JP2004038108A - Light guide plate and surface lighting device - Google Patents

Light guide plate and surface lighting device Download PDF

Info

Publication number
JP2004038108A
JP2004038108A JP2002198892A JP2002198892A JP2004038108A JP 2004038108 A JP2004038108 A JP 2004038108A JP 2002198892 A JP2002198892 A JP 2002198892A JP 2002198892 A JP2002198892 A JP 2002198892A JP 2004038108 A JP2004038108 A JP 2004038108A
Authority
JP
Japan
Prior art keywords
light
incident end
face
guide plate
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002198892A
Other languages
Japanese (ja)
Other versions
JP3955505B2 (en
Inventor
Kariru Karantaru
カランタル カリル
Shingo Matsumoto
松本 伸吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Leiz Corp
Original Assignee
Nippon Leiz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Leiz Corp filed Critical Nippon Leiz Corp
Priority to JP2002198892A priority Critical patent/JP3955505B2/en
Publication of JP2004038108A publication Critical patent/JP2004038108A/en
Application granted granted Critical
Publication of JP3955505B2 publication Critical patent/JP3955505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain bright and uniform exit light by which a light source is not reflected and dark parts are not brought about even in both ends of an incidence end face part around the incidence end face part. <P>SOLUTION: A light guide plate 2 is formed into a rectangular cubic shape like a sheet and has six surrounding faces made into mirror surfaces. Minute optical deflection elements 8 are provided on a surface 6 and a backside 7. The distance between the surface 6 and the backside 7, namely, the thickness, is minimum in an incidence end face part 3 and is maximum in a counter incidence end face part 4 being at a maximum distance from the incidence end face part 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導光板の厚さが入射端面部の位置が最小になるようにして、光源からの光が指向性を有しても入射端面部近傍に光源からの強い光の映り込みを回避するとともに光源が少ない場合による導光板の入射端面部付近の両端部での暗部発生を回避することができる導光板および平面照明装置に関するものである。
【0002】
【従来の技術】
従来の導光板および平面照明装置としては、光源からの光を最大限に利用する目的で、導光板の厚さを入射端面部から離れるほど厚さを薄くさせ、入射端面部から入射端面部の反対方向に向かう光のテーパーリークを利用する方法が知られている。具体的には、図6に示すように、導光板21は、楔形状に成形され、不図示の光源からの光を導く入射端面部31、表面部61、裏面部71、表面部61と裏面部71とに略直角に交わる側面部51,51を有する。この導光板21は、厚さの厚い方を入射端面部31とし、この入射端面部31と反対方向の反入射端面部41bに向かうにしたがって厚さが薄く成っている。そして、入射端面部31に対向して光源を配置し、入射端面部31から反入射端面部41の方向に向かう光のテーパーリークを利用して表面部61または/および裏面部71から光を出射している。
【0003】
さらに、大きな平面照明装置の場合には、図7に示すように、導光板21Aの厚さを両端の入射端面部31a,31bから中心に向かうほど厚さを薄くなるように導光板21Aが構成される。この導光板21Aを用いた平面照明装置では、導光板21Aの両端の入射端面部31a,31bにそれぞれ光源91a,91bが配置される。そして、入射端面部31a,31bから入射端面部31a,31bの反対方向に向かう光のテーパーリークを利用して表面部61または/および裏面部71a,71bから光を出射している。
【0004】
また、従来の導光板の出射面と反対側に白色の光散乱剤を印刷する場合には、入射端面部から遠ざかるほど印刷部を増加させたり、導光板に凸凹等のドットを設ける場合でも入射端面部から遠ざかるほどドットを増加させていた。
【0005】
さらに、従来の光源がLED等の点光源を用いた平面照明装置としては、導光板の側面にLEDを複数並べ、これらLEDに対向する位置の導光板の入射端面部にプリズム等の凸や凹の形状を設け、導光板の両端隅部分的まで光線が到達するようにする方法が知られている。
【0006】
【発明が解決しようとする課題】
ここで、従来の導光板および平面照明装置として、例えば楔形状の導光板21での光線の軌跡について図8を参照しながら説明する。なお、導光板としては、図6に示す楔形状のものが用いられる。
【0007】
図6に示すように、導光板21は厚さが入射端面部31から入射端面部31の反対側に位置する反入射端面部41に向かう程に薄くなる構成である。このように、導光板21が楔形状であるため、図8に示す入射光L01が入射端面部31の反対側に位置する反入射端面部41に進む間に光線L01は表面部61に向かう。そして、表面部61に対しての光線L01の入射角が42°内ならば、光線L01が表面部61で全反射をして光線L02として裏面部71方向に進む。しかし、導光板21は、光線が進む方向に対して薄くなる楔形状のため、裏面部71に対する入射角が臨界角よりも小さいので、光線が臨界角を破って光線L03や光線L04として裏面部71より臨界角を破り出射してしまう。
尚、図8に示す説明では、裏面部71のみに臨界角を破る出射光を示したが、表面部61にも同様に臨界角を破る出射光が存在する。
【0008】
このように、図6および図8に示すように、光源からの光を最大限に利用する目的で、導光板の厚さを入射端面部から離れるほど厚さを薄くさせる、所謂楔形状に成形して、入射端面部から入射端面部の反対方向に向かう光のテーパーリークを利用する構成では、光源が指向性のある場合、入射端面部の近傍で直ちに臨界角を破り、即ちテーパーリークによって高輝度な出射がされる。そして、出射される光線が高輝度で指向性の強い出射光のため、光源全体、例えば半導体発光素子(LED)の光源の場合には、半導体発光素子自身の形状が出射面から観測(映り込み)されてしまう課題がある。
【0009】
さらに、上記のように導光板の厚さを入射端面部から離れるほど厚さを薄くした導光板では、半導体発光素子自身の形状が出射面から観測されてしまうのを回避するため、入射端面部近傍を実際には利用しないで用いる。このため、平面照明装置の必要面積以上に大きな導光板を使用しなければならない課題がある。
【0010】
また、従来の大きな平面照明装置の場合、図7に示すように、導光板21Aの厚さを両端の入射端面部31a,31bから中心に向かうほど厚さを薄くし、入射端面部31a,31bから入射端面部31a,31bの反対方向に向かう光のテーパーリークを利用する方法を用いて導光板21Aの両端を入射端面部31a,31bとする構成では、導光板21Aの中心部分の厚さが最も薄い部分となり、全体を軽量化すればするほど中心部分の厚さが薄くなり、構造的に機械的強度が弱いという課題がある。
【0011】
さらに、光源をRGB(赤色発光、緑色発光、青色発光)の三色の光源を用いて白色光を得るため、RGBの各光源を順次並べてアレー状にした場合には、各発光色が入射端面部近傍では混ざりにくいために、入射端面部近傍では白色にならず、各発光色が斑状に出射面から出射してしまう課題がある。
【0012】
また、従来の光源にLED等の点光源を用いた平明照明装置は、導光板の入射端面部にLEDを複数並べ、これらLEDに対向する位置の導光板の入射端面部にプリズム等の凸や凹の形状を設けた構成では、光源が点光源であるため、光ビーム強度分布が円状や楕円状となる。このため、光源に対向する導光板の入射端面部にプリズム加工を施し、光源の左右方向に分散させて導光板全体から均一に出射させるが、隣り合っているLED等の光源の光が重なり合い、輝度の斑が発生してしまう課題がある。
【0013】
さらに、図9(a),(b)に示すように、従来の楔形状の導光板21と、1つのLED等の点光源9を入射端面部31の中心に用いた平面照明装置では、図9(b)に示すように、LED等の半導体発光素子の光源9では指向性を有するため、光束が狭い範囲で反入射端面部41方向に進むとともに入射端面部31から反入射端面部41方向に進む間に臨界角を破り出射してしまう。このため、入射端面部31の両端部分(入射端面部31と入射光線L0との間)が暗部となってしまう課題がある。
【0014】
この発明は、このような課題を解決するためなされたもので、その目的は、指向性の有する複数の半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材料利用の白色光であるとともにアレー状または指向性の有する単体の半導体発光素子からなる光源と、当該光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに略直角に交わる側面部を有し、表面部と裏面部との間の距離が入射端面部で最小になり、入射端面部から最大離距離において表面部と裏面部との間の距離が最大になる薄板状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を入射端面部に近づくほど増加するように設けた導光板と、導光板の入射端面部および出射面以外の部分を覆う反射性を有し反射面が凹凸形状またはプリズム形状である反射体とを具備することによって、導光板内に存在する光線が入射端面部から入射端面部の反対側に位置する反入射端面部方向に進んでもテーパーリークを起こさず、反入射端面部にて全反射され再度入射端面部に向かう時、初めてテーパーリークを発生することができるので、入射端面部近傍に於いて光源からの高輝度の光を出射せず、一度導光板の入射端面部の反対側で全反射してから出射するために、その間に導光板内を幾度か全反射を繰り返しながら進行するために光源の映り込みや輝度斑を無くすことができるとともにRGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射せず一度導光板の入射端面部と反対側で全反射してから出射するために、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができ、輝度とともに輝度斑や発光色斑をコントロールすることができ、ならびに導光板の利用出射面を大きく取れ、さらに大型の導光板や平面照明装置でも光源近傍の両端の入射端面部が最小で中央部が最大の厚みになるので機械的に優れた強度を得ることができる導光板および平面照明装置を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決するため本発明の請求項1に係る導光板は、薄型状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を設けるとともに表面部と裏面部との間の距離が入射端面部で最小になり、入射端面部から最大離距離において距離が最大になることを特徴とする。
【0016】
請求項1に係る導光板は、薄型状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を設けるとともに表面部と裏面部との間の距離が入射端面部で最小になり、入射端面部から最大離距離において距離が最大になるので、光源からの光線を入射端面部で歪無く導光板内に取り込み、入射端面部の反対側に位置する反入射端面部に進む間では導光板が楔形状であっても臨界角を破る光線は無く、導光板の各面で多くの光線を全反射をさせるとともに反入射端面部で全反射した光線を再度入射端面部方向に進む時に臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射する光量をコントロールすることができるとともに光源の映り込みが無く、入射端面部近傍の入射端面部の両端にも暗部がなく明るく均一な出射光を得ることができる。
【0017】
また、請求項2に係る導光板は、光偏向素子を入射端面部に近づくほど光偏向素子の数量または面積が増加することを特徴とする。
【0018】
請求項2に係る導光板は、光偏向素子を入射端面部に近づくほど光偏向素子の数量または面積が増加するので、入射端面部から入射した光は導光板の表面部や裏面部に達しても臨界角に達する光が存在せず、一度入射端面部の反対側の反入射端面部で全反射した光が臨界角を破る光線や臨界角に近い光線等が多く存在するために反入射端面部から入射端面部に戻る間に出射面から出射するために入射端面部に近づくほど出射させる光量を多くする必要があるので、入射端面部に近づくほど光偏向素子の数量または面積が増加することにより均一な出射光を得ることができる。
【0019】
さらに、請求項3に係る平面照明装置は、指向性の有する光源と、光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに略直角に交わる側面部を有した薄板状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を設けるとともに表面部と裏面部との間の距離が入射端面部で最小になり、入射端面部から最大離距離において距離が最大になる導光板と、導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備することを特徴とする。
