JP2004037040A - Coolant freezing prevention method in water-cooled solidification type transmitter cooling system - Google Patents

Coolant freezing prevention method in water-cooled solidification type transmitter cooling system Download PDF

Info

Publication number
JP2004037040A
JP2004037040A JP2002198067A JP2002198067A JP2004037040A JP 2004037040 A JP2004037040 A JP 2004037040A JP 2002198067 A JP2002198067 A JP 2002198067A JP 2002198067 A JP2002198067 A JP 2002198067A JP 2004037040 A JP2004037040 A JP 2004037040A
Authority
JP
Japan
Prior art keywords
transmitter
solidification
water
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002198067A
Other languages
Japanese (ja)
Inventor
Akinori Kawano
川野 昭憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2002198067A priority Critical patent/JP2004037040A/en
Publication of JP2004037040A publication Critical patent/JP2004037040A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coolant freezing prevention method for a solidification type transmitter cooling system using a coolant possible to be freezed like water without using the antifreeze as a coolant in the water-cooled solidification type transmitter system. <P>SOLUTION: The cooling water is fed to a solidification transmitter 3 by a pump 2, and cools a power amplifier 4 as a heat generating source to absorb the heat. The cooling water which absorbed the heat of the power amplifier 4 and of which temperature rises is fed to a discharge heat recovery board 5. The discharge heat recovery board 5 separately provided from the solidification transmitter cooling system and a cooling water circulation route is thermally connected (to transfer the thermal energy) to the both, and the operation-side cooling water, of which temperature rises, conducts the heat through the discharge heat recovery board 5, and raises temperature of the cooling water, of which temperature is low, of a waiting side to prevent freeze thereof. The operation-side cooling water restricted in temperature rise is fed to a heat exchanger 6, and further cooled by a fan 7 provided inside the heat exchanger, and returned to a water tank 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水冷固体化送信機の凍結防止に関し、特に不凍液を用いない水冷固体化送信機の冷却凍結防止に関する。
【0002】
【従来の技術】
テレビジョン放送送信機をはじめとする(無線電波)送信機において、電力増幅部をその筐体に装着する形態のものを一般に「固体化送信機」と呼ぶ。この種の送信機は、電力増幅部の過度な温度上昇を防止するための冷却システムを併せ有している場合が多い。
【0003】
固体化送信機を安定して使用するには、発熱する固体化送信機の電力増幅器を効率的に冷却することが重要な課題である。その冷却の方法の一つに、冷媒として水を使った冷却システムがある。図2に、従来の固体化送信機の水冷冷却システムの一例を示す。
【0004】
だが、冷媒に水を使った場合には、冬季に固体化送信機が待機中などには発生する熱がないため、冷媒である水が凍結する場合を生じさせていた。そのため、このような固体化送信機では、冷媒として不凍液を用いる場合が多かった。
【0005】
【発明が解決しようとする課題】
冬季や寒冷地において固体化送信機が待機中の際には、発生する熱がない、またはとても少ないため、冷媒である水が凍結するという問題が生じる。従来は冷媒に不凍液を用いることでこれに対処していた。しかしながら、冷媒として不凍液を用いると、これを交換する際には細心の注意を払わなければならず、処理作業が極めて煩雑になるという新たな問題を生じていた。
【0006】
本発明の目的は、水冷固体化送信機システムにおいて、冷媒として不凍液を使用せず、水のような凍結し得る冷媒を用いた固体化送信機の冷却システムにおける冷媒凍結防止方法を提供することにある。
【0007】
【課題を解決するための手段】
以上の課題を鑑みて、固体化送信機冷却システムの冷媒凍結防止方法は、現用側および予備側の2系統により冗長構成される固体化送信機と、前記両固体化送信機が各々備える電力増幅器が発する熱を、可凍性を有する流体冷媒へ熱伝導させて冷却し、前記可凍性を有する流体冷媒を循環させる過程で冷却し再利用する循環型冷却手段を現用側及び予備側に備える固体化送信機冷却システムにおいて、前記現用側および予備側の固体化送信機とは熱的に分離され、かつ前記現用側および予備側の循環型冷却手段との間では熱の授受が行われる排熱回収盤を備え、前記現用側の電力増幅器を冷却した直後、前記排熱回収盤を介して前記現用側の可凍性流体冷媒から前記予備側の可凍性流体冷媒に対して熱伝導を行わせることを特徴としている。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0009】
図1は、本発明の固体化送信機冷却システムの系統図である。水タンク1、固体化送信機3、熱交換機6からなる冷却システムが、現用側と予備側と2系統用意され、現用側固体化送信機が運転している時には待機側固体化送信機は停止し、現用側を停止させた時に待機系を運転させる、いわゆる「バックアップ」構成になっている。また、冷媒である冷却水については、冗長系をもたせるためそれぞれの系統が独立した循環ルートを備えている。以下、現用側が運転中であり待機側が停止中の場合を例に説明する。
【0010】
冷却水は水タンク1に蓄えられており、水タンク1内のポンプ2により固体化送信機3に送られ、熱の発生源である電力増幅器4を冷却して熱を吸収する。電力増幅器4の熱を吸収し温度上昇した冷却水は、続いて排熱回収盤5に送られる。排熱回収盤5は2つの固体化送信機の冷却システム及び冷却水の循環ルートと独立して設けられていながらも熱的には結合(熱エネルギーの授受がある)している。したがって、温度上昇した現用側の冷却水は、排熱回収盤5を介して熱伝導を行い、待機側の温度の低い冷却水の温度を上昇させることにより凍結を防止する。
