JP2004036951A - Ice maker - Google Patents

Ice maker Download PDF

Info

Publication number
JP2004036951A
JP2004036951A JP2002192386A JP2002192386A JP2004036951A JP 2004036951 A JP2004036951 A JP 2004036951A JP 2002192386 A JP2002192386 A JP 2002192386A JP 2002192386 A JP2002192386 A JP 2002192386A JP 2004036951 A JP2004036951 A JP 2004036951A
Authority
JP
Japan
Prior art keywords
ice making
water
ice
level sensor
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002192386A
Other languages
Japanese (ja)
Inventor
Kazuhiro Mori
森 和弘
Nobuhiko Kato
加藤 暢彦
Yoshikazu Sakano
阪野 良和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2002192386A priority Critical patent/JP2004036951A/en
Publication of JP2004036951A publication Critical patent/JP2004036951A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/04Level of water

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice maker capable of miniaturizing an ice-making water tank. <P>SOLUTION: This ice maker comprises the ice-making water tank 6 for storing the unfrozen water flowing out from an ice-making part 2, and the supply water supplied from the external, and the ice-making water in the ice-making water tank 6 is constantly supplied to the ice-making part 2 by driving a pump 8 in an ice-making process, as a result, the unfrozen water is returned to the ice-making water tank 6. A water level sensor 40 is mounted on the ice-making tank 6, the detection by the water level sensor 40 is counted by a counter CT, and the ice-making is completed on the basis of the predetermined count number. Whereby this ice maker can cope with the enlargement of the ice-maker only by changing the set count number corresponding to a size of the ice-making part 2, without enlarging a volume of the ice-making water tank 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、製氷部から流れ出る未氷結水と外部から供給される補給水とを貯留する製氷水タンクを備えた製氷機に関するものである。
【0002】
【従来の技術】
従来、このような分野の技術として、特許第3220248公報がある。この公報に記載された製氷機は、製氷工程中にタイマが所定時間計時するまで、製氷水タンク内への給水を制御する構成を有している。すなわち、この製氷機は、所定時間経過後に給水弁を閉じて、製氷水タンク内への給水を停止させ、その後、製氷水タンク内の残水によって製氷を継続し、製氷水タンク内の下限フロートスイッチにより製氷工程を終了させる。
【0003】
【発明が解決しようとする課題】
しかしながら、このような製氷機が大型のものである場合、氷を成長させるための製氷部に大型のものが利用されるが、この場合、大量の製氷水を使用するため大型の製氷水タンクを必要とする。その結果として、製氷機が大型化するといった問題点がある。
【0004】
本発明は、上述の課題を解決するためになされたもので、特に、小型化を可能にした製氷機を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る製氷機は、製氷部に製氷水を供給して、製氷部で氷を成長させる製氷機において、製氷部から流れ出る未氷結水と外部から供給される補給水とを貯留する製氷水タンクと、製氷水タンク内の製氷水を製氷部に供給するポンプと、製氷水タンクに設けられた水位センサと、水位センサの検知をカウントするカウント手段とを備えたことを特徴とする。
【0006】