【0020】
請求項3に係る平面照明装置は、指向性の有する光源と、光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに略直角に交わる側面部を有した薄板状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を設けるとともに表面部と裏面部との間の距離が入射端面部で最小になり、入射端面部から最大離距離において距離が最大になる導光板と、導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備するので、入射端面部からの入射光が入射端面部の反対側に位置する反入射端面部に進む間では導光板が楔形状であっても臨界角を破る光線は無く、テーパーリークは起こらないので指向性の強い光源でも入射端面部近傍での光輝度の出射光や半導体発光素子自身等の光源の形状が出射面から観測(映り込み)や輝度斑が無く、反入射端面部で全反射をし、再度入射端面部方向に光線が進む時に臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射する光量をコントロールして輝度斑を無くし均一な輝度を得るとともに入射端面部近傍の入射端面部の両端での暗部がなく明るく均一な出射光が得られ、反入射端面部で全反射をした光線によって始めてテーパーリークは起こすことができるのでRGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射しないので発光色斑の発生を回避することができ、入射光が一度導光板の入射端面部の反対側で全反射してから出射するために、その間に導光板内を幾度か全反射を繰り返しながら進行するためにRGBの単色光が混合され完全な白色光を得ることができるとともに導光板の利用出射面を大きく取れ、さらに大型の導光板や平面照明装置でも光源近傍の両端の入射端面部が最小で中央部が最大の厚みになるので構造的にも機械的強度が増し、機械的に優れている。
【0021】
また、請求項4に係る平面照明装置は、指向性の有する光源が複数の半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材料利用の白色光であるとともにこれらを単体またはアレー状に構成したことを特徴とする。
【0022】
請求項4に係る平面照明装置は、指向性の有する光源が複数の半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材料利用の白色光であるとともにこれらを単体またはアレー状に構成したので、高輝度の出射光を得ることができるとともに目的に応じて高輝度の白色光を出射することができ、アレー状に構成することにより光源の形状が出射面から観測(映り込み)や輝度斑が無い出射光を得ることができる。
【0023】さらに、請求項5に係る平面照明装置は、反射体の反射面が凹凸形状またはプリズム形状であることを特徴とする。
【0024】
請求項5に係る平面照明装置は、反射体の反射面が凹凸形状またはプリズム形状であるので、入射端面部から入射端面部の反対側に位置する反入射端面部に進んだ光線や出射面の反対側の面に出射した光線や漏れた光線等をより確実に再度導光板内に戻すことができ、凹凸形状やプリズム形状を制御することにより再度導光板内に戻す位置をコントロールすることができ、さらに光源がRGB等の三原色光の場合に三原色光の光をプリズム面による反射によって導光板内で混ざり合うことができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づき説明する。
なお、本発明は、導光板が薄板状矩形立法体形状を成し、これらを包囲する6面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を入射端面部に近づくほど増加するように設け、表面部と裏面部との間の距離(厚さ)が入射端面部で最小になり、入射端面部から最大離距離において表面部と裏面部との間の距離(厚さ)が最大になる形状を有し、光源が指向性の有する複数の半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材料利用の白色光であるとともにアレー状または指向性の有する単体の半導体発光素子からなる。また、導光板の入射端面部および出射面以外の部分を覆う反射性を有し反射面が凹凸形状またはプリズム形状である反射体とを具備することによって、導光板の入射端面部近傍での光源の映り込みや輝度斑や発光色斑の発生をコントロールすることができ、ならびに導光板の利用出射面を大きく取れる導光板および平面照明装置を提供するものである。
【0026】
図1は本発明に係る導光板を含む平明照明装置の概略構成を示す分解斜視図、図2は本発明に係る導光板の側面図、図3は図2の導光板における光線の軌跡を示す図、図4(a),(b)は図2の導光板において入射端面部の中央部に1つの光源を配置したときの光線の軌跡を示す図、図5は本発明に係る導光板の他の形状を示す側面図である。
【0027】
図1に示すように、平面照明装置1は、導光板2と光源9および反射体10から構成されている。
【0028】
導光板2は、屈折率が1.4〜1.7程度の透明なアクリル樹脂(PMMA)やポリカーボネート(PC)等で形成される。この導光板2は、光源9からの光を導く入射端面部3と、この入射端面部3と反対側に位置する反入射端面部4と、これら入射端面部3と反入射端面部4の両端に接続する側面部5,5と、光を出射する表面部6と、この表面部6と反対側に位置する裏面部7とからなる。また、表面部6や裏面部7には、光を全反射や屈折する光偏向素子8が施してある。
【0029】
導光板2は、表面部6と裏面部7との間の距離(導光板2の厚さ)が入射端面部3で最小(薄く)になり、入射端面部3から最大離距離(入射端面部3から入射端面部3の反対側に位置する反入射端面部4までの距離)において距離(厚さ)が最大(厚く)になるような形状を有している。
故に、導光板2は、図2に示すように、厚さが薄い入射端面部3の近傍に入射端面部3に対して略平行に光源9が配置され、光源9が配置された入射端面部3の反対側(最大離距離)である反入射端面部4の厚さが厚い配置となる。
【0030】
さらに、表面部6や裏面部7には、光偏向素子8が設けられる。図1の例では、表面部6のみに光偏向素子8を設けている。これにより、入射端面部3からの入射光が入射端面部3の反対側に位置する反入射端面部4に進む間では、導光板2が楔形状であっても臨界角を破る光線は無く進み反入射端面部4で全反射をする。そして、この反入射端面部4で全反射した光線は、再度入射端面部3方向に進む時に光偏向素子8により屈折等を行い、臨界角を破って表面部6から出射することができる。
【0031】
また、図3に示すように、導光板2に入射した光は、屈折角γが0≦|γ|≦sin−1(1/n)の式を満たす範囲で導光板2内に進む。例えば一般の導光板2に使用されている樹脂材料であるアクリル樹脂の屈折率がn=1.49程度である。従って、最大入射角は、入射端面部3の表面部6方向から裏面部7方向への光および裏面部7方向から表面部6方向への光が入射角90°となる。このため、入射端面部3で屈折する屈折角γは、γ=0〜±42°程度の範囲内になる。
但し、表面部6近傍では裏面部7方向のみのγ=−42°のみとなり、裏面部7近傍では表面部6方向のみのγ=+42°のみとなる。
【0032】
ここで、屈折角γ=0〜±42°の範囲内で導光板2内に入射した光は、導光板2と空気層(屈折率n=1)との境界面では、sinα=(1/n)の式により臨界角を表わすことができる。例えば一般の導光板2に使用されている樹脂材料であるアクリル樹脂の屈折率がn=1.49程度であるので、臨界角αはα=42°程度になる。従って、導光板2の表面部6や裏面部7に光線を偏向する凸や凹等が無かったり、臨界角αを越えなければ、導光板2内の光は表面部6や裏面部7で全て全反射しながら反入射端面部4方向へ進むことになる。
【0033】
しかし、本発明の導光板2は、導光板2の厚さが(導光板2の表面部6と裏面部7との間の距離)が入射端面部3から入射端面部3の反対側に位置する反入射端面部4に向かう程(入射端面部3から最大離距離)に導光板2の厚さが薄く(最小に)なる楔形状(一般または従来とは逆)であるので、図3に示すように、入射端面部3からの入射光Ln1が入射端面部3の反対側に位置する反入射端面部4に進む間に導光板2が楔形状であっても臨界角を破る光線は無く、表面部6や裏面部7で全反射を繰り返した光線Ln2は反入射端面部4で全反射をする。
そして、再度入射端面部3方向に光線Ln3が進む時に光偏向素子8により屈折等を行って臨界角を破り表面部6から光線Ln4を出射することができる。
尚、ここでは光偏向素子8について、凸形状および凹形状について記したが、何れも凸形状や凹形状の傾斜面で光線を屈折し外部に出射する。
【0034】
さらに、本発明の導光板2は、図示しないが表面部6や裏面部7に光偏向素子8を入射端面部3に近づくほど光偏向素子8の数量または面積が増加するように設けている。これにより、最初に光源9からの入射端面部3から入射した光は、導光板2の表面部6や裏面部7に達しても臨界角αに達する光が存在せず、表面部6や裏面部7で全反射を繰り返しながら入射端面部3の反対側の反入射端面部4に進み、反入射端面部4で全反射する。この全反射した光が入射端面部3方向に戻る過程において、導光板2の厚さが徐々に薄くなって臨界角αを破る光線や臨界角αに近い光線等が多く存在する。このため、上記全反射により再度入射端面部3方向に進んだ光のうち、反入射端面部4から入射端面部3に戻る間に臨界角α付近の光線が光偏向素子8の傾斜面によって屈折等を引き起こし出射面(表面部6)から出射する。
【0035】
また、光が反入射端面部4から入射端面部3に戻る間に出射面(表面部6)から出射され、入射端面部3に近づくほど(戻るほど)光量の減衰等に対応させて一層多数の光線を出射面(表面部6)から出射する。このため、入射端面部3に近づくほど出射させる光量を多くする必要があり、入射端面部3に近づくほど光偏向素子8の数量または面積が増加することにより均一な出射光を得ることができる。
【0036】
さらに、光源9が単一の場合でも、一度入射端面部3の反対側の反入射端面部4で全反射した光が入射端面部3全体に進み、入射端面部3の方向に進むにつれて光偏向素子8を入射端面部3に近づくほど光偏向素子8の数量または面積が増加する。これにより、光源9の両端方向である入射端面部3の両端部でも均一な出射光を得ることができる。
【0037】
また、画面サイズの大きな平面照明装置1の場合には、導光板2の両端を入射端面部3を設ける構造を有し、本発明の概念から導光板2は表面部6と裏面部7との間の距離(導光板2の厚さ)が入射端面部3で最小(薄く)になり、両端の入射端面部3から中心において距離(厚さ)が最大(厚く)になるような形状を有する。
【0038】
即ち、図5に示すように、平面照明装置1は、光源9として2つの光源9aと光源9bを有し、この2つの光源9aと光源9bに対向する導光板2の厚さが最も薄い両端部を入射端面部3(3a,3b)としている。そして、入射端面部3a,3bから互いに中心方向に向かう程導光板2の厚さが厚くなり、中心部で表面部6と互いに中心方向に向かう裏面部7(7a,7b)との距離が最大になる。
【0039】
故に、導光板2は、導光板2の厚さが(導光板2の表面部6と裏面部7aおよび裏面部7bとの間の距離)が各入射端面部3aおよび入射端面部3bから各入射端面部3aおよび入射端面部3bの反対側に向かう程(各入射端面部3aおよび入射端面部3bから中心)導光板2の厚さが厚く(最大に)なる形状である。
これにより、各入射端面部3aおよび入射端面部3bからの入射光が中心に進む間に導光板2がテーパ形状であっても互いに中心までは臨界角を破る光線は無い。そして、表面部6や裏面部7で全反射を繰り返した光線は、互いに対向する導光板2内および互いに対向する入射端面部3aおよび入射端面部3bで全反射をして、再度互いに入射した各入射端面部3aおよび入射端面部3b方向に光線が進む時に光偏向素子8により屈折等を行って臨界角を破り表面部6から光線を出射することができる。
【0040】
また、図4(a),(b)に示すように、半導体発光素子等(LED等)からなる光源9を入射端面部3の中心に1つだけ設けた場合にも、光源9が半導体発光素子等のため光束が狭い範囲で反入射端面部4方向に進むが、入射端面部3から反入射端面部4方向に進む間には臨界角を破る光線は存在せず、反入射端面部4で全反射をして光線Lnが再度入射端面部3方向に進む間に臨界角を破り、さらに表面部6に設けた光偏向素子8により臨界角付近の光線が光偏向素子8の傾斜面によって屈折等を引き起こし一層多数の光線を表面部6に出射することができるので、入射端面部3の両端部に暗部ができず均一で明るい出射光を得ることができる。これに対し、図9(a),(b)に示すような従来の構成では、入射端面部の両端部に暗部ができてしまう。
【0041】
このように、本発明の導光板2は、導光板2の厚さが入射端面部3の位置が最も薄く、入射端面部3から離れる程、導光板2の厚さが厚くなるように構成し、光源9から最初に導光板2に入射した光線は表面部6や裏面部7等の鏡面で全反射のみにより、入射端面部3の反対側に位置する反入射端面部4で全反射を行った後に、再度入射端面部3方向に進み、この時導光板2の厚さが段々薄くなる為、光線が進みながら臨界角を破り、表面部6から出射するとともに表面部6に設けた光偏向素子8により臨界角付近の光線が光偏向素子8の傾斜面によって屈折等を引き起こし一層多数の光線を表面部6に出射する。
【0042】
また、導光板2の両端に入射端面部3を設けた場合には、導光板2の厚さが入射端面部3の位置が最も薄く、入射端面部3から離れる程、導光板2の厚さが厚くなるようにし、導光板2の両端から同距離の中心部分で導光板2の厚さが最も厚くなるように構成するので、光源9から最初に導光板2に入射した光線は表面部6や裏面部7等の鏡面で全反射のみとなり、中心部を超えた位置から導光板2の厚さが段々薄くなる為、光源が進みながら臨界角を破り、表面部6から出射するとともに表面部6に設けた光偏向素子8により臨界角付近の光線が光偏向素子8の傾斜面によって屈折等を引き起こし一層多数の光線を表面部6に出射する。
よって、入射端面部3の近傍では光源9からの直接的な高輝度な光を(映り込み)出射せずに導光板2の全体に明るく斑のない光を出射し、特に導光板2の両端に入射端面部3を設けた場合には機械的強度に優れている。
【0043】
光源9は、半導体発光素子であって、LEDやレーザ等からなり、RGB(赤色、緑色、青色)の各単色光を各入射部3の近傍に設けたり、RGB(赤色発光、緑色発光、青色発光)からなる複数の半導体発光素子を組み合わせたアレー状に構成したユニットを各入射部3に設けても良い。
さらに、光源9としては、波長変換材を利用した白色光を発光する光源(例えば、青色発光素子に黄色系の蛍光剤等を組み合わせた物)でも良い。
【0044】
また、光源9は、入射端面部3が大きい場合や導光板2自体が大きい場合、CCFL(冷陰極管)を用いても良い。この場合、光源9は、線状をなし、直接光が導光板2の入射端面部3から導光板2内に入射し、他の光が図示しないリフレクタで反射されながら光源9とリフレクタとの空間を通って導光板2内に入射する。