【0011】
さらにこの熱伝導により、現用側冷却水の過度な温度上昇が抑制され、冷却効率を向上させることができる。排熱回収盤5により温度上昇を抑えられた現用側の冷却水は、熱交換器6へ送られ、内部に設けられたファン7によりさらに冷却された後、もとの水タンク1に戻される。
【0012】
【発明の効果】
以上説明してきたように、本発明の水冷固体化送信機冷却システムの冷媒凍結防止方法においては、システム内に排熱回収盤を設け、現用側固体化送信機の排熱を待機側固体化送信機に熱伝導させることにより、待機側固体化送信機の冷媒温度を上昇させ凍結を防止させることができる。これによって不凍液を使用せず、冬季や寒冷地などにおける水冷式の冷却システムを構築することが可能となる。さらに、現用側の熱を排熱回収盤によって他のシステムに伝達させることにより、現用側冷媒の過度な温度上昇を抑制することができ、熱交換器における熱交換が少なくてすみ、熱交換効率の向上を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の水冷固体化送信機冷却システムの系統図及び熱循環を示すブロック図である。
【図2】従来の水冷固体化送信機冷却システムの系統図である。
【符号の説明】
1 水タンク
2 ポンプ
3 固体化送信機
4 電力増幅機
5 排熱回収盤
6 熱交換器
7 ファン
8 冷却水
9 冷却水循環パイプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to prevention of freezing of a water-cooled solidification transmitter, and particularly to prevention of cooling and freezing of a water-cooled solidification transmitter that does not use antifreeze.
[0002]
[Prior art]
In a (radio wave) transmitter such as a television broadcast transmitter, a transmitter in which a power amplifier is mounted on its housing is generally called a “solidified transmitter”. This type of transmitter often has a cooling system for preventing an excessive rise in temperature of the power amplifier.
[0003]
In order to use the solid-state transmitter stably, it is important to efficiently cool the power amplifier of the solid-state transmitter that generates heat. One of the cooling methods is a cooling system using water as a refrigerant. FIG. 2 shows an example of a conventional water-cooled cooling system for a solidification transmitter.
[0004]
However, when water is used as the refrigerant, there is no heat generated when the solidification transmitter is in a standby state in winter, so that water as the refrigerant freezes. Therefore, in such a solidification transmitter, antifreeze is often used as a refrigerant.
[0005]
[Problems to be solved by the invention]
When the solidification transmitter is in a standby state in winter or a cold region, there is no or very little heat generated, so that there is a problem that water as a refrigerant freezes. Conventionally, this has been dealt with by using antifreeze as a refrigerant. However, when an antifreeze is used as a refrigerant, great care must be taken when replacing the antifreeze, resulting in a new problem that the processing operation becomes extremely complicated.
[0006]
An object of the present invention is to provide a method for preventing refrigerant freezing in a cooling system of a solidification transmitter using a refrigerant that can be frozen, such as water, without using antifreeze as a refrigerant in a water-cooled solidification transmitter system. is there.
[0007]
[Means for Solving the Problems]
In view of the above problems, a refrigerant freezing prevention method for a solid-state transmitter cooling system includes a solid-state transmitter redundantly configured by two systems, a working side and a standby side, and a power amplifier included in each of the solid-state transmitters. Is provided with circulation type cooling means on the working side and the spare side for cooling the heat generated by the cooling medium by conducting the heat to the freezing fluid refrigerant and cooling and reusing it in the process of circulating the freezing fluid refrigerant. In the solidified transmitter cooling system, the working and standby solidified transmitters are thermally separated from each other, and heat is exchanged between the working and standby circulating cooling means. Immediately after cooling the working-side power amplifier, heat is transferred from the working-side frostable fluid refrigerant to the spare-side frostable fluid refrigerant via the exhaust heat recovery board. It is characterized by being performed.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0009]