本発明に係る製氷機は、製氷部から流れ出る未氷結水と外部から供給される補給水とを貯留する製氷水タンクを備えたものが対象であり、製氷工程中においては、製氷水タンク内の製氷水が、ポンプの駆動によって常に製氷部内に供給され続け、その結果として、未氷結水が製氷水タンク内に戻ってくる。このような給水状態におかれている製氷水タンクには水位センサが設けられている。そして、水位センサの検知をカウント手段でカウントし、予め設定されているカウント数に基づいて、製氷を完了させる。このような構成を採用した結果、製氷機が大型化された場合でも、製氷水タンクの容積を大きくする必要がなく、製氷部の大きさに対応させて、設定カウント数を変えるだけで対応することができる。
【0007】
また、水位センサは、下限水位センサと上限水位センサとからなり、下限水位センサの検知に基づいて補給水を製氷水タンク内に供給し、上限水位センサの検知に基づいて補給水の供給を停止させ、下限水位センサと上限水位センサとの少なくとも一方の検知をカウント手段でカウントすると好適である。このような構成によって、製氷水タンクの小型化と同時に、製氷に必要な製氷水の量を更に精度良く制御することができる。
【0008】
【発明の実施の形態】
以下、図面を参照しつつ本発明に係る製氷機の好適な実施形態について詳細に説明する。
【0009】
図1に示すように、製氷機1はいわゆる縦型製氷機であり、鉛直方向に延在させた製氷室(製氷部)2がフレームFにより支持されて縦形に配置され、製氷室2には、それぞれ左方の前方に向かって開口された多数の製氷小室3がマトリックス状に配列されている。また、各製氷小室3の底部は、完成した氷を滑り落ち易くするために、開口側に向けて下方に傾斜している。さらに、製氷室2の背面には吸加熱パイプ4が蛇行して固定され、この吸加熱パイプ4には、製氷工程時に低温の冷媒が流動し、除氷工程時に高温の冷媒が流動する。これによって、必要に応じ、製氷室の冷却又は加熱を行っている。
【0010】
製氷室2の真下には製氷水タンク6が設置されて製氷水7が貯留され、製氷水タンク6内の製氷水7は、水面が一定以上の高さに達するとオーバフローパイプ15から流出する。製氷水タンク6にはポンプモータ8が取り付けられ、ポンプモータ8によって製氷水タンク6内の製氷水7がホース9を経て水皿20に送られる。
【0011】
この水皿20は、製氷室2の開口側を開放したり閉鎖したりするために、鉛直方向に延在したボックス形状になっている。この水皿20は、支点21においてフレームFに軸支され、この水皿20には、製氷室2の開口側に対面する後面壁26が設けられている。この後面壁26には、上下方向に延在する複数の分配管22が一体形成されると共に、分配管22と各製氷小室3とを連通させる噴水孔23が設けられている。さらに、後面壁26には、製氷小室3内で氷結に至らなかった未氷結水(戻り水)を水皿20内の排水路24内に戻すための比較的大きな戻り孔25が設けられている。そして、水皿20の下端には、製氷水タンク6内に未氷結水を適切に戻すことができるように、下後方に傾斜したガイド部27が形成されている。
【0012】
前述した水皿20の開閉は、フレームFに固定されたギヤードモータ30によって適宜回転する回転カム31により行われる。この回動カム31には、図示の状態でスイッチ32に当接する第1レバー33と、スイッチ32から離間した位置に設けられた第2レバー34と、水皿20の後面壁26を押圧するカム面35とが設けられている。さらに、水皿20の下端に設けられたスプリングホルダ36と第1レバー33の先端との間でスプリング37が掛けわたされ、このスプリング37の引張り力により、水皿20は、支点21を中心として反時計方向に付勢される。従って、水皿20の後端面26は、製氷室2の開口側を塞ぐと共に、カム面35に押し当てられる。
【0013】
なお、製氷水タンク6内には給水パイプ38を介して機外から水道水が補給され、この給水パイプ38の途中には電磁弁39が設けられている。よって、電磁弁39が開くと、給水パイプ38を介して水道水が製氷水タンク6内に供給され、この電磁弁39は、一製氷工程内で必要な回数開放され、製氷水タンク6内への製氷水の補給に利用される。
【0014】
次に、前述した製氷機1の動作について簡単に説明する。先ず、製氷水タンク6内へ製氷水7を供給する場合には、電磁弁39が開かれると、水道水が給水パイプ38を介して製氷水タンク6へ導かれて、所定量だけ貯留される。なお、製氷工程中、製氷水タンク6内への給水は所定の回数だけ行われ、その詳細は後述する。
【0015】
また、製氷工程において、吸加熱パイプ4に図示しない冷却装置から冷媒が供給されて製氷室2が冷却される一方、ポンプモータ8の稼動により、製氷水タンク6内の製氷水7は、ホース9を経て水皿20の各分配管22に供給され続け、噴水孔23から各製氷小室3内に勢い良く噴射されて、製氷小室3の内壁面で徐々に氷を成長させる。また、氷にならなかった未氷結水は、戻り孔25を通って排水路24内を流下し、ガイド部27により製氷水タンク6へ戻される。そして、ポンプモータ8により製氷水を循環させながら、各製氷小室3内で氷の成長が完了すると、製氷小室3への噴水を停止させて製氷工程が終了する。
【0016】
製氷工程が終了した後、除氷工程に移行する。この除氷工程では、ギヤードモータ30の駆動によって、回転カム31が反時計方向に回転し、回動するカム面35によって水皿20の後端面を押し続けるので、各製氷小室3内に形成された小氷片と水皿20の後端面とが強制的に引き離される。その後、回転カム31がさらに反時計方向に回転すると、第1レバー33は、収縮した状態のスプリング37を介して水皿20の下部を前方に押し出す。その結果、水皿20は、支点21を中心として時計方向に回転し、二点鎖線の位置に停止する。それと同時に、第2レバー34がスイッチ32を切り換える。
【0017】
その後、吸加熱パイプ4に除氷用のホットガスが供給され、製氷室2が加熱されることにより小氷片の表面がわずかに溶け、このため、各小氷片は、製氷小室3の傾斜した底部に沿って自重により前方へ滑り落ちる。そして、落下した小氷片は、製氷水タンク6の中央に形成した開口部6aを通って、下方の図示しない貯氷室へ落下し、そこに貯留される。
【0018】