尚、この線状の光源9の場合には、従来の導光板21では、入射端面部31の近傍に高輝度な輝線が現れてしまうが、本発明の導光板2を用いることによって輝線の発生を防ぐことができる。
【0045】
反射体10は、図示しないが反射面が凹凸形状またはプリズム形状を成し、熱可塑性樹脂に例えば酸化チタンのような白色材料を混入したシートや熱可塑性樹脂のシートにアルミニウム等の金属蒸着を施したり、金属箔を積層した物やシート状金属からなる。この反射体10は、入射端面部3と表面部6以外の部分を覆い、光源9からの光が導光板2によって表面部6に出射した以外の光を反射または乱反射し、再び導光板2に入射させて光源9からの光を全て表面部6から出射するようにする。
また、反入射端面部4や裏面部7に用いる反射体10の凹凸形状やプリズム形状を制御することにより、再度導光板2内に戻す位置をコントロールし、最終の出射光の輝度、光量分布および出射角等を調整することができる。
【0046】
さらに、反射体10は、反射面を凹凸形状またはプリズム形状とすることができる。これにより、光源9がRGB等の三原色光の光をプリズム面による反射によって導光板2内で混ざり合うことができ、光源9からの光を無駄にせず光源9から導光板2の出射光に変換する効率を良くすることができる。
【0047】
また、ここでは図示しないが、例えば光源9がCCFL(冷陰極管)のような指向性がラジアル方向を示すような場合には、光源9(CCFL)の周囲にリフレクタを設け、導光板2の入射端面部3と光源9とを包囲するようにする。これにより、光源9からの光を反射し、反射光を導光板2の入射端面部3に再び入射させる。
また、リフレクタは、白色の絶縁性材料やアルミニウム等の金属を蒸着したシート状または金属等からなる。
【0048】
さらに、ここでは図示しないが、現実的な平面照明装置1として、導光板2から臨界角を破って表面部6等に出射する光線は、表面部6に対する入射角度が大きいので、出射角度も大きくなる。このことは表面部6と出射光との成す角度が小さくなることを意味し、導光板2に沿った様な出射光となる。従って、例えば液晶表示装置等に対しては、導光板2と略垂直な出射光を必要とするため、導光板2の出射面(表面部6)にプリズムシートを用いる。
この時、プリズムシートのプリズム面(プリズムの稜)を導光板2に向けて配置し、導光板2に沿った様な出射光を一度プリズムシート内に取り込み、取り込んだ面と反対側の面で全反射をし、最終的に平面照明装置1から略垂直な出射光を得る。
【0049】
【実施例】
図10(a)は本発明の導光板と従来の導光板とを用いた測定値の結果を示す図、図10(b)は平均輝度を測定するときの導光板の領域の分け方を示す図である。
【0050】
測定条件は、導光板の厚さを最小0.9mm〜最大1.3mmの楔形状とする。そして、本発明の導光板は、0.9mm厚の部分を入射端面部とし、入射端面部近傍に光源を配置する。これに対し、従来の導光板は、1.3mm厚の部分を入射端面部とし、入射端面部近傍に光源を配置する。また、本発明および従来の導光板には同じ大きさのものを用いる。光源は、入射端面部に平行に半導体発光素子(日本ライツ(株)製L7555)を4つ並べた物を使用した。光源の入力電流は、各々1チップ当り18mAとする。プリズムフィルムならびに反射フィルムは住友3M(株)製を使用した。輝度測定器は、トプコン BM−7(視野角1°)であり、数値の単位はCd/m2 である。
【0051】
図10(a)に示す測定結果を見ても明らかなように、平均輝度に関しては、導光板の3つの領域の全ての平均輝度及び中心輝度が本発明の導光板を用いた場合の方が従来の導光板を用いた場合よりも高いという結果が得られた。また、輝度斑に関しても、本発明の導光板を用いた場合の方が従来の導光板を用いた場合よりも少ない(略半分の数)という結果が得られた。
なお、平均輝度については、図10(b)に示すように、光源が対向配置される入射端面部から反入射端面部に向かって領域A,B,Cに3等分して測定を行った。
【0052】
このように、本発明の導光板および平面照明装置は、導光板2の厚さが入射端面部3の位置が最も薄く、入射端面部3から離れる程、導光板2の厚さが厚くなるような構成となっている。これにより、入射端面部3から入射端面部3の反対側に位置する反入射端面部4方向(この方向を順方向という)に進む時には導光板2の各面の鏡面でより多く全反射をする。そして、この全反射した光線が反入射端面部4に達し、反入射端面部4で全反射を行った後に、再度入射端面部3方向(この方向を逆方向という)に進む。この逆方向に進む時には導光板2の厚さが段々薄くなるため、光線が進みながら臨界角αを破り、表面部6から出射する。しかも、表面部6の入射端面部3に近づくほど分布量が増すように設けた光偏向素子8により臨界角α付近の光線が光偏向素子8の傾斜面によって屈折等を引き起こし、一層多数の光線を表面部6に出射するとともに均一で高輝度の出射光を得ることができる。
【0053】
同様に、導光板2の両端に入射端面部3a,3bを設けた場合には、導光板2の厚さが入射端面部3a,3bの位置が最も薄く、導光板2の中心部分で導光板2の厚さが最も厚くなるような構成となっている。これにより、2つの入射端面部3a,3bから導光板2の中心部に向かう順方向では各面の鏡面で全反射のみとなり、中心部を超えた位置から反対側の入射端面部に向かう逆方向に向かうに連れて導光板2の厚さが段々薄くなるため、光線が進みながら臨界角αを破り、表面部6から出射する。しかも、表面部6の入射端面部3a,3bに近づくほど分布量が増すように設けた光偏向素子8により臨界角α付近の光線が光偏向素子8の傾斜面によって屈折等を引き起こし、一層多数の光線を表面部6に出射するとともに均一で高輝度の出射光を得ることができる。
【0054】
よって、入射端面部3の近傍では光源9からの直接的な高輝度な光、所謂映り込みを出射せずに導光板2の全体に明るく斑のない光を出射する。特に導光板2の両端に入射端面部3a,3bを設けた場合には,機械的強度に優れ、映り込みの無い分だけ実質的な大きな出射面を確保することができる。また、光源9として三原色光(RGB)の白色光源を用いた場合にも入射端面部3近傍では出射しないので、各色(RGB)光線が入射端面部と反対の方向に進む間に混ざり合い、臨界角αを破る時には完全な白色光として出射することができる。
【0055】
また、半導体発光素子のように指向性の有る光源9を入射端面部3の中心に1つだけ設けた場合、光束が狭い範囲で反入射端面部4方向に進む。このため、従来の構成では、導光板2の入射端面部3の両端部分が暗部となってしまう。これに対し、本発明の構成では、入射端面部3から反入射端面部4方向に進む間には臨界角αを破る光線は存在せず、反入射端面部4で全反射をして光線Lnが再度入射端面部3方向に進む間に臨界角を破り、さらに表面部6に設けた光偏向素子8により臨界角α付近の光線が光偏向素子8の傾斜面によって屈折等を引き起こし、一層多数の光線を表面部6に出射することができる。これにより、入射端面部3の両端部に暗部ができず、均一で明るい出射光を得ることができる。
【0056】
【発明の効果】
以上のように、請求項1に係る導光板は、薄板状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を設けるとともに表面部と裏面部との間の距離が入射端面部で最小になり、入射端面部から最大離距離において距離が最大になるので、光源からの光線を入射端面部で歪無く導光板内に取り込み、入射端面部の反対側に位置する反入射端面部に進む間では導光板が楔形状であっても臨界角を破る光線は無く、導光板の各面で多くの光線を全反射させるとともに反入射端面部で全反射した光線を再度入射端面部方向に進む時に臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射する光量をコントロールすることができるとともに光源の映り込みが無く、入射端面部近傍の入射端面部の両端にも暗部がなく明るく均一な出射光を得ることができる。しかも、その分実際に使用でき得る導光板の面積が大きく取れ、さらに光源が並列(アレー状)に設けてあっても互いに隣り合う光源からの光を重ならずに輝度斑の発生を防ぐことができ、また大型化する場合に両端を入射端面部とするため中心部分の厚さが一番厚いので導光板の機械的安定および強度に優れる。
【0057】
また、請求項2に係る導光板は、光偏向素子を入射端面部に近づくほど光偏向素子の数量または面積が増加するので、入射端面部から入射した光は導光板の表面部や裏面部に達しても臨界角に達する光が存在せず、一度入射端面部の反対側の反入射端面部で全反射した光が臨界角を破る光線や臨界角に近い光線等が多く存在するために反入射端面部から入射端面部に戻る間に出射面から出射するために入射端面部に近づくほど出射させる光量を多くする必要があるので、入射端面部に近づくほど光偏向素子の数量または面積が増加することにより均一な出射光を得ることができる。また、単一光源の場合でも一度入射端面部の反対側の反入射端面部で全反射した光が入射端面部全体に進み、入射端面部の方向に進むにつれて光偏向素子を入射端面部に近づくほど光偏向素子の数量または面積が増加するので、光源の両端方向である入射端面部の両端部でも均一な出射光を得ることができる。
【0058】
さらに、請求項3に係る平面照明装置は、指向性の有する光源と、光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら表面部と裏面部とに略直角に交わる側面部を有した薄板状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに表面部または/および裏面部には微細な光偏向素子を設けるとともに表面部と裏面部との間の距離が入射端面部で最小になり、入射端面部から最大離距離において距離が最大になる導光板と、導光板の入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備するので、入射端面部からの入射光が入射端面部の反対側に位置する反入射端面部に進む間では導光板が楔形状であっても臨界角を破る光線は無く、テーパーリークは起こらないので指向性の強い光源でも入射端面部近傍での光輝度の出射光や半導体発光素子自身等の光源の形状が出射面から観測(映り込み)や輝度斑が無く、反入射端面部で全反射をし、再度入射端面部方向に光線が進む時に臨界角を破る光線や臨界角に近い光線等が多く存在し、テーパーリークとともに微細な光偏向素子に達した時に臨界角を破り導光板から出射する光量をコントロールして輝度斑を無くし均一な輝度を得るとともに入射端面部近傍の入射端面部の両端での暗部がなく明るく均一な出射光を得ることができる。しかも、反入射端面部で全反射をした光線によって始めてテーパーリークを起こすことができるので、RGB等の単色光源を並べた光源の場合でも入射端面部近傍ですぐに出射せず発光色斑の発生を回避することができ、入射光が一度導光板の入射端面部の反対側で全反射してから出射するために、その間に導光板内を幾度か全反射を繰り返しながら進行する。このため、RGBの単色光が混合されて完全な白色光を得ることができる。加えて、導光板の利用出射面を大きく取れ、さらに大型の導光板や平面照明装置でも光源近傍の両端の入射端面部が最小で中央部が最大の厚みになり、機械的に優れているので、必要以上の大きさの導光板を必要とせずに導光板の大きさがそのまま平面照明装置のサイズに適応することができるとともに軽量化(全体の厚さを薄く)しても機械的に安定した(強度に優れた)構造を得ることができる。
【0059】
また、請求項4に係る平面照明装置は、指向性の有する光源が複数の半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材料利用の白色光であるとともにこれらを単体またはアレー状に構成したので、高輝度の出射光を得ることができるとともに目的に応じて高輝度の白色光を出射することができる。しかも、光源をアレー状に構成することにより光源の形状が出射面から観測(映り込み)や輝度斑が無い出射光を得ることができるとともに目的に応じて高輝度の白色光を出射することができるので、クリアな白色光や単色光を得ることができる。
【0060】
さらに、請求項5に係る平面照明装置は、反射体の反射面が凹凸形状またはプリズム形状であるので、入射端面部から入射端面部の反対側に位置する反入射端面部に進んだ光線や出射面の反対側の面に出射した光線や漏れた光線等をより確実に再度導光板内に戻す位置をコントロールすることができる。これにより、最終の出射光の輝度、光量分布および出射角等を調整することができる。さらに、光源がRGB等の三原色光の場合、三原色光の光をプリズム面による反射によって導光板内で混ざり合うことができるので、光源からの光を無駄にせず光源から導光板の出射光に変換する効率が優れている。
【図面の簡単な説明】
【図1】本発明に係る導光板を含む平明照明装置の概略構成を示す分解斜視図
【図2】本発明に係る導光板の側面図
【図3】図2の導光板における光線の軌跡を示す図
【図4】(a),(b) 図2の導光板において入射端面部の中央部に1つの光源を配置したときの光線の軌跡を示す図
【図5】本発明に係る導光板の他の形状を示す側面図
【図6】従来の導光板の斜視図
【図7】従来の他の形状による導光板を含む平面照明装置の概略構成を示す側面図
【図8】図6の導光板における光線の軌跡を示す図
【図9】(a),(b) 図6の導光板において入射端面部の中央部に1つの光源を配置したときの光線の軌跡を示す図
【図10】(a) 本発明の導光板と従来の導光板とを用いた測定値の結果を示す図
(b) 平均輝度を測定するときの導光板の領域の分け方を示す図
【符号の説明】
1…平面照明装置、2,21,21A…導光板、6,61…表面部、7,71…裏面部、3,31…入射端面部、4,41…反入射端面部、5,51…側面部、8…光偏向素子、9,9a,9b91a,91b…光源、10…反射体、Ln,Ln1,Ln2,Ln3.Ln4,L0,L01,L02,L03,L04…光線。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention avoids the reflection of strong light from the light source near the incident end face even if the light from the light source has directivity by setting the thickness of the light guide plate so that the position of the incident end face is minimized. The present invention relates to a light guide plate and a flat lighting device capable of avoiding the occurrence of dark portions at both ends near the incident end face of the light guide plate due to a small number of light sources.
[0002]
[Prior art]
In conventional light guide plates and flat lighting devices, in order to maximize the use of light from a light source, the thickness of the light guide plate is reduced as the distance from the incident end face is reduced, and the thickness of the light from the incident end face is reduced. A method utilizing a taper leak of light traveling in the opposite direction is known. Specifically, as shown in FIG. 6, the light guide plate 21 is formed in a wedge shape and guides light from a light source (not shown) to the incident end surface portion 31, the front surface portion 61, the back surface portion 71, and the front surface portion 61 and the back surface. It has side portions 51, 51 that intersect the portion 71 at a substantially right angle. The light guide plate 21 has a thicker one as the incident end face part 31, and becomes thinner toward the anti-incident end face part 41 b in a direction opposite to the incident end face part 31. Then, a light source is arranged to face the incident end face 31 and light is emitted from the front face part 61 and / or the rear face part 71 by utilizing a taper leak of light from the incident end face part 31 toward the anti-incident end face part 41. are doing.
[0003]
Further, in the case of a large planar illumination device, as shown in FIG. 7, the light guide plate 21A is configured such that the thickness of the light guide plate 21A is reduced from the incident end face portions 31a and 31b at both ends toward the center. Is done. In the planar lighting device using the light guide plate 21A, the light sources 91a and 91b are disposed on the incident end surfaces 31a and 31b at both ends of the light guide plate 21A, respectively. Then, light is emitted from the front surface portion 61 and / or the back surface portions 71a and 71b by utilizing a taper leak of light traveling from the incident end surface portions 31a and 31b in a direction opposite to the incident end surface portions 31a and 31b.
[0004]
In addition, when printing a white light scattering agent on the side opposite to the exit surface of the conventional light guide plate, even if the number of printed portions increases as the distance from the incident end surface increases or dots such as irregularities are provided on the light guide plate, The dots increased as the distance from the end surface increased.
[0005]
Further, as a conventional planar lighting device using a point light source such as an LED as a light source, a plurality of LEDs are arranged on a side surface of a light guide plate, and a convex or concave portion such as a prism is formed on an incident end face portion of the light guide plate at a position facing these LEDs. A method is known in which a light beam reaches the corners at both ends of the light guide plate.
[0006]
[Problems to be solved by the invention]
Here, as a conventional light guide plate and a planar illumination device, for example, a trajectory of a light ray on a wedge-shaped light guide plate 21 will be described with reference to FIG. As the light guide plate, a wedge-shaped one shown in FIG. 6 is used.
[0007]
As shown in FIG. 6, the light guide plate 21 is configured such that the thickness becomes thinner as it goes from the incident end face 31 to the anti-incident end face 41 located on the opposite side of the incident end face 31. As described above, since the light guide plate 21 has a wedge shape, the light beam L01 travels toward the surface portion 61 while the incident light L01 illustrated in FIG. 8 proceeds to the counter-incident end surface portion 41 located on the opposite side of the incident end surface portion 31. If the incident angle of the light ray L01 with respect to the front surface part 61 is within 42 °, the light ray L01 is totally reflected by the front surface part 61 and proceeds as a light ray L02 toward the back surface part 71. However, since the light guide plate 21 has a wedge shape that becomes thinner in the direction in which the light beam travels, the incident angle with respect to the back surface portion 71 is smaller than the critical angle, so that the light beam breaks the critical angle and becomes a light beam L03 or a light beam L04. The beam breaks the critical angle from 71 and emits.
In the description shown in FIG. 8, the outgoing light that breaks the critical angle is shown only on the back surface portion 71, but the outgoing light that breaks the critical angle also exists on the front surface portion 61.
[0008]
In this way, as shown in FIGS. 6 and 8, in order to maximize the use of light from the light source, the light guide plate is formed in a so-called wedge shape in which the thickness of the light guide plate decreases as the distance from the incident end surface increases. In the configuration using the taper leak of light traveling from the incident end face to the opposite direction to the incident end face, if the light source has directivity, the critical angle is immediately broken near the incident end face, that is, the taper leak increases. Bright emission is provided. Since the emitted light is a high-luminance and highly directional light, the shape of the semiconductor light-emitting element itself is observed (reflected) from the light-emitting surface in the case of the entire light source, for example, the light source of a semiconductor light-emitting element (LED). There is a problem that will be done.
[0009]
Further, as described above, in the light guide plate in which the thickness of the light guide plate is reduced as the distance from the incident end surface increases, the shape of the semiconductor light emitting element itself is prevented from being observed from the exit surface. The neighborhood is used without actually using it. For this reason, there is a problem that a light guide plate larger than the required area of the flat lighting device must be used.
[0010]
In the case of a conventional large flat lighting device, as shown in FIG. 7, the thickness of the light guide plate 21A is reduced from the incident end face portions 31a and 31b at both ends toward the center, and the incident end face portions 31a and 31b are reduced. In a configuration in which both ends of the light guide plate 21A are formed as the incident end face portions 31a and 31b by using a method utilizing a taper leak of light traveling in the opposite direction to the incident end face portions 31a and 31b, the thickness of the central portion of the light guide plate 21A is reduced. It is the thinnest part, and the problem is that the thinner the whole, the thinner the central part becomes, and the mechanical strength is weak.
[0011]
Furthermore, in order to obtain white light using three color light sources of RGB (red light emission, green light emission, and blue light emission), when the RGB light sources are sequentially arranged to form an array, each light emission color becomes the incident end face. There is a problem that the light is not white in the vicinity of the incident end face, and each of the luminescent colors is emitted from the emission surface in a patch-like manner because the light is hardly mixed in the vicinity of the part.
[0012]
Further, a conventional plain light illuminating device using a point light source such as an LED as a light source arranges a plurality of LEDs on an incident end face of a light guide plate and projects a convex or a prism on an incident end face of the light guide plate at a position facing these LEDs. In the configuration having the concave shape, the light source is a point light source, so that the light beam intensity distribution is circular or elliptical. For this reason, prism processing is performed on the incident end face portion of the light guide plate facing the light source, and the light is dispersed in the left-right direction of the light source and uniformly emitted from the entire light guide plate, but the light of the light source such as the adjacent LED overlaps, There is a problem that brightness unevenness occurs.
[0013]
Further, as shown in FIGS. 9A and 9B, in the conventional planar lighting device using the wedge-shaped light guide plate 21 and the point light source 9 such as one LED at the center of the incident end face portion 31, FIG. As shown in FIG. 9B, since the light source 9 of the semiconductor light emitting element such as an LED has directivity, the light beam travels in a narrow range toward the non-incident end face 41 and from the incident end face 31 toward the non-incident end face 41. The laser beam breaks the critical angle while traveling. Therefore, there is a problem that both ends of the incident end face 31 (between the incident end face 31 and the incident light beam L0) become dark portions.
[0014]
The present invention has been made to solve such a problem, and an object of the present invention is to form a monochromatic light or a red light, a green light, a three primary color light of a blue light or a wavelength conversion comprising a plurality of semiconductor light emitting elements having directivity. A light source composed of a single semiconductor light emitting element having an array shape or directivity that is white light utilizing a material, an incident end face portion for guiding light from the light source, and a front surface portion and / or a back surface portion for emitting the light. Having a side surface portion that intersects the front surface portion and the back surface portion at a substantially right angle, the distance between the front surface portion and the back surface portion is minimized at the incident end surface portion, and the front surface portion and the back surface at the maximum distance from the incident end surface portion. It has a thin plate-like rectangular cubic shape with the maximum distance to the surface, and the six surfaces surrounding these form a mirror surface, and a fine light deflecting element is provided near the incident end surface on the front surface and / or the rear surface. Increase By providing a light guide plate provided as described above and a reflector having a reflective property covering a portion other than the incident end face portion and the emission surface of the light guide plate and having a reflective surface having a concave-convex shape or a prism shape, the light guide plate has Even if the existing light beam travels from the incident end face to the anti-incident end face located on the opposite side of the incident end face, no taper leak occurs.When the light ray is totally reflected at the anti-incident end face and heads again to the incident end face, it is tapered for the first time. Since leakage can occur, high-intensity light from the light source is not emitted in the vicinity of the incident end face, but is emitted after being totally reflected once on the opposite side of the incident end face of the light guide plate. Since the light travels through the light guide plate while repeating total reflection several times, it is possible to eliminate glare and uneven brightness of the light source, and even in the case of a light source in which monochromatic light sources such as RGB are arranged, light can be emitted immediately near the incident end face. In order to emit light after being totally reflected once on the side opposite to the incident end face of the light guide plate, RGB monochromatic light is mixed and travels while repeating total reflection several times in the light guide plate during that time to produce perfect white light. It is possible to control the luminance unevenness and the luminescent color unevenness together with the luminance, and also take a large use exit surface of the light guide plate. It is an object of the present invention to provide a light guide plate and a planar lighting device that can obtain mechanically excellent strength because the thickness becomes minimum and the central portion has the maximum thickness.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the light guide plate according to claim 1 of the present invention has a thin rectangular cubic shape, and six surfaces surrounding the light guide plate have a mirror surface, and fine light is provided on a front surface portion and / or a rear surface portion. It is characterized in that the deflecting element is provided and the distance between the front surface portion and the back surface portion is minimized at the incident end face portion, and the distance is maximized at the maximum distance from the incident end face portion.
[0016]
The light guide plate according to claim 1 has a thin rectangular cubic shape, six surfaces surrounding them are mirror surfaces, and a fine light deflecting element is provided on a front surface portion and / or a rear surface portion. The distance between the light source and the light source is minimized at the incident end face, and the distance is maximized at the maximum distance from the incident end face. While the light guide plate is wedge-shaped, there is no ray that breaks the critical angle while traveling to the anti-incident end face located on the opposite side of the light guide plate. There are many rays that break the critical angle and rays that are close to the critical angle when the rays totally reflected by the light again travel in the direction of the incident end face, etc. Control the amount of emitted light No reflection of the light source it is possible to, it is possible to obtain a bright and uniform light emitted no dark portion to both ends of the incident end face of the incident end face neighborhood.
[0017]
The light guide plate according to claim 2 is characterized in that the number or area of the light deflecting elements increases as the light deflecting elements are closer to the incident end face.
[0018]
In the light guide plate according to claim 2, since the number or area of the light deflecting elements increases as the light deflecting element approaches the incident end face, light incident from the incident end face reaches the front surface or the rear surface of the light guide plate. There is also no light reaching the critical angle, and there are many rays that break the critical angle or light near the critical angle, etc. Since it is necessary to increase the amount of light to be emitted closer to the incident end face to emit from the exit face while returning from the part to the incident end face, the number or area of the light deflecting elements increases as the closer to the incident end face. Thus, more uniform outgoing light can be obtained.
[0019]
Furthermore, the flat lighting device according to claim 3 is a light source having directivity, an incident end face portion for guiding light from the light source, a front surface portion and / or a back surface portion for emitting the light, and the front surface portion and the back surface portion. And a thin plate-shaped rectangular cubic shape having side surfaces that intersect at right angles to the surface, and six surfaces surrounding them form a mirror surface, and a fine light deflecting element is provided on the front surface portion and / or the rear surface portion. The light guide plate where the distance between the light guide plate and the back surface is minimized at the incident end face, and the distance is the largest at the maximum distance from the incident end face, and the reflectivity covering portions other than the incident end face and the exit surface of the light guide plate And a reflector having
[0020]
The flat lighting device according to claim 3 includes a light source having directivity, an incident end face portion for guiding light from the light source, a front surface portion and / or a rear surface portion for emitting the light, and a front surface portion and a rear surface portion. It has the shape of a thin rectangular cube having side surfaces that intersect at a substantially right angle. The six surfaces surrounding these form a mirror surface, and a fine light deflecting element is provided on the front surface and / or the rear surface. The light guide plate is such that the distance between the light guide plate and the light guide plate is minimized at the incident end face, and the distance is the largest at the maximum distance from the incident end face. Since the light from the light guide plate is wedge-shaped, there is no light beam that breaks the critical angle while the incident light from the incident end face advances to the anti-incident end face located on the opposite side of the incident end face. Directivity because no taper leak occurs Even with a strong light source, the shape of the light source such as the semiconductor light emitting element itself and the emitted light of light brightness near the incident end face does not have any observation (reflection) or luminance unevenness from the emitting face, and is totally reflected at the anti-incident end face. There are many rays that break the critical angle when the light travels in the direction of the incident end face and rays that are close to the critical angle.When the light reaches the fine optical deflection element with taper leak, the critical angle is broken and the amount of light emitted from the light guide plate is controlled. Brightness uniformity is obtained by eliminating luminance unevenness, and bright and uniform outgoing light is obtained without dark areas at both ends of the incident end face near the incident end face. Therefore, even in the case of a light source in which monochromatic light sources such as RGB are arranged, the light is not emitted immediately near the incident end face, so that the occurrence of luminescent color spots can be avoided, and the incident light is once incident on the light guide plate. Since the light is emitted after being totally reflected on the opposite side of the surface portion, the light travels while repeating the total reflection several times in the light guide plate, so that the RGB monochromatic light is mixed to obtain a complete white light. Use of the light plate A large exit surface can be obtained, and even for large light guide plates and flat lighting devices, the incident end surfaces at both ends near the light source are the minimum and the central part has the maximum thickness, so the mechanical strength increases structurally, Excellent.
[0021]
In the flat lighting device according to claim 4, the light source having directivity is composed of a plurality of semiconductor light emitting elements, and is monochromatic light or red light, green light, three primary colors of blue light, or white light using a wavelength conversion material. In addition, these are characterized in that they are configured as a single unit or an array.
[0022]
The flat lighting device according to claim 4, wherein the light source having directivity is composed of a plurality of semiconductor light emitting elements, and is monochromatic light or red light, green light, three primary colors of blue light or white light using a wavelength conversion material. Is formed as a single unit or in an array, so that high-luminance emission light can be obtained and high-luminance white light can be emitted according to the purpose. Thus, it is possible to obtain outgoing light without observation (reflection) or uneven brightness.
Further, the flat lighting device according to the fifth aspect is characterized in that the reflecting surface of the reflector has an uneven shape or a prism shape.
[0024]
In the flat lighting device according to the fifth aspect, since the reflecting surface of the reflector has a concave-convex shape or a prism-like shape, a light beam or an outgoing surface that travels from the incident end surface to the opposite incident end surface located on the opposite side of the incident end surface is formed. The light emitted to the opposite surface or the leaked light can be returned to the light guide plate more reliably, and the position to return to the light guide plate can be controlled by controlling the uneven shape and prism shape. Further, when the light source is light of three primary colors such as RGB, the light of the three primary colors can be mixed in the light guide plate by reflection by the prism surface.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
According to the present invention, the light guide plate has a thin plate-like rectangular cubic shape, and six surfaces surrounding the light guide plate form a mirror surface, and a fine light deflecting element is provided near the incident end surface on the front surface and / or the rear surface. The distance (thickness) between the front surface portion and the back surface portion is minimized at the incident end surface portion, and the distance (thickness) between the front surface portion and the back surface portion at the maximum distance from the incident end surface portion is increased. The light source is composed of a plurality of semiconductor light-emitting elements having directivity, and is monochromatic light or three primary colors of red light, green light and blue light or white light using a wavelength conversion material. It consists of a single semiconductor light emitting element having an array or directivity. A light source in the vicinity of the incident end face of the light guide plate, comprising: a reflector having a reflectivity that covers portions other than the incident end face and the exit face of the light guide plate, and the reflective face having an irregular shape or a prism shape. It is an object of the present invention to provide a light guide plate and a planar lighting device which can control the reflection of light, the occurrence of luminance unevenness, and the occurrence of luminescent color unevenness, and can take a large emission surface of the light guide plate.
[0026]
FIG. 1 is an exploded perspective view showing a schematic configuration of a plain illumination device including a light guide plate according to the present invention, FIG. 2 is a side view of the light guide plate according to the present invention, and FIG. 3 shows a trajectory of light rays in the light guide plate of FIG. FIGS. 4 (a) and 4 (b) show the trajectories of light rays when one light source is arranged at the center of the incident end face in the light guide plate of FIG. 2, and FIG. 5 shows the light guide plate of the present invention. It is a side view which shows another shape.
[0027]
As shown in FIG. 1, the flat lighting device 1 includes a light guide plate 2, a light source 9, and a reflector 10.
[0028]
The light guide plate 2 is formed of a transparent acrylic resin (PMMA) having a refractive index of about 1.4 to 1.7, polycarbonate (PC), or the like. The light guide plate 2 includes an incident end face 3 for guiding light from the light source 9, a counter-incident end face 4 located on the opposite side to the incident end face 3, and both ends of the incident end face 3 and the anti-incident end face 4. , A front surface portion 6 for emitting light, and a back surface portion 7 located on the opposite side to the front surface portion 6. A light deflecting element 8 for totally reflecting or refracting light is provided on the front surface portion 6 and the rear surface portion 7.
[0029]
In the light guide plate 2, the distance (the thickness of the light guide plate 2) between the front surface portion 6 and the back surface portion 7 is minimized (thin) at the incident end surface portion 3, and the maximum distance (incident end surface portion) from the incident end surface portion 3. 3 (a distance from the incident end surface portion 4 located on the opposite side of the incident end surface portion 3) to the maximum (thick).
Therefore, as shown in FIG. 2, the light guide plate 2 has the light source 9 disposed in the vicinity of the thin incident end portion 3 substantially parallel to the incident end surface portion 3, and the incident end surface portion on which the light source 9 is disposed. The thickness of the anti-incident end face portion 4 which is on the opposite side (maximum separation distance) of the light incident end 3 is thick.
[0030]
Further, a light deflecting element 8 is provided on the front surface portion 6 and the back surface portion 7. In the example of FIG. 1, the light deflecting element 8 is provided only on the surface portion 6. Thereby, while the incident light from the incident end face 3 proceeds to the opposite incident end face 4 located on the opposite side of the incident end face 3, even if the light guide plate 2 has a wedge shape, there is no ray that breaks the critical angle. The light is totally reflected by the anti-incident end face 4. The light ray totally reflected by the anti-incident end face part 4 is refracted by the light deflecting element 8 when traveling in the direction of the incident end face part 3 again, and can be emitted from the surface part 6 after breaking the critical angle.
[0031]
As shown in FIG. 3, the light incident on the light guide plate 2 has a refraction angle γ of 0 ≦ | γ | ≦ sin. -1 The light travels into the light guide plate 2 within a range satisfying the expression (1 / n). For example, the refractive index of an acrylic resin which is a resin material used for a general light guide plate 2 is about n = 1.49. Therefore, the maximum incident angle is 90 ° for the light from the direction of the front surface 6 to the direction of the back surface 7 and the light from the direction of the back surface 7 to the direction of the front surface 6 of the incident end face 3. For this reason, the refraction angle γ refracted at the incident end face 3 is in the range of γ = 0 to ± 42 °.
However, in the vicinity of the front surface portion 6, only γ = −42 ° only in the direction of the back surface portion 7, and in the vicinity of the back surface portion 7, only γ = + 42 ° only in the direction of the front surface portion 6.
[0032]
Here, the light incident on the light guide plate 2 within the range of the refraction angle γ = 0 to ± 42 ° is sin α = (1/1/2) at the interface between the light guide plate 2 and the air layer (refractive index n = 1). The critical angle can be expressed by the equation of n). For example, since the refractive index of an acrylic resin which is a resin material used for the general light guide plate 2 is about n = 1.49, the critical angle α is about α = 42 °. Therefore, if there is no convex or concave portion for deflecting the light beam on the front surface portion 6 or the rear surface portion 7 of the light guide plate 2 or the critical angle α is not exceeded, all the light in the light guide plate 2 is transmitted through the front surface portion 6 and the rear surface portion 7. The light travels in the direction of the anti-incident end face 4 while undergoing total reflection.
[0033]
However, in the light guide plate 2 of the present invention, the thickness of the light guide plate 2 (the distance between the front surface portion 6 and the back surface portion 7 of the light guide plate 2) is located on the opposite side from the incident end surface portion 3 to the incident end surface portion 3. As the light guide plate 2 has a wedge shape (in general or contrary to the conventional shape) in which the thickness of the light guide plate 2 becomes thinner (minimized) toward the opposite incident end surface portion 4 (maximum distance from the incident end surface portion 3), FIG. As shown, there is no ray that breaks the critical angle even when the light guide plate 2 is wedge-shaped while the incident light Ln1 from the incident end face 3 travels to the anti-incident end face 4 located on the opposite side of the incident end face 3. The light beam Ln2 which has been repeatedly totally reflected on the front surface portion 6 and the back surface portion 7 is totally reflected on the opposite incident end face portion 4.
Then, when the light beam Ln3 advances again in the direction of the incident end face portion 3, the light deflection element 8 performs refraction or the like to break the critical angle and emit the light beam Ln4 from the surface portion 6.
Here, the convex and concave shapes of the light deflecting element 8 have been described, but in each case, the light is refracted by the convex or concave inclined surface and emitted to the outside.
[0034]
Further, although not shown, the light guide plate 2 of the present invention is provided with the light deflecting elements 8 on the front surface portion 6 and the rear surface portion 7 so that the number or the area of the light deflecting elements 8 increases as approaching the incident end surface portion 3. As a result, the light initially incident from the incident end face 3 from the light source 9 does not reach the critical angle α even if it reaches the front face 6 or the back face 7 of the light guide plate 2, and the light that reaches the critical angle α does not exist. While repeating total reflection in the section 7, the light advances to the anti-incident end face 4 on the opposite side of the incident end face 3, and is totally reflected by the anti-incident end face 4. In the process in which the totally reflected light returns to the direction of the incident end face portion 3, there are many light rays that break the critical angle α and light rays that are close to the critical angle α because the thickness of the light guide plate 2 is gradually reduced. For this reason, of the light that has advanced in the direction of the incident end face portion 3 again due to the total reflection, a ray near the critical angle α is refracted by the inclined surface of the light deflection element 8 while returning from the anti-incident end face portion 4 to the incident end face portion 3. Are emitted from the emission surface (surface portion 6).
[0035]
Further, the light is emitted from the emission surface (surface portion 6) while returning from the anti-incident end surface portion 4 to the incident end surface portion 3, and the more the light is, the closer to the incident end surface portion 3 (the more the light returns), the more the light quantity is reduced. Are emitted from the emission surface (surface portion 6). For this reason, it is necessary to increase the amount of light to be emitted closer to the incident end face 3, and the number or area of the light deflecting elements 8 increases as the distance approaches the incident end face 3, whereby uniform emitted light can be obtained.
[0036]
Further, even when the light source 9 is a single light, the light once totally reflected by the anti-incident end face 4 on the opposite side of the incident end face 3 travels to the entire incident end face 3, and the light is deflected in the direction of the incident end face 3. The number or area of the light deflecting elements 8 increases as the elements 8 are closer to the incident end face portion 3. Thereby, even outgoing light can be obtained at both ends of the incident end face portion 3 which are both ends of the light source 9.
[0037]
Further, in the case of the flat lighting device 1 having a large screen size, the light guide plate 2 has a structure in which both ends of the light guide plate 2 are provided with the incident end face portions 3. The distance between them (thickness of the light guide plate 2) is minimized (thin) at the incident end face 3 and the distance (thickness) is maximum (thick) at the center from the incident end face 3 at both ends. .
[0038]
That is, as shown in FIG. 5, the planar lighting device 1 has two light sources 9a and 9b as the light sources 9, and the light guide plate 2 opposed to the two light sources 9a and 9b has the thinnest ends. The part is an incident end face part 3 (3a, 3b). Then, the thickness of the light guide plate 2 becomes thicker toward the center direction from the incident end face portions 3a, 3b, and the distance between the front surface portion 6 and the back surface portion 7 (7a, 7b) toward the center direction at the center is maximum. become.
[0039]
Therefore, the light guide plate 2 is configured such that the thickness of the light guide plate 2 (the distance between the front surface portion 6 and the back surface portion 7a and the back surface portion 7b of the light guide plate 2) is changed from each incident end surface portion 3a and each incident end surface 3b. The light guide plate 2 has such a shape that the thickness of the light guide plate 2 becomes thicker (maximum) toward the opposite side of the end face part 3a and the incident end face part 3b (center from each of the incident end face part 3a and the incident end face part 3b).
As a result, there is no ray that breaks the critical angle up to the center even if the light guide plates 2 are tapered while the incident light from each of the incident end faces 3a and 3b travels to the center. The light rays that have been totally reflected at the front surface portion 6 and the back surface portion 7 are totally reflected within the light guide plate 2 facing each other and at the incident end face portions 3a and 3b facing each other, and are again incident on each other. When the light beam travels in the directions of the incident end face 3a and the incident end face 3b, the light is deflected by the light deflecting element 8 to break the critical angle and emit the light from the surface 6.
[0040]
Further, as shown in FIGS. 4A and 4B, even when only one light source 9 made of a semiconductor light emitting element or the like (LED or the like) is provided at the center of the incident end face 3, the light source 9 emits the semiconductor light. The light beam travels in the direction of the anti-incident end face 4 in a narrow range because of the elements and the like. However, while traveling from the incident end face 3 to the direction of the anti-incident end face 4, there is no light beam that breaks the critical angle. And the light Ln breaks the critical angle while traveling in the direction of the incident end face portion 3 again. Further, the light deflecting element 8 provided on the surface portion 6 allows the light near the critical angle to be deflected by the inclined surface of the light deflecting element 8. Since refraction or the like can be caused to emit a larger number of light beams to the surface portion 6, uniform and bright emitted light can be obtained without dark portions at both ends of the incident end face portion 3. On the other hand, in the conventional configuration as shown in FIGS. 9A and 9B, dark portions are formed at both ends of the incident end face.
[0041]
As described above, the light guide plate 2 of the present invention is configured such that the thickness of the light guide plate 2 is the thinnest at the position of the incident end face portion 3, and the thickness of the light guide plate 2 becomes thicker as the distance from the incident end face portion 3 increases. The light beam first incident on the light guide plate 2 from the light source 9 is totally reflected only by the mirror surface such as the front surface portion 6 and the back surface portion 7, and is totally reflected by the anti-incident end surface portion 4 located on the opposite side of the incident end surface portion 3. After that, the light travels in the direction of the incident end face portion 3 again. At this time, the thickness of the light guide plate 2 is gradually reduced. The light near the critical angle is refracted by the inclined surface of the light deflecting element 8 by the element 8, and more light rays are emitted to the surface portion 6.
[0042]
In addition, when the incident end portions 3 are provided at both ends of the light guide plate 2, the thickness of the light guide plate 2 is thinnest at the position of the incident end portion 3, and the thickness of the light guide plate 2 increases as the distance from the incident end portion 3 increases. And the light guide plate 2 is configured such that the thickness of the light guide plate 2 is the thickest at the center portion at the same distance from both ends of the light guide plate 2. The light guide plate 2 is only totally reflected by the mirror surface such as the rear surface portion 7 and the like, and the thickness of the light guide plate 2 is gradually reduced from a position beyond the center portion. The light deflecting element 8 provided at 6 causes the light near the critical angle to be refracted by the inclined surface of the light deflecting element 8 and emits more light rays to the surface portion 6.
Therefore, in the vicinity of the incident end face 3, the light from the light source 9 does not directly emit (reflect) high-brightness light, but emits light that is bright and spot-free throughout the light guide plate 2. In particular, both ends of the light guide plate 2 In the case where the incident end face portion 3 is provided, the mechanical strength is excellent.
[0043]
The light source 9 is a semiconductor light emitting element, and is composed of an LED, a laser, or the like, and provides each monochromatic light of RGB (red, green, blue) in the vicinity of each of the incident portions 3 or RGB (red light, green light, blue light). An array-shaped unit in which a plurality of semiconductor light-emitting elements (emission) are combined may be provided in each of the incident portions 3.
Further, the light source 9 may be a light source that emits white light using a wavelength conversion material (for example, a light source in which a blue light emitting element is combined with a yellow fluorescent agent or the like).
[0044]
The light source 9 may use a CCFL (cold cathode tube) when the incident end face 3 is large or when the light guide plate 2 itself is large. In this case, the light source 9 has a linear shape, and direct light enters the light guide plate 2 from the incident end face 3 of the light guide plate 2, and a space between the light source 9 and the reflector while other light is reflected by a reflector (not shown). Through the light guide plate 2.
In the case of the linear light source 9, a bright line with high brightness appears near the incident end face 31 in the conventional light guide plate 21, but the use of the light guide plate 2 of the present invention causes the generation of a bright line. Can be prevented.
[0045]
Although not shown, the reflecting body 10 has a reflecting surface having an uneven shape or a prism shape, and a sheet in which a white material such as titanium oxide is mixed in a thermoplastic resin or a sheet of a thermoplastic resin is subjected to metal evaporation such as aluminum. Or a sheet metal having a laminated metal foil. The reflector 10 covers portions other than the incident end face portion 3 and the surface portion 6, and reflects or diffusely reflects light other than the light from the light source 9 emitted to the surface portion 6 by the light guide plate 2. All the light from the light source 9 is emitted from the surface portion 6 by being incident.
Further, by controlling the uneven shape and prism shape of the reflector 10 used for the anti-incident end face portion 4 and the back surface portion 7, the position of returning to the inside of the light guide plate 2 is controlled, and the brightness, light amount distribution, The emission angle and the like can be adjusted.
[0046]
Furthermore, the reflector 10 may have a concave-convex shape or a prism-shaped reflective surface. Thereby, the light source 9 can mix the light of the three primary colors such as RGB in the light guide plate 2 by reflection by the prism surface, and convert the light from the light source 9 into the light emitted from the light guide plate 2 without wasting. Efficiency can be improved.
[0047]
Although not shown here, for example, when the light source 9 has a directivity such as a CCFL (cold cathode tube) indicating a radial direction, a reflector is provided around the light source 9 (CCFL), and the light guide plate 2 is provided with a reflector. It surrounds the incident end face 3 and the light source 9. As a result, the light from the light source 9 is reflected, and the reflected light is made incident again on the incident end face 3 of the light guide plate 2.
The reflector is formed of a sheet-like material or a metal on which a white insulating material or a metal such as aluminum is deposited.
[0048]
Further, although not shown here, as a realistic flat lighting device 1, light rays that break the critical angle from the light guide plate 2 and exit to the surface section 6 or the like have a large incident angle with respect to the surface section 6 and therefore have a large exit angle. Become. This means that the angle formed between the surface portion 6 and the outgoing light becomes small, and the outgoing light becomes as if it were along the light guide plate 2. Therefore, for example, for a liquid crystal display device or the like, light that is substantially perpendicular to the light guide plate 2 is required. Therefore, a prism sheet is used for the light emission surface (surface portion 6) of the light guide plate 2.
At this time, the prism surface (the ridge of the prism) of the prism sheet is arranged toward the light guide plate 2, and the emitted light along the light guide plate 2 is once taken into the prism sheet, and the light is emitted from the surface opposite to the taken-in surface. The light is totally reflected, and finally substantially perpendicular emission light is obtained from the flat lighting device 1.
[0049]
【Example】
FIG. 10A shows the results of measured values using the light guide plate of the present invention and the conventional light guide plate, and FIG. 10B shows how to divide the light guide plate region when measuring the average luminance. FIG.
[0050]
The measurement conditions are such that the thickness of the light guide plate is a wedge shape with a minimum of 0.9 mm to a maximum of 1.3 mm. In the light guide plate of the present invention, a portion having a thickness of 0.9 mm is defined as an incident end face, and a light source is arranged near the incident end face. On the other hand, in the conventional light guide plate, a portion having a thickness of 1.3 mm is used as an incident end face, and a light source is arranged near the incident end face. Further, the same size is used for the present invention and the conventional light guide plate. The light source used was one in which four semiconductor light emitting devices (L7555 manufactured by Nippon Lights Co., Ltd.) were arranged in parallel to the incident end face. The input current of the light source is 18 mA per chip. The prism film and the reflection film used were manufactured by Sumitomo 3M Limited. The luminance meter is Topcon BM-7 (viewing angle 1 °), and the unit of the numerical value is Cd / m 2 It is.
[0051]
As is clear from the measurement results shown in FIG. 10A, the average luminance and the central luminance of all the three regions of the light guide plate are higher when the light guide plate of the present invention is used. The result was higher than the case where the conventional light guide plate was used. Further, with respect to luminance unevenness, a result was obtained in which the light guide plate of the present invention was less (substantially half) than the conventional light guide plate.
As shown in FIG. 10B, the average luminance was measured by dividing the light source into three areas A, B, and C from the incident end face where the light source was opposed to the opposite incident end face. .
[0052]
As described above, in the light guide plate and the planar lighting device of the present invention, the thickness of the light guide plate 2 is the smallest at the position of the incident end face portion 3, and the thickness of the light guide plate 2 becomes thicker as the distance from the incident end face portion 3 increases. Configuration. Accordingly, when the light travels from the incident end face 3 toward the anti-incident end face 4 located on the opposite side of the incident end face 3 (this direction is referred to as a forward direction), more total reflection is performed on the mirror surface of each surface of the light guide plate 2. . Then, the totally reflected light beam reaches the anti-incident end face portion 4, performs total reflection on the anti-incident end face portion 4, and then proceeds again to the incident end face portion 3 (this direction is referred to as a reverse direction). When the light travels in the opposite direction, the thickness of the light guide plate 2 becomes gradually thinner, so that the light beam breaks the critical angle α while traveling and exits from the surface portion 6. Moreover, the light deflecting element 8 provided so that the distribution amount increases as it approaches the incident end face 3 of the surface portion 6 causes the light near the critical angle α to be refracted by the inclined surface of the light deflecting element 8, so that a larger number of light Is emitted to the surface portion 6 and uniform and high-intensity emitted light can be obtained.