FIG. 1 is a system diagram of the solidification transmitter cooling system of the present invention. A cooling system comprising a water tank 1, a solidification transmitter 3, and a heat exchanger 6 is provided in two systems, a working side and a standby side. When the working side solidification transmitter is operating, the standby side solidification transmitter is stopped. In addition, a so-called “backup” configuration is used in which the standby system is operated when the working side is stopped. In addition, for the cooling water as a refrigerant, each system has an independent circulation route in order to provide a redundant system. Hereinafter, a case where the working side is operating and the standby side is stopped will be described as an example.
[0010]
Cooling water is stored in a water tank 1 and sent to a solidification transmitter 3 by a pump 2 in the water tank 1 to cool a power amplifier 4 that is a heat source and absorb heat. The cooling water whose temperature has been increased by absorbing the heat of the power amplifier 4 is subsequently sent to the exhaust heat recovery board 5. Although the exhaust heat recovery board 5 is provided independently of the cooling system of the two solidification transmitters and the circulation route of the cooling water, it is thermally coupled (exchange of heat energy). Therefore, the cooling water on the working side whose temperature has risen conducts heat conduction through the exhaust heat recovery board 5, and freezing is prevented by increasing the temperature of the cooling water having a low temperature on the standby side.
[0011]
Further, due to this heat conduction, an excessive rise in temperature of the working side cooling water is suppressed, and the cooling efficiency can be improved. The working-side cooling water whose temperature rise has been suppressed by the exhaust heat recovery board 5 is sent to the heat exchanger 6, further cooled by the fan 7 provided inside, and then returned to the original water tank 1. .
[0012]
【The invention's effect】
As described above, in the refrigerant freezing prevention method of the water-cooled solidification transmitter cooling system of the present invention, the exhaust heat recovery panel is provided in the system, and the waste heat of the working solidification transmitter is transferred to the standby solidification transmission. By conducting heat to the machine, the refrigerant temperature of the standby-side solidification transmitter can be raised to prevent freezing. This makes it possible to construct a water-cooled cooling system in winter or cold regions without using antifreeze. Further, by transferring the heat of the working side to another system by the exhaust heat recovery board, it is possible to suppress an excessive rise in the temperature of the working side refrigerant, so that heat exchange in the heat exchanger can be reduced and the heat exchange efficiency can be reduced. Can be improved.
[Brief description of the drawings]
FIG. 1 is a system diagram and a block diagram showing heat circulation of a water-cooled solidification transmitter cooling system of the present invention.
FIG. 2 is a system diagram of a conventional water-cooled solidification transmitter cooling system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water tank 2 Pump 3 Solidification transmitter 4 Power amplifier 5 Exhaust heat recovery board 6 Heat exchanger 7 Fan 8 Cooling water 9 Cooling water circulation pipe

Claims (2)

現用側および予備側の2系統により冗長構成される固体化送信機と、前記両固体化送信機が各々備える電力増幅器が発する熱を、可凍性を有する流体冷媒へ熱伝導させ冷却し、前記可凍性を有する流体冷媒を循環させる過程で冷却して再利用する循環型冷却手段を現用側及び予備側に備える固体化送信機冷却システムにおいて、
前記現用側および予備側の固体化送信機とは熱的に分離され、かつ前記現用側および予備側の循環型冷却手段との間では熱の授受が行われる排熱回収盤を備え、前記現用側の電力増幅器を冷却した直後、前記排熱回収盤を介して前記現用側の可凍性流体冷媒から前記予備側の可凍性流体冷媒に対して熱伝導を行わせることを特徴とする、固体化送信機冷却システムの冷媒凍結防止方法。
A solid-state transmitter redundantly configured by two systems, a working side and a standby side, and heat generated by the power amplifiers provided in both the solid-state transmitters is cooled by conducting heat to a fluid refrigerant having freezing property; In the solidification transmitter cooling system comprising a circulating cooling means for cooling and reusing in the process of circulating a fluid refrigerant having freezing properties on the working side and the spare side,
The working side and the spare side solidification transmitter are thermally separated, and an exhaust heat recovery board that exchanges heat with the working side and the spare side circulating cooling means is provided. Immediately after cooling the side power amplifier, heat conduction is performed from the working side frostable fluid refrigerant to the spare side frostable fluid refrigerant via the exhaust heat recovery board, A refrigerant freezing prevention method for a solidification transmitter cooling system.
前記可凍性の流体冷媒が冷却水であることを特徴とする、請求項1記載の固体化送信機冷却システムの冷媒凍結防止方法。The refrigerant freezing prevention method for a solidification transmitter cooling system according to claim 1, wherein the freezing fluid refrigerant is cooling water.
JP2002198067A 2002-07-08 2002-07-08 Coolant freezing prevention method in water-cooled solidification type transmitter cooling system Pending JP2004037040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198067A JP2004037040A (en) 2002-07-08 2002-07-08 Coolant freezing prevention method in water-cooled solidification type transmitter cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198067A JP2004037040A (en) 2002-07-08 2002-07-08 Coolant freezing prevention method in water-cooled solidification type transmitter cooling system

Publications (1)

Publication Number Publication Date
JP2004037040A true JP2004037040A (en) 2004-02-05

Family

ID=31705627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198067A Pending JP2004037040A (en) 2002-07-08 2002-07-08 Coolant freezing prevention method in water-cooled solidification type transmitter cooling system

Country Status (1)

Country Link
JP (1) JP2004037040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121437A (en) * 2007-11-19 2009-06-04 Nec Corp Fluid storage tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121437A (en) * 2007-11-19 2009-06-04 Nec Corp Fluid storage tank

Similar Documents

Publication Publication Date Title
CN103648252B (en) Cooling system for electrical device
CN102139630B (en) Heat management device of electric vehicle
KR101069886B1 (en) Air conditon apparatus for ship
JP2004037040A (en) Coolant freezing prevention method in water-cooled solidification type transmitter cooling system
JPH05264139A (en) Refrigerant supplying system
US10111366B2 (en) Cooling system and server
KR101821929B1 (en) Rack mount server cooling system for data center
CN106647983B (en) Cooling system
CN115185357A (en) Active and passive coupling heat dissipation system and method in limited space
JP3167340U (en) Equipment cooling system with low energy consumption
JP2000318124A (en) Chilled water generator for offset press
CN110955314A (en) Computer GPU integral type water-cooling radiator
JP2002061983A (en) Absorption refrigerating machine
CN219293009U (en) Handheld laser welding temperature control box with air cooling and heat dissipation functions
CN213597971U (en) Shield constructs quick-witted cooling system
CN219659722U (en) HPLC communication device for preventing heat overload
CN218325603U (en) Cooling device of hydraulic transmission system
CN215896953U (en) Fiber laser device thermal control management device and fiber laser
CN218616342U (en) Battery thermal management system and vehicle
CN112243332B (en) Refrigerating system and data center
CN216210853U (en) Active computer cooling system
CN211044161U (en) Computer GPU integral type water-cooling radiator
CN107026538A (en) A kind of water cooling generator
JP2003262690A (en) Decay heat removal system
CN114126363A (en) Liquid cooling data processing system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Effective date: 20070619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016