ここで、前述した製氷水タンク6は、ダブルフロートタイプの水位センサ40を有し、この水位センサ40は、製氷時において、製氷水タンク6内の水位が所定の下限水位以下となれば開く(OFFする)下限水位センサ41と、製氷水タンク6内の水位が所定の上限水位以下となれば開く(OFFする)上限水位センサ42とを有している。また、給水時において、下限水位センサ41は、製氷水タンク6内の水位が所定の下限水位を越えれば閉じ(ONする)、上限水位センサ42は、製氷水タンク6内の水位が所定の上限水位を越えれば閉じる(ONする)。そして、下限水位センサ41のOFF検知に基づき、電磁弁39が開かれて、給水パイプ38から水道水を製氷水タンク6内に補給する。また、上限水位センサ42のON検知に基づき、電磁弁39が閉じられて、給水パイプ38からの補給を停止させる。さらに、下限水位センサ42には、OFF検知した回数を検出するカウンタ(カウント手段)CTが接続されている。そして、そのカウント数に基づいて製氷を完了させる。
【0019】
具体的に、図2を参照しながら説明する。先ず、製氷機1の電源が投入されたとき、X1リレーのb側接点と、カウンタCTのb側接点は、閉じているため、電磁弁39に通電され、電磁弁39が開かれて、給水パイプ38からの水道水を製氷水タンク6内に補給し続ける。そして、給水を続けると、水位センサ40の下限水位センサ41のフロートが上昇して、下限水位センサ41がONする。これによって、リレーコイルX2とカウンタCTとが通電される。さらに給水を続けると、上限水位センサ42のフロートが上昇して、上限水位センサ42がONし、X2リレーのa側接点を介してリレーコイルX1が導通される。このとき、X1リレーのa側接点も導通されるため、コンプレッサCMに通電させることで、製氷運転が開始される。そして、リレーコイルX1は自己保持されるため、電磁弁39が閉じられて、製氷水タンク6への給水が断たれる。
【0020】
次に、製氷工程中においては、製氷水タンク6内の水位が下がり続け、これに追従するように上限水位センサ42のフロートが下降して、上限水位センサ42がOFF状態になるが、リレーコイルX1は自己保持されるため、このとき給水はなされない。そして、タンク6内の水位が下がり続けた結果、下限水位センサ41のフロートが下降して下限水位センサ41がOFF状態になると、リレーコイルX2がOFFになり、X2リレーのa側接点が開状態になるため、リレーコイルX1がOFFになり、X1リレーのb側接点が導通され、電磁弁39に通電され、電磁弁39が開かれて、製氷水タンク6内への給水が開始される。そして、製氷工程時においては前述した動作が繰り返される。
【0021】
ここで、図3に示すように、カウンタCT内部では、下限水位センサ42のOFF回数をカウントすると共に、所定の回数(図3では3回)に達したときに、製氷工程を完了させる。その後、除氷工程に移行し、電磁弁39が開かれて、製氷水タンク6内へ給水しながら除氷工程に移行する。そして、製氷水タンク6内への給水が完了した時点で、前述したように、水皿20は、支点21を中心として時計方向に回転して二点鎖線の位置に停止する(図1参照)。その状態で、吸加熱パイプ4へ除氷用のホットガスが供給され、各小氷片を図示しない貯氷室へ落下させる。その後、水皿20は、支点21を中心として反時計方向に回転して実線の位置(図1参照)に復帰して除氷工程が完了する。その後、製氷工程へと移行していく。なお、製氷タンク6に設けられた排水パイプ45を利用し、一製氷工程終了毎に、製氷水タンク6内の残水を外部に排出させてもよい。
【0022】
このように、水位センサ40での検知をカウンタCTでのカウントし、予め設定されているカウント数に基づいて、製氷を完了させることで、製氷機1が大型化された場合でも、製氷水タンク6の容積を大きくする必要がなく、製氷室2の大きさに対応させて、設定カウント数を変えるだけで対応することができる。
【0023】
また、水位センサ40として、下限水位センサ41と上限水位センサ42とを利用することで、製氷水タンク6の小型化と同時に、製氷に必要な製氷水の量を更に精度良く制御することができる。そして、下限水位センサ41のOFF回数をカウントすることで、製氷水タンク6への給水に関して、製氷工程から除氷工程へスムーズに移行させることができ、製氷サイクルの短時間化を図り、製氷効率を上げることができる。
【0024】
本発明は、前述した実施形態に限定されるものではない。例えば、下限水位センサ41又は上限水位センサ42のON・OFFのいずれかを基準にし、カウンタCT内部でその回数をカウントするように制御してもよい。また、設定カウント数を多くすればするほど、製氷水タンク6の小型化を促進することができる。
【0025】
【発明の効果】
本発明による製氷機は、以上のように構成されているため、次のような効果を得る。すなわち、製氷部に製氷水を供給して、製氷部で氷を成長させる製氷機において、製氷部から流れ出る未氷結水と外部から供給される補給水とを貯留する製氷水タンクと、製氷水タンク内の製氷水を製氷部に供給するポンプと、製氷水タンクに設けられた水位センサと、水位センサの検知をカウントするカウント手段とを備えたことにより、製氷水タンクの小型化を可能にし、それに伴って、製氷機自体の小型化を可能にする。
【図面の簡単な説明】
【図1】本発明に係る製氷機の一実施形態を示す断面図である。
【図2】水位センサとして下限水位センサと上限水位センサとを利用した場合の回路図である。
【図3】製氷水タンク内での水位変化を示すタイミングチャートである。
【符号の説明】
1…製氷機、2…製氷室(製氷部)、6…製氷水タンク、7…製氷水、8…ポンプモータ(ポンプ)、40…水位センサ、41…下限水位センサ、42…上限水位センサ、CT…カウンタ(カウント手段)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ice making machine provided with an ice making water tank for storing uncondensed water flowing out of an ice making part and make-up water supplied from the outside.
[0002]
[Prior art]
Conventionally, there is Japanese Patent No. 3220248 as a technique in such a field. The ice maker described in this publication has a configuration in which water supply to the ice making water tank is controlled until a timer measures a predetermined time during an ice making process. That is, the ice making machine closes the water supply valve after a predetermined time has elapsed, stops the water supply to the ice making water tank, and then continues the ice making by the remaining water in the ice making water tank, and the lower limit float in the ice making water tank. The ice making process is terminated by the switch.
[0003]
[Problems to be solved by the invention]
However, when such an ice making machine is large, a large ice making unit is used for growing ice.In this case, a large ice making water tank is used because a large amount of ice making water is used. I need. As a result, there is a problem that an ice maker becomes large.
[0004]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object of the present invention is to provide an ice maker capable of miniaturization.
[0005]
[Means for Solving the Problems]
The ice making machine according to the present invention is an ice making machine that supplies ice making water to an ice making part and grows ice in the ice making part, wherein the ice making water that stores the uniced water flowing out of the ice making part and the makeup water supplied from the outside is provided. It is characterized by comprising a tank, a pump for supplying ice making water in the ice making water tank to the ice making section, a water level sensor provided in the ice making water tank, and a counting means for counting the detection of the water level sensor.
[0006]
The ice making machine according to the present invention is intended for an ice making machine having an ice making water tank for storing non-freezing water flowing out of the ice making section and make-up water supplied from the outside. The ice making water is always supplied into the ice making section by the drive of the pump, and as a result, the uniced water returns to the ice making water tank. The ice making water tank in such a water supply state is provided with a water level sensor. Then, the detection of the water level sensor is counted by the counting means, and ice making is completed based on a preset count number. As a result of adopting such a configuration, even if the ice making machine is enlarged, it is not necessary to increase the capacity of the ice making water tank, but only by changing the set count number in accordance with the size of the ice making section. be able to.
[0007]
The water level sensor is composed of a lower limit water level sensor and an upper limit water level sensor, and supplies makeup water into the ice making water tank based on the detection of the lower limit water level sensor, and stops the supply of makeup water based on the detection of the upper limit water level sensor. Preferably, at least one of the lower limit water level sensor and the upper limit water level sensor is detected by a counting means. With such a configuration, the size of the ice making water tank can be reduced, and at the same time, the amount of ice making water required for ice making can be controlled more accurately.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of an ice making machine according to the present invention will be described in detail with reference to the drawings.
[0009]
As shown in FIG. 1, the ice making machine 1 is a so-called vertical ice making machine, and an ice making room (ice making part) 2 extending in a vertical direction is supported by a frame F and vertically arranged. A large number of ice making chambers 3 each opening toward the left front are arranged in a matrix. Further, the bottom of each ice making chamber 3 is inclined downward toward the opening side so that the completed ice can easily slide down. Further, on the back surface of the ice making chamber 2, a heat absorbing and heating pipe 4 is fixed in a meandering manner, and a low temperature refrigerant flows through the heat absorbing and heating pipe 4 during the ice making step and a high temperature refrigerant flows during the deicing step. Thereby, cooling or heating of the ice making room is performed as needed.
[0010]
An ice making water tank 6 is provided directly below the ice making chamber 2 and stores ice making water 7. The ice making water 7 in the ice making water tank 6 flows out of the overflow pipe 15 when the water surface reaches a certain height or higher. A pump motor 8 is attached to the ice making water tank 6, and the ice making water 7 in the ice making water tank 6 is sent to a water tray 20 via a hose 9 by the pump motor 8.
[0011]
The water tray 20 has a box shape extending in the vertical direction to open and close the opening side of the ice making chamber 2. The water tray 20 is supported by a frame F at a fulcrum 21, and the water tray 20 is provided with a rear wall 26 facing the opening side of the ice making chamber 2. The rear wall 26 is integrally formed with a plurality of distribution pipes 22 extending in the vertical direction, and is provided with fountain holes 23 for communicating the distribution pipes 22 with the ice making chambers 3. Further, the rear wall 26 is provided with a relatively large return hole 25 for returning non-freezing water (return water) which has not been frozen in the ice making chamber 3 to the drainage channel 24 in the water tray 20. . At the lower end of the water tray 20, a guide portion 27 inclined downward and rearward is formed so that uniced water can be appropriately returned into the ice making water tank 6.
[0012]
The opening and closing of the water tray 20 is performed by a rotating cam 31 which is appropriately rotated by a geared motor 30 fixed to the frame F. The rotating cam 31 includes a first lever 33 that contacts the switch 32 in the illustrated state, a second lever 34 that is provided at a position separated from the switch 32, and a cam that presses the rear wall 26 of the water tray 20. A surface 35 is provided. Further, a spring 37 is hung between the spring holder 36 provided at the lower end of the water tray 20 and the tip of the first lever 33, and the water tray 20 is moved around the fulcrum 21 by the tensile force of the spring 37. Energized counterclockwise. Therefore, the rear end surface 26 of the water tray 20 closes the opening side of the ice making chamber 2 and is pressed against the cam surface 35.
[0013]
Tap water is supplied into the ice making water tank 6 from outside the machine via a water supply pipe 38, and an electromagnetic valve 39 is provided in the middle of the water supply pipe 38. Therefore, when the solenoid valve 39 is opened, tap water is supplied into the ice making water tank 6 through the water supply pipe 38, and the solenoid valve 39 is opened a required number of times in one ice making process, and the water is supplied into the ice making water tank 6. It is used to supply ice water.
[0014]
Next, the operation of the ice making machine 1 will be briefly described. First, when the ice making water 7 is supplied into the ice making water tank 6, when the solenoid valve 39 is opened, the tap water is guided to the ice making water tank 6 through the water supply pipe 38 and stored in a predetermined amount. . During the ice making process, water is supplied to the ice making water tank 6 a predetermined number of times, and the details will be described later.
[0015]
In the ice making process, a coolant is supplied from a cooling device (not shown) to the absorption / heating pipe 4 to cool the ice making chamber 2, while the pump motor 8 operates to make the ice making water 7 in the ice making water tank 6 a hose 9. The water is continuously supplied to the distribution pipes 22 of the water tray 20 through the fountain holes 23, and is jetted vigorously into the ice making chambers 3 to gradually grow ice on the inner wall surface of the ice making chamber 3. The non-iced water that has not become ice flows down the drainage channel 24 through the return hole 25 and is returned to the ice making water tank 6 by the guide portion 27. When the ice growth is completed in each ice making chamber 3 while circulating the ice making water by the pump motor 8, the fountain to the ice making chamber 3 is stopped and the ice making process is completed.
[0016]
After the ice making process is completed, the process shifts to a deicing process. In this deicing step, the rotation cam 31 rotates counterclockwise by the driving of the geared motor 30 and continues to push the rear end face of the water tray 20 by the rotating cam surface 35. The small ice pieces and the rear end face of the water tray 20 are forcibly separated. Thereafter, when the rotating cam 31 further rotates counterclockwise, the first lever 33 pushes the lower portion of the water tray 20 forward through the contracted spring 37. As a result, the water tray 20 rotates clockwise around the fulcrum 21 and stops at the position indicated by the two-dot chain line. At the same time, the second lever 34 switches the switch 32.
[0017]
Thereafter, a hot gas for deicing is supplied to the absorption / heating pipe 4 and the surface of the small ice pieces is slightly melted by heating the ice making chamber 2. It slides forward along its bottom due to its own weight. Then, the dropped small ice pieces fall through an opening 6a formed in the center of the ice making water tank 6 into an ice storage chamber (not shown) below, and are stored there.
[0018]
Here, the above-mentioned ice making water tank 6 has a double float type water level sensor 40, and this water level sensor 40 opens when the water level in the ice making water tank 6 falls below a predetermined lower limit water level during ice making ( It has a lower limit water level sensor 41 that turns off (OFF) and an upper limit water level sensor 42 that opens (turns off) when the water level in the ice making water tank 6 falls below a predetermined upper limit water level. During water supply, the lower limit water level sensor 41 closes (turns on) when the water level in the ice making water tank 6 exceeds a predetermined lower limit water level, and the upper limit water level sensor 42 sets the water level in the ice making water tank 6 to a predetermined upper limit. Closes (turns on) when the water level is exceeded. Then, based on the OFF detection of the lower limit water level sensor 41, the electromagnetic valve 39 is opened, and tap water is supplied from the water supply pipe 38 into the ice making water tank 6. Further, based on the ON detection of the upper limit water level sensor 42, the electromagnetic valve 39 is closed, and the supply from the water supply pipe 38 is stopped. Further, the lower limit water level sensor 42 is connected to a counter (counting means) CT for detecting the number of times OFF is detected. Then, ice making is completed based on the counted number.
[0019]
This will be specifically described with reference to FIG. First, when the ice maker 1 is turned on, the b-side contact of the X1 relay and the b-side contact of the counter CT are closed, so that the solenoid valve 39 is energized, the solenoid valve 39 is opened, and the water supply is stopped. The tap water from the pipe 38 is continuously supplied into the ice making water tank 6. Then, when the water supply is continued, the float of the lower limit water level sensor 41 of the water level sensor 40 rises, and the lower limit water level sensor 41 is turned on. Thereby, the relay coil X2 and the counter CT are energized. When the water supply is further continued, the float of the upper limit water level sensor 42 rises, the upper limit water level sensor 42 is turned on, and the relay coil X1 is turned on via the a-side contact of the X2 relay. At this time, since the a-side contact of the X1 relay is also conducted, the ice making operation is started by energizing the compressor CM. Then, since the relay coil X1 is held by itself, the electromagnetic valve 39 is closed, and the supply of water to the ice making water tank 6 is cut off.
[0020]
Next, during the ice making process, the water level in the ice making water tank 6 continues to drop, and the float of the upper limit water level sensor 42 falls so as to follow this, and the upper limit water level sensor 42 is turned off. Since X1 is held by itself, no water is supplied at this time. Then, as a result of the water level in the tank 6 continuing to drop, when the float of the lower limit water level sensor 41 drops and the lower limit water level sensor 41 turns off, the relay coil X2 turns off and the a-side contact of the X2 relay opens. Therefore, the relay coil X1 is turned off, the b-side contact of the X1 relay is turned on, the solenoid valve 39 is energized, the solenoid valve 39 is opened, and water supply into the ice making water tank 6 is started. Then, in the ice making process, the above-described operation is repeated.
[0021]
Here, as shown in FIG. 3, inside the counter CT, the number of times the lower limit water level sensor 42 is turned off is counted, and when a predetermined number of times (three times in FIG. 3) is reached, the ice making process is completed. Thereafter, the process proceeds to the deicing process, the electromagnetic valve 39 is opened, and the process proceeds to the deicing process while supplying water into the ice making water tank 6. Then, when the water supply into the ice making water tank 6 is completed, as described above, the water tray 20 rotates clockwise about the fulcrum 21 and stops at the position indicated by the two-dot chain line (see FIG. 1). . In this state, a hot gas for deicing is supplied to the suction and heating pipe 4, and each small ice piece is dropped into an ice storage chamber (not shown). Thereafter, the water tray 20 rotates counterclockwise about the fulcrum 21 and returns to the position indicated by the solid line (see FIG. 1), thereby completing the deicing step. After that, it shifts to the ice making process. In addition, the residual water in the ice making water tank 6 may be discharged to the outside every time one ice making process is completed by using the drain pipe 45 provided in the ice making tank 6.
[0022]
As described above, the detection by the water level sensor 40 is counted by the counter CT, and the ice making is completed based on the preset count number. It is not necessary to increase the volume of 6 and it is possible to cope with the size of the ice making chamber 2 only by changing the set count number.
[0023]
In addition, by using the lower limit water level sensor 41 and the upper limit water level sensor 42 as the water level sensor 40, the size of the ice making water tank 6 can be reduced and the amount of ice making water required for ice making can be controlled more accurately. . Then, by counting the number of times the lower limit water level sensor 41 is turned off, the water supply to the ice making water tank 6 can be smoothly shifted from the ice making step to the deicing step, thereby shortening the ice making cycle and improving the ice making efficiency. Can be raised.
[0024]
The present invention is not limited to the embodiments described above. For example, control may be performed such that the number of times is counted inside the counter CT based on either ON or OFF of the lower limit water level sensor 41 or the upper limit water level sensor 42. Further, the larger the set count number, the more the size of the ice making water tank 6 can be promoted.
[0025]
【The invention's effect】
Since the ice maker according to the present invention is configured as described above, the following effects are obtained. That is, in an ice making machine that supplies ice making water to the ice making part and grows the ice in the ice making part, an ice making water tank for storing uniced water flowing out of the ice making part and make-up water supplied from outside, and an ice making water tank By providing a pump for supplying the ice making water to the ice making section, a water level sensor provided in the ice making water tank, and a counting means for counting the detection of the water level sensor, the ice making water tank can be downsized, Accordingly, the size of the ice making machine itself can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of an ice making machine according to the present invention.
FIG. 2 is a circuit diagram when a lower limit water level sensor and an upper limit water level sensor are used as water level sensors.
FIG. 3 is a timing chart showing a water level change in the ice making water tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ice making machine, 2 ... Ice making room (ice making part), 6 ... Ice making water tank, 7 ... Ice making water, 8 ... Pump motor (pump), 40 ... Water level sensor, 41 ... Lower limit water level sensor, 42 ... Upper limit water level sensor, CT: Counter (counting means).

Claims (2)

製氷部に製氷水を供給して、前記製氷部で氷を成長させる製氷機において、
前記製氷部から流れ出る未氷結水と外部から供給される補給水とを貯留する製氷水タンクと、
前記製氷水タンク内の製氷水を前記製氷部に供給するポンプと、
前記製氷水タンクに設けられた水位センサと、
前記水位センサの検知をカウントするカウント手段とを備えたことを特徴とする製氷機。
In an ice making machine that supplies ice making water to the ice making part and grows ice in the ice making part,
An ice-making water tank for storing uniced water flowing out of the ice-making unit and makeup water supplied from the outside,
A pump for supplying ice making water in the ice making water tank to the ice making unit,
A water level sensor provided in the ice making water tank,
An ice making machine comprising: a counting means for counting the detection of the water level sensor.
前記水位センサは、下限水位センサと上限水位センサとからなり、前記下限水位センサの検知に基づいて前記補給水を前記製氷水タンク内に供給し、前記上限水位センサの検知に基づいて前記補給水の供給を停止させ、前記下限水位センサと前記上限水位センサとの少なくとも一方の検知を前記カウント手段でカウントすることを特徴とする請求項1記載の製氷機。The water level sensor includes a lower limit water level sensor and an upper limit water level sensor. 2. The ice making machine according to claim 1, wherein the supply of water is stopped, and detection of at least one of the lower limit water level sensor and the upper limit water level sensor is counted by the counting means.
JP2002192386A 2002-07-01 2002-07-01 Ice maker Pending JP2004036951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192386A JP2004036951A (en) 2002-07-01 2002-07-01 Ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192386A JP2004036951A (en) 2002-07-01 2002-07-01 Ice maker

Publications (1)

Publication Number Publication Date
JP2004036951A true JP2004036951A (en) 2004-02-05

Family

ID=31701673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192386A Pending JP2004036951A (en) 2002-07-01 2002-07-01 Ice maker

Country Status (1)

Country Link
JP (1) JP2004036951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542653A (en) * 2012-07-11 2014-01-29 曼尼托沃食品服务有限公司 Methods and apparatus for adjusting ice slab bridge thickness and initiate ice harvest following the freeze cycle
WO2014189476A1 (en) * 2013-05-20 2014-11-27 Enzi̇lhan Hakan Isik Apparatus for recirculating cold water in ice machines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542653A (en) * 2012-07-11 2014-01-29 曼尼托沃食品服务有限公司 Methods and apparatus for adjusting ice slab bridge thickness and initiate ice harvest following the freeze cycle
EP2685182A3 (en) * 2012-07-11 2014-08-13 Manitowoc Foodservice Companies, LLC Methods and apparatus for adjusting ice slab bridge thickness and initiate ice harvest following the freeze cycle
CN103542653B (en) * 2012-07-11 2016-02-03 曼尼托沃食品服务有限公司 For adjusting slab bridge thickness and start the method and apparatus of ice collection after freeze cycle
US9625199B2 (en) 2012-07-11 2017-04-18 Mainitowoc Foodservice Companies, Llc Methods and apparatus for adjusting ice slab bridge thickness and initiate ice harvest following the freeze cycle
WO2014189476A1 (en) * 2013-05-20 2014-11-27 Enzi̇lhan Hakan Isik Apparatus for recirculating cold water in ice machines

Similar Documents

Publication Publication Date Title
EP2096384B1 (en) Method of controlling ice making assembly for refrigerator
KR101457691B1 (en) Controlling method of an ice making assembly for refrigerator
EP1510766A1 (en) Ice supply system for refrigerator
KR101500731B1 (en) Controlling method of an ice making assembly for refrigerator
EP2096385B1 (en) Ice making assembly for refrigerator and method for controlling the same
EP3853537B1 (en) Clear barrel ice maker
JP2004036951A (en) Ice maker
KR101389674B1 (en) Method for estimating completion of ice-making for an ice making assembly of refrigerator
KR101483028B1 (en) Ice maker controlling method of refrigerator
KR20050110213A (en) Ice maker
KR20080000128A (en) A refrigerator
KR101690126B1 (en) Ice maker and refrigerator having the same
JP2006023042A (en) Refrigerator
JP2006078107A (en) Freezer-refrigerator
KR100688163B1 (en) Ice Sensing apparatus
KR20170112666A (en) Ice Generating Device and Control Method of Ice Generating Device
WO2022007849A1 (en) Refrigeration appliance having ice-making assembly, and cleaning method
KR101500732B1 (en) Method for estimating completion of ice-making for an ice making assembly of refrigerator
WO2023202519A1 (en) Refrigerator having air-cooled transparent ice-making device
JPH09269166A (en) Icemaker
JPH07225070A (en) Icemaker and operating method therefor
JP2009216255A (en) Inverted-cell type ice making machine
JP5687018B2 (en) Automatic ice machine
JP2007285641A (en) Freezer-refrigerator
JP4097596B2 (en) Refrigerator with automatic ice machine