[0053]
Similarly, when the incident end surfaces 3a and 3b are provided at both ends of the light guide plate 2, the thickness of the light guide plate 2 is the thinnest at the positions of the incident end surfaces 3a and 3b, and the light guide plate is located at the center of the light guide plate 2. 2 has the largest thickness. Thus, in the forward direction from the two incident end portions 3a and 3b toward the center of the light guide plate 2, only the total reflection is performed on the mirror surface of each surface, and the reverse direction from the position beyond the center to the opposite incident end portion. As the light guide plate 2 gradually becomes thinner toward, the light beam breaks the critical angle α while traveling and exits from the surface portion 6. Further, the light near the critical angle α is refracted by the inclined surface of the light deflecting element 8 by the light deflecting element 8 provided so that the distribution amount increases as the distance from the incident end surfaces 3a and 3b of the front surface 6 increases. Is emitted to the surface portion 6 and uniform and high-brightness emitted light can be obtained.
[0054]
Therefore, in the vicinity of the incident end face 3, the light from the light source 9 directly emits high-brightness light, that is, light that is bright and has no spots on the entire light guide plate 2 without emitting so-called reflection. In particular, when the incident end face portions 3a and 3b are provided at both ends of the light guide plate 2, the mechanical strength is excellent, and a substantially large exit surface can be ensured by no reflection. Even when a white light source of three primary colors (RGB) is used as the light source 9, the light does not exit near the incident end face 3, so that the respective color (RGB) rays are mixed while traveling in the opposite direction to the incident end face, and the critical When the angle α is broken, the light can be emitted as complete white light.
[0055]
When only one light source 9 having directivity, such as a semiconductor light emitting element, is provided at the center of the incident end face 3, the luminous flux travels in the narrow direction toward the anti-incident end face 4. For this reason, in the conventional configuration, both end portions of the incident end face portion 3 of the light guide plate 2 become dark portions. On the other hand, in the configuration of the present invention, while traveling from the incident end face 3 toward the anti-incident end face 4, there is no ray that breaks the critical angle α, and the ray Ln is totally reflected by the anti-incident end face 4 and is reflected by the light Ln. Breaks the critical angle while traveling in the direction of the incident end face portion 3 again, and furthermore, the light near the critical angle α is refracted by the inclined surface of the light deflecting element 8 by the light deflecting element 8 provided on the surface portion 6, and more light rays are scattered. Can be emitted to the surface portion 6. As a result, dark portions are not formed at both ends of the incident end face portion 3, and uniform and bright emitted light can be obtained.
[0056]
【The invention's effect】
As described above, the light guide plate according to claim 1 has a thin plate-shaped rectangular cubic shape, and the six surfaces surrounding them have a mirror surface, and a fine light deflecting element is provided on the front surface portion and / or the rear surface portion. At the same time, the distance between the front surface and the back surface is minimized at the incident end face, and the distance is maximized at the maximum distance from the incident end face, so that the light from the light source enters the light guide plate without distortion at the incident end face. There is no ray that breaks the critical angle even if the light guide plate is wedge-shaped while taking in and going to the anti-incident end face part located on the opposite side of the incident end face part, while totally reflecting many rays on each face of the light guide plate There are many rays that break the critical angle or rays close to the critical angle when the ray totally reflected at the anti-incident end face travels toward the incident end face again, and the critical angle is reached when reaching the fine optical deflection element with taper leak. The amount of light emitted from the light guide plate No light reflection of it is possible to control, it is possible to obtain a bright and uniform light emitted no dark portion to both ends of the incident end face of the incident end face neighborhood. Moreover, the area of the light guide plate that can be actually used can be increased accordingly, and even if the light sources are arranged in parallel (array shape), the light from adjacent light sources is not overlapped to prevent the occurrence of luminance unevenness. In addition, when the size is increased, the light guide plate is excellent in mechanical stability and strength because the thickness of the central portion is the largest because both ends are the incident end face portions.
[0057]
Further, in the light guide plate according to claim 2, since the number or area of the light deflecting elements increases as the light deflecting elements are closer to the incident end face, light incident from the incident end face is directed to the front surface and the back surface of the light guide plate. Even when the light reaches the critical angle, there is no light that reaches the critical angle. Since it is necessary to increase the amount of light to be emitted closer to the incident end face in order to exit from the exit face while returning from the incident end face to the incident end face, the number or area of the light deflecting elements increases closer to the incident end face. By doing so, uniform outgoing light can be obtained. Further, even in the case of a single light source, the light once totally reflected by the anti-incident end face on the opposite side of the incident end face advances to the entire incident end face, and the light deflecting element approaches the incident end face as it proceeds in the direction of the incident end face. As the number or area of the light deflecting elements increases, uniform outgoing light can be obtained even at both ends of the incident end face, which is both ends of the light source.
[0058]
Furthermore, the flat lighting device according to claim 3 is a light source having directivity, an incident end face portion for guiding light from the light source, a front surface portion and / or a back surface portion for emitting the light, and the front surface portion and the back surface portion. And a thin plate-shaped rectangular cubic shape having side surfaces that intersect at right angles to the surface, and six surfaces surrounding them form a mirror surface, and a fine light deflecting element is provided on the front surface portion and / or the rear surface portion. The light guide plate where the distance between the light guide plate and the back surface is minimized at the incident end face, and the distance is the largest at the maximum distance from the incident end face, and the reflectivity covering portions other than the incident end face and the exit surface of the light guide plate While the light from the incident end face advances to the anti-incident end face located on the opposite side of the incident end face, a light beam that breaks the critical angle even if the light guide plate has a wedge shape is provided. There is no taper leak Even with a light source with strong directivity, the shape of the light source such as the semiconductor light emitting element itself and the emitted light of the light intensity near the incident end face is free from observation (reflection) and uneven brightness from the exit face, and total reflection is achieved at the anti-incident end face. There are many rays that break the critical angle when the rays advance in the direction of the incident end face and rays that are close to the critical angle, etc., and when the light reaches the fine optical deflecting element with taper leak, it breaks the critical angle and exits from the light guide plate. By controlling the amount of light, uniform brightness can be obtained by eliminating uneven brightness, and bright and uniform emitted light can be obtained without dark portions at both ends of the incident end face near the incident end face. In addition, since a tapered leak can be caused only by the light totally reflected at the anti-incident end face, even in the case of a light source in which monochromatic light sources such as RGB are arranged, the light is not immediately emitted in the vicinity of the incident end face and emission color spots are generated. Since the incident light is totally reflected once on the side opposite to the incident end face of the light guide plate and then emitted, the light travels inside the light guide plate while repeating the total reflection several times. For this reason, complete white light can be obtained by mixing the RGB monochromatic lights. In addition, the light exit surface of the light guide plate can be made large, and even with a large light guide plate or flat lighting device, the incident end face portions at both ends near the light source are the smallest and the central portion has the largest thickness, so it is mechanically excellent. The size of the light guide plate can be adapted to the size of the flat lighting device without requiring a light guide plate larger than necessary, and is mechanically stable even when the weight is reduced (the overall thickness is reduced). (Excellent strength) can be obtained.
[0059]
In the flat lighting device according to claim 4, the light source having directivity is composed of a plurality of semiconductor light emitting elements, and is monochromatic light or red light, green light, three primary colors of blue light, or white light using a wavelength conversion material. In addition, since these are configured as a single unit or an array, it is possible to obtain high-luminance emission light and to emit high-luminance white light according to the purpose. In addition, by forming the light source in an array, the shape of the light source can be observed (reflected) from the emission surface and emission light without luminance unevenness can be obtained, and high-luminance white light can be emitted according to the purpose. Therefore, clear white light or monochromatic light can be obtained.
[0060]
Furthermore, in the flat lighting device according to the fifth aspect, since the reflecting surface of the reflector has a concave-convex shape or a prism-like shape, the light beam or the light traveling from the incident end face to the counter-incident end face located on the opposite side to the incident end face is output. It is possible to control the position where the light beam emitted from the surface opposite to the surface, the leaked light beam, and the like are returned to the inside of the light guide plate more reliably. This makes it possible to adjust the brightness, the light amount distribution, the emission angle, and the like of the final emission light. Furthermore, when the light source is light of three primary colors such as RGB, the light of the three primary colors can be mixed in the light guide plate by reflection by the prism surface, so that the light from the light source is converted to light emitted from the light guide plate without wasting. The efficiency to do is excellent.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a schematic configuration of a plain lighting device including a light guide plate according to the present invention.
FIG. 2 is a side view of the light guide plate according to the present invention.
FIG. 3 is a diagram showing a trajectory of a light beam in the light guide plate of FIG. 2;
FIGS. 4A and 4B are diagrams showing the trajectories of light rays when one light source is arranged at the center of the incident end face in the light guide plate of FIG. 2;
FIG. 5 is a side view showing another shape of the light guide plate according to the present invention.
FIG. 6 is a perspective view of a conventional light guide plate.
FIG. 7 is a side view showing a schematic configuration of a conventional planar lighting device including a light guide plate having another shape.
FIG. 8 is a diagram showing a trajectory of a light beam in the light guide plate of FIG. 6;
9 (a) and 9 (b) are diagrams showing trajectories of light rays when one light source is arranged at the center of the incident end face in the light guide plate of FIG. 6;
FIG. 10 (a) is a diagram showing the results of measurement values using the light guide plate of the present invention and a conventional light guide plate.
(B) A diagram showing how to divide the area of the light guide plate when measuring the average luminance.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Planar illumination device, 2, 21, 21A ... Light guide plate, 6, 61 ... Surface part, 7, 71 ... Back part, 3, 31 ... Incident end face part, 4, 41 ... Anti-incident end face part, 5, 51 ... Side surface part, 8: light deflecting element, 9, 9a, 9b 91a, 91b: light source, 10: reflector, Ln, Ln1, Ln2, Ln3. Ln4, L0, L01, L02, L03, L04 ... light rays.

Claims (5)

指向性の有する光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら前記表面部と前記裏面部とに略直角に交わる側面部を有する導光板であって、薄板状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに前記表面部または/および前記裏面部には微細な光偏向素子を設けるとともに前記表面部と前記裏面部との間の距離が前記入射端面部で最小になり、前記入射端面部から最大離距離において前記距離が最大になることを特徴とする導光板。A light guide plate having an incident end face portion for guiding light from a light source having directivity, a front surface portion and / or a rear surface portion for emitting the light, and a side surface portion that intersects the front surface portion and the rear surface portion at a substantially right angle. In addition, a thin plate-shaped rectangular cubic shape is formed, and six surfaces surrounding them form a mirror surface, and a fine light deflecting element is provided on the front surface portion and / or the rear surface portion. The light guide plate is characterized in that the distance between the light guide plates becomes minimum at the incident end face, and the distance becomes maximum at the maximum distance from the incident end face. 前記光偏向素子は、前記入射端面部に近づくほど前記光偏向素子の数量または面積が増加することを特徴とする請求項1記載の導光板。2. The light guide plate according to claim 1, wherein the number or area of the light deflecting element increases as the light deflecting element approaches the incident end face. 3. 指向性の有する光源と、前記光源からの光を導く入射端面部と、当該光を出射する表面部または/および裏面部と、これら前記表面部と前記裏面部とに略直角に交わる側面部を有した薄板状矩形立方体形状を成し、これらを包囲する6面が鏡面をなすとともに前記表面部または/および前記裏面部には微細な光偏向素子を設けるとともに前記表面部と前記裏面部との間の距離が前記入射端面部で最小になり、前記入射端面部から最大離距離において前記距離が最大になる導光板と、前記導光板の前記入射端面部および出射面以外の部分を覆う反射性を有した反射体とを具備することを特徴とする平面照明装置。A light source having directivity, an incident end surface portion for guiding light from the light source, a front surface portion and / or a rear surface portion for emitting the light, and a side surface portion that intersects the surface portion and the rear surface portion at a substantially right angle. It has a thin plate-shaped rectangular cuboidal shape, and six surfaces surrounding these form a mirror surface, and a fine light deflecting element is provided on the front surface portion and / or the rear surface portion. The distance between the light guide plate is minimized at the incident end face portion, and the distance is maximized at the maximum distance from the incident end face portion, and the reflectivity covering portions other than the incident end face portion and the emission surface of the light guide plate. And a reflector having the following. 前記光源は、指向性の有する複数の半導体発光素子からなり、単色光または赤色光、緑色光、青色光の三原色光あるいは波長変換材料利用の白色光であるとともにこれらを単体またはアレー状に構成したことを特徴とする請求項3記載の平面照明装置。The light source is composed of a plurality of semiconductor light-emitting elements having directivity, and is monochromatic light or red light, green light, white light using three primary colors of blue light or wavelength conversion material, and these are configured as a single unit or an array. The flat lighting device according to claim 3, wherein: 前記反射体は、反射面が凹凸形状またはプリズム形状であることを特徴とする請求項3記載の平面照明装置。4. The flat lighting device according to claim 3, wherein the reflector has a concave or convex shape or a prism shape.
JP2002198892A 2002-07-08 2002-07-08 Light guide plate Expired - Fee Related JP3955505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198892A JP3955505B2 (en) 2002-07-08 2002-07-08 Light guide plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198892A JP3955505B2 (en) 2002-07-08 2002-07-08 Light guide plate

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007036576A Division JP4436845B2 (en) 2007-02-16 2007-02-16 Light guide plate
JP2007036577A Division JP4588729B2 (en) 2007-02-16 2007-02-16 Flat lighting device

Publications (2)

Publication Number Publication Date
JP2004038108A true JP2004038108A (en) 2004-02-05
JP3955505B2 JP3955505B2 (en) 2007-08-08

Family

ID=31706219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198892A Expired - Fee Related JP3955505B2 (en) 2002-07-08 2002-07-08 Light guide plate

Country Status (1)

Country Link
JP (1) JP3955505B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124928A (en) * 1999-10-29 2001-05-11 Nippon Leiz Co Ltd Light transmission plate and planar lighting system
JP2001124930A (en) * 1999-10-29 2001-05-11 Nippon Leiz Co Ltd Light transmission plate and planar illuminator
JP2006004877A (en) * 2004-06-21 2006-01-05 Nippon Leiz Co Ltd Light guide plate, and flat illumination device
JP2007294191A (en) * 2006-04-24 2007-11-08 Fujifilm Corp Light guide plate and planar lighting device using the same
WO2007145248A1 (en) * 2006-06-16 2007-12-21 Fujifilm Corporation Light guide plate, light guide plate assembly, and surface illuminating device and liquid crystal display device using these
JP2007334151A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Light guide plate, planar illuminator using it, and liquid crystal display apparatus
JP2007335323A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Light guide plate assembly and planar lighting system using the same
JP2008034125A (en) * 2006-07-26 2008-02-14 Fujifilm Corp Planar lighting system
JP2008071626A (en) * 2006-09-14 2008-03-27 Fujifilm Corp Planar lighting device
JP2008117670A (en) * 2006-11-06 2008-05-22 Casio Comput Co Ltd Light source device and projector
JP2008123965A (en) * 2006-11-15 2008-05-29 Fujifilm Corp Planar lighting system
JP2008147043A (en) * 2006-12-11 2008-06-26 Fujifilm Corp Planar lighting system
JP2008529251A (en) * 2005-02-05 2008-07-31 ケンブリッジ フラット プロジェクション ディスプレイズ リミテッド Flat lens
JP2008204873A (en) * 2007-02-21 2008-09-04 Fujifilm Corp Planar lighting apparatus, evaluation method of planar lighting apparatus, and manufacturing method using it
JP2008203684A (en) * 2007-02-21 2008-09-04 Fujifilm Corp Liquid crystal display device
WO2009028291A1 (en) * 2007-08-24 2009-03-05 Sharp Kabushiki Kaisha Light guide unit, illuminating device and liquid crystal display device
JP2009064614A (en) * 2007-09-05 2009-03-26 Hitachi Ltd Illumination device, and display device using the illumination device
JP2009070826A (en) * 2005-08-17 2009-04-02 Fujifilm Corp Planar illuminating device
US8228459B2 (en) 2007-06-04 2012-07-24 Lg Electronics Inc. Backlight unit and liquid crystal display device having the same
JP5260302B2 (en) * 2006-11-06 2013-08-14 パナソニック株式会社 Liquid crystal display
KR101575877B1 (en) * 2008-06-19 2015-12-10 삼성디스플레이 주식회사 Light guide plate and backlight unit having the same
US10551550B2 (en) 2016-09-12 2020-02-04 Japan Display Inc. Illumination device and display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360613B2 (en) 2010-04-28 2016-06-07 Mitsubishi Electric Corporation Planar light source apparatus and display apparatus using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127157A (en) * 1991-07-25 1993-05-25 Yoshimichi Hirashiro Plane illuminating device
JPH07159622A (en) * 1993-12-07 1995-06-23 Nippon Chemitec Kk Wedge light transmission plate and surface type illuminating body using the same
JPH11508378A (en) * 1995-06-26 1999-07-21 ミネソタ マイニング アンド マニュファクチャリング カンパニー High efficiency optical device
JP2000299012A (en) * 1999-04-13 2000-10-24 Nippon Denyo Plane lighting system
JP2001124930A (en) * 1999-10-29 2001-05-11 Nippon Leiz Co Ltd Light transmission plate and planar illuminator
JP2001228474A (en) * 2000-02-18 2001-08-24 Mitsubishi Chemicals Corp Light transmission body and back light
JP2001281456A (en) * 2000-03-30 2001-10-10 Enplas Corp Light transmission plate, surface light source device and display device
JP2003215349A (en) * 2002-01-23 2003-07-30 Fujitsu Display Technologies Corp Light guide plate, and light source device and display device provided with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127157A (en) * 1991-07-25 1993-05-25 Yoshimichi Hirashiro Plane illuminating device
JPH07159622A (en) * 1993-12-07 1995-06-23 Nippon Chemitec Kk Wedge light transmission plate and surface type illuminating body using the same
JPH11508378A (en) * 1995-06-26 1999-07-21 ミネソタ マイニング アンド マニュファクチャリング カンパニー High efficiency optical device
JP2000299012A (en) * 1999-04-13 2000-10-24 Nippon Denyo Plane lighting system
JP2001124930A (en) * 1999-10-29 2001-05-11 Nippon Leiz Co Ltd Light transmission plate and planar illuminator
JP2001228474A (en) * 2000-02-18 2001-08-24 Mitsubishi Chemicals Corp Light transmission body and back light
JP2001281456A (en) * 2000-03-30 2001-10-10 Enplas Corp Light transmission plate, surface light source device and display device
JP2003215349A (en) * 2002-01-23 2003-07-30 Fujitsu Display Technologies Corp Light guide plate, and light source device and display device provided with the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124930A (en) * 1999-10-29 2001-05-11 Nippon Leiz Co Ltd Light transmission plate and planar illuminator
JP2001124928A (en) * 1999-10-29 2001-05-11 Nippon Leiz Co Ltd Light transmission plate and planar lighting system
JP2006004877A (en) * 2004-06-21 2006-01-05 Nippon Leiz Co Ltd Light guide plate, and flat illumination device
JP2008529251A (en) * 2005-02-05 2008-07-31 ケンブリッジ フラット プロジェクション ディスプレイズ リミテッド Flat lens
US7976208B2 (en) 2005-02-05 2011-07-12 Microsoft Corporation Flat panel lens
JP4903162B2 (en) * 2005-02-05 2012-03-28 ケンブリッジ フラット プロジェクション ディスプレイズ リミテッド Flat lens
US7826703B2 (en) 2005-08-17 2010-11-02 Fujifilm Corporation Planar illuminating device
JP2009070826A (en) * 2005-08-17 2009-04-02 Fujifilm Corp Planar illuminating device
JP2007294191A (en) * 2006-04-24 2007-11-08 Fujifilm Corp Light guide plate and planar lighting device using the same
JP4555250B2 (en) * 2006-04-24 2010-09-29 富士フイルム株式会社 Light guide plate and planar illumination device using the same
JP2007334151A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Light guide plate, planar illuminator using it, and liquid crystal display apparatus
EP2051003A4 (en) * 2006-06-16 2013-07-31 Fujifilm Corp Light guide plate, light guide plate assembly, and surface illuminating device and liquid crystal display device using these
US8210732B2 (en) 2006-06-16 2012-07-03 Fujifilm Corporation Light guide plate, light guide plate assembly, and planar lighting device and liquid crystal display device using these
EP2051003A1 (en) * 2006-06-16 2009-04-22 Fujifilm Corporation Light guide plate, light guide plate assembly, and surface illuminating device and liquid crystal display device using these
JP2007335323A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Light guide plate assembly and planar lighting system using the same
WO2007145248A1 (en) * 2006-06-16 2007-12-21 Fujifilm Corporation Light guide plate, light guide plate assembly, and surface illuminating device and liquid crystal display device using these
JP2008034125A (en) * 2006-07-26 2008-02-14 Fujifilm Corp Planar lighting system
JP4680847B2 (en) * 2006-07-26 2011-05-11 富士フイルム株式会社 Surface lighting device
JP2008071626A (en) * 2006-09-14 2008-03-27 Fujifilm Corp Planar lighting device
JP4680857B2 (en) * 2006-09-14 2011-05-11 富士フイルム株式会社 Surface lighting device
JP5260302B2 (en) * 2006-11-06 2013-08-14 パナソニック株式会社 Liquid crystal display
JP2008117670A (en) * 2006-11-06 2008-05-22 Casio Comput Co Ltd Light source device and projector
JP4687990B2 (en) * 2006-11-06 2011-05-25 カシオ計算機株式会社 Light source device and projector
JP4685748B2 (en) * 2006-11-15 2011-05-18 富士フイルム株式会社 Surface lighting device
JP2008123965A (en) * 2006-11-15 2008-05-29 Fujifilm Corp Planar lighting system
JP2008147043A (en) * 2006-12-11 2008-06-26 Fujifilm Corp Planar lighting system
JP2008203684A (en) * 2007-02-21 2008-09-04 Fujifilm Corp Liquid crystal display device
JP2008204873A (en) * 2007-02-21 2008-09-04 Fujifilm Corp Planar lighting apparatus, evaluation method of planar lighting apparatus, and manufacturing method using it
US8228459B2 (en) 2007-06-04 2012-07-24 Lg Electronics Inc. Backlight unit and liquid crystal display device having the same
WO2009028291A1 (en) * 2007-08-24 2009-03-05 Sharp Kabushiki Kaisha Light guide unit, illuminating device and liquid crystal display device
US8174642B2 (en) 2007-08-24 2012-05-08 Sharp Kabushiki Kaisha Light guide unit, illuminating device and liquid crystal display device
JP4533414B2 (en) * 2007-09-05 2010-09-01 株式会社日立製作所 LIGHTING DEVICE AND DISPLAY DEVICE USING THE LIGHTING DEVICE
JP2009064614A (en) * 2007-09-05 2009-03-26 Hitachi Ltd Illumination device, and display device using the illumination device
KR101575877B1 (en) * 2008-06-19 2015-12-10 삼성디스플레이 주식회사 Light guide plate and backlight unit having the same
US10551550B2 (en) 2016-09-12 2020-02-04 Japan Display Inc. Illumination device and display device

Also Published As

Publication number Publication date
JP3955505B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP4588729B2 (en) Flat lighting device
JP3955505B2 (en) Light guide plate
JP4182076B2 (en) Light guide plate and flat illumination device
JP4385031B2 (en) Light guide plate and flat illumination device
US7507011B2 (en) Surface light source equipment and apparatus using the same
JP4996433B2 (en) Surface lighting device
JP5409901B2 (en) Planar light source device and display device using the same
US7364336B2 (en) Plane light source device and display device provided with the same
JP2006004877A (en) Light guide plate, and flat illumination device
KR101257831B1 (en) Optical Strip and Backlight Module and LCD Device Having the Optical Strip
JPH11231320A (en) Side light type planar light source unit and liquid crystal display device
JP4436845B2 (en) Light guide plate
JP4555250B2 (en) Light guide plate and planar illumination device using the same
JP4324133B2 (en) Light guide plate and flat illumination device
JP4413455B2 (en) Light guide plate and flat illumination device
JP5174685B2 (en) Planar light source device and display device using the same
JP2007294230A (en) Light guide plate and plane lighting device
JP4112197B2 (en) Flat lighting device
JP4260512B2 (en) Flat lighting device
JP4138787B2 (en) Light guide plate, flat illumination device, and liquid crystal display device
JP3927490B2 (en) Flat lighting device
JP4607986B2 (en) Light guide plate and flat illumination device
JP2001108835A (en) Light guide plate and plane lighting device
JP2007065694A (en) Light-transmitting body
KR20240043195A (en) Light guide plate for backlight unit including internal micro-reflector and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees