラ株式会社 Fuel cell
JP4966522B2 (en) * 2005-07-28 2012-07-04 京セラ株式会社 Current collecting structure in fuel cell stack
JP5224649B2 (en) * 2006-03-29 2013-07-03 日本碍子株式会社 Conductive connecting member and solid oxide fuel cell
JP5100036B2 (en) * 2006-05-29 2012-12-19 京セラ株式会社 Fuel cell stack device, fuel cell stack coupling device and fuel cell
JP4953692B2 (en) * 2006-05-29 2012-06-13 京セラ株式会社 Cell stack and fuel cell
EP2211414B1 (en) * 2007-09-27 2016-08-17 Kyocera Corporation Fuel cell stack device and fuel cell device
KR20090042000A (en) * 2007-10-25 2009-04-29 주식회사 동진쎄미켐 Fuel cell stack having current collector with an elastic structure
US8535835B2 (en) * 2008-03-26 2013-09-17 Kyocera Corporation Fuel battery module and fuel battery device
JP5241430B2 (en) * 2008-10-29 2013-07-17 京セラ株式会社 Fuel cell stack device, fuel cell module and fuel cell device
JP5300619B2 (en) * 2009-06-25 2013-09-25 京セラ株式会社 Fuel cell stack device, fuel cell module and fuel cell device
JP5155362B2 (en) * 2010-05-20 2013-03-06 京セラ株式会社 Current collecting member, fuel cell stack and fuel cell
KR101348967B1 (en) * 2012-04-06 2014-01-16 한국에너지기술연구원 Unit cell of flat-tubular solid oxide fuel cell or solid oxide electrolyzer cell and flat-tubular solid oxide fuel cell and flat-tubular solid oxide electrolyzer using the same
JP5909151B2 (en) * 2012-05-30 2016-04-26 日本碍子株式会社 Fuel cell stack structure
JP6345861B2 (en) * 2016-12-14 2018-06-20 日本碍子株式会社 Cell stack

Also Published As

Publication number Publication date
JP2003308857A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP4005837B2 (en) Fuel cell
JP3580455B2 (en) Molten carbonate fuel cell and power generator using the same
JP3894860B2 (en) Fuel cell
JP3898539B2 (en) Fuel cell
JP3894817B2 (en) Fuel cell
JP4192017B2 (en) Cell stack and fuel cell
JP4623974B2 (en) Fuel cell
JP3898647B2 (en) Cell stack and fuel cell
JP3898552B2 (en) Fuel cell
JP2010232181A (en) Current-collecting member, fuel cell stack, and fuel cell
JP3894820B2 (en) Fuel cell
JP4018922B2 (en) Fuel cell
JP3894842B2 (en) Fuel cell
JP3898541B2 (en) Cell stack and fuel cell
JP3764693B2 (en) Fuel cell
JP4313558B2 (en) Fuel cell and operation method thereof
JP3894849B2 (en) Cell stack manufacturing method
JP4814497B2 (en) Fuel cell
JP3894814B2 (en) Fuel cell
JP4018916B2 (en) Fuel cell, cell stack and fuel cell
JP4546766B2 (en) Current collecting member, fuel cell stack and fuel cell
JP4031674B2 (en) Fuel cell
JP4416729B2 (en) Fuel cell
JP2003234122A (en) Fuel cell
JP3854170B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Ref document number: 4005837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees