【0001】
【発明の属する技術分野】
本発明は、輻射暖房を用いた暖房装置に関するものである。
【0002】
【従来の技術】
従来この種の暖房装置は実公昭63−11548号公報に記載されているようなものが一般的であった。この暖房装置は図9に示すように、本体下部に設けられたバーナー1と、前記バーナー1で発生した燃焼ガスを通過させる中空の薄型箱状熱交換器2と、前記熱交換器2の両側に形成された縦状の開口3と、前記熱交換器2の少なくとも前面に塗装された遠赤外線塗料と、室内空気を前記熱交換器2に送風して熱交換し温風として本体吐出口より吐出する対流ファン5からなり、上記熱交換器2は内部を中空にして上記バーナー1からの燃焼ガス6が通過するように中空形成された通路7を設け、熱交換器2の各部に上記燃焼ガス6が行き渡るように通路7の一部に凹形のビード8を設けて開口3から燃焼ガスを排出する構成となっていた。
【0003】
そしてバーナーで発生した燃焼ガスを熱交換器2に通過させて300℃〜500℃に加熱することにより、遠赤外線塗料で塗装された前面より遠赤外線を輻射し輻射暖房を行なう。また、同時に熱交換器2の後面に沿って対流ファン5で取り入れた室内空気を送風し、熱交換器2の開口3で排出される燃焼ガスと混合して室内へ温風として吐出し温風暖房を行なう。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、機器が運転中に対流装置が故障し送風がストップした時に生ずる機体の急激な温度上昇を早急に検出できず、不安全になるという課題があった。
【0005】
本発明は上記課題を解決するものであり、送風装置がストップした時の異常過熱を迅速に検出し安全な暖房装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明は、燃焼ガスを発生する燃焼部と、前記燃焼部より発生した燃焼ガスを上方に導くよう設置された燃焼筒と、前記燃焼ガスにより加熱され輻射熱を発する輻射体と、前記燃焼ガスと空気流を混合し温風として吹き出す温風吹き出し口と、前記空気流を供給する送風手段と、前記空気流により本体を冷却する本体冷却風路と、前記空気流により輻射体を冷却する輻射体冷却風路と、前記空気流を前記温風吹き出し口または前記輻射体冷却風路に切り替える燃焼ガス切リ替え手段とを備え、前記燃焼筒の適所に本体冷却風路に連通する連通穴と、前記本体冷却風路の外壁の適所に温度検出手段を設けて、前記燃焼部の燃焼中に前記送風手段からの送風がストップすると前記連通穴から通った熱気が前記温度検知手段により検知され燃焼部の燃焼を停止するようにした。
【0007】
上記構成により本発明は、通常運転時は燃焼ガス切り替え手段が送風手段からの空気流を輻射体冷却風路へ切り替えた時に、燃焼ガス発生手段からの燃焼ガスを燃焼筒を介し輻射体加熱風路に導き、また燃焼ガス切り替え手段が送風手段からの空気流を温風吹き出し口側へ切り替えた時は、燃焼ガス発生手段からの燃焼ガスを温風吹き出し口へ導き、該機器の運転を輻射体から輻射エネルギーを発生させて暖房する輻射モードと、温風吹き出し口から温風を排出して暖房する温風モードへ切り替える。
【0008】
そして、燃焼中に送風手段からの送風がストップした時、燃焼ガス発生手段からの燃焼ガスが燃焼筒の連通穴を通り温度検出手段の受熱面を加熱し、機器内部の異常過熱を迅速に検出するようにしてあるので、機器が運転中に送風手段の故障など何らかの理由で送風が停止した時に、温度検出手段により機器内部の異常過熱を迅速に検知し、燃焼ガス発生手段からの燃焼ガスを停止させることで、機器の異常な温度上昇を防止し、機器自身の熱による損傷および機器が異常高温となる不安全状態を回避することができる。
【0009】
【発明の実施の形態】
上記課題を解決するために本発明の請求項1は、燃焼ガスを発生する燃焼部と、前記燃焼部より発生した燃焼ガスを上方に導くよう設置された燃焼筒と、前記燃焼ガスにより加熱され輻射熱を発する輻射体と、前記燃焼ガスと空気流を混合し温風として吹き出す温風吹き出し口と、前記空気流を供給する送風手段と、前記空気流により本体を冷却する本体冷却風路と、前記空気流により輻射体を冷却する輻射体冷却風路と、前記空気流を前記温風吹き出し口または前記輻射体冷却風路に切り替える燃焼ガス切リ替え手段とを備え、前記燃焼筒の適所に本体冷却風路に連通する連通穴と、前記本体冷却風路の外壁の適所に温度検出手段を設けて、前記燃焼部の燃焼中に前記送風手段からの送風がストップすると前記連通穴から通った熱気が前記温度検知手段により検知され燃焼部の燃焼を停止するようにした。
【0010】
そして、通常運転時は燃焼ガス切り替え手段が送風手段からの空気流を輻射体冷却風路へ切り替えた時に、燃焼ガス発生手段からの燃焼ガスを燃焼筒を介し輻射体加熱風路に導き、また燃焼ガス切り替え手段が送風手段からの空気流を温風吹き出し口側へ切り替えた時は、燃焼ガス発生手段からの燃焼ガスを温風吹き出し口へ導き、該機器の運転を輻射体から輻射エネルギーを発生させて暖房する輻射モードと、温風吹き出し口から温風を排出して暖房する温風モードへ切り替える。
【0011】
そしてまた、機器の運転中に送風手段の故障などにより、何らかの理由で燃焼中に送風手段からの送風がストップした時、燃焼ガス発生手段からの燃焼ガスが燃焼筒の連通穴を通り温度検出手段の受熱面を加熱し、機器内部の異常過熱を迅速に検出するようにしてあるので、温度検出手段により機器内部の異常過熱を迅速に検知し燃焼ガス発生手段からの燃焼ガスを停止させることで、機器の不安全状態を回避することができるようになる。
【0012】
また請求項2に記載の発明は、連通穴近傍に送風手段からの空気流の流入防止の整風板を設けた。
【0013】
そして、送風手段からの空気流が燃焼筒に流入しないように、燃焼筒の連通穴近傍に整風板を設けてあるので、請求項1の送風停止時の安全性確保の効果が得られると共に、通常運転時は整風板により送風手段からの空気流は燃焼筒内に流入せず、燃焼ガス発生手段の燃焼が不安定になることを防止することができ、安定した特性が得られるようになる
また請求項3に記載の発明は、整風板を燃焼筒から切り起こしたフィン形状とするとともに、切り起こしで形成される開口を連通穴とした。
【0014】
そして、燃焼筒から切り起こした整風板とこの切り起こしで形成される開口により、請求項2の燃焼が安定化と送風停止時の安全性確保の効果が得られると共に、整風板は燃焼筒から切り起こしたフィン形状としてあるので、燃焼筒と整風板を一体化成形することにより、組立時の寸法バラツキを減少させることでき、性能の安定化を図り、かつ、部品点数の削減により材料費や組み立て工数の削減をしコストダウンを図ることができるようになる。
【0015】
また請求項4に記載の発明は、燃焼ガスを発生する燃焼部と、前記燃焼部より発生した燃焼ガスを上方に導くよう設置された燃焼筒と、前記燃焼ガスにより加熱され輻射熱を発する輻射体と、前記燃焼ガスと空気流を混合し温風として吹き出す温風吹き出し口と、前記空気流を供給する送風手段と、前記空気流により本体を冷却する本体冷却風路と、前記空気流により輻射体を冷却する輻射体冷却風路と、前記空気流を前記温風吹き出し口または前記輻射体冷却風路に切り替える燃焼ガス切リ替え手段とを備え、前記燃焼ガス切り替え手段が空気流を輻射体冷却風路側に切り替えた時に燃焼ガス切り替え手段の適所に通気口を開口するように設け、前記本体冷却風路の外壁の適所に温度検出手段を設けて、前記燃焼部の燃焼中に前記送風手段からの送風がストップすると前記通気口から通った熱気が前記温度検知手段により検知され燃焼部の燃焼を停止するようにした。
【0016】
そして、燃焼ガス切り替え手段に、輻射運転時に本体冷却風路に連通する通気口を設けて、輻射運転時に送風手段の故障など何らかの理由で送風がストップした時、燃焼ガス切り替え手段の下に蓄積する燃焼ガスを通気口より本体冷却風路に逃がし、温度検出手段の受熱面を加熱し、機器内部の異常過熱を迅速に検出するようにしてあるので、温度検出手段により機器内部の異常過熱を迅速に検知し燃焼ガス発生手段からの燃焼ガスを停止させることで、機器の不安全状態を回避することができるようになる。
【0017】
また請求項5に記載の発明は、通気口近傍に送風手段からの空気流の流入防止の整風板を設けた。
【0018】
そして、輻射運転時に送風手段からの空気流が輻射体を加熱する風路に流入しないよう、燃焼ガス切り替え手段の通気口の近傍に遮風板を設けた構成としてあるので、請求項4の送風停止時の安全性確保の効果が得られると共に、通常輻射運転時は遮風板により送風手段からの空気流は輻射体加熱風路に流入による輻射体の温度低下を防ぎ、輻射量の確保ができるようになる。
【0019】
また請求項6に記載の発明は、整風板は燃焼筒から切り起こしたフィン形状とするとともに、切り起こしで形成される開口を連通穴とした。
【0020】
そして、燃焼ガス切り替え手段から切り起した整風板とこの切り起こしで形成される開口により、請求項5の輻射体温度の低下防止と送風停止時の安全性確保の効果が得られると共に、遮風板は燃焼ガス切り替え手段から切り起したフィン形状としてあるので、燃焼筒と整風板を一体化成形することにより、組立時の寸法バラツキを減少させることでき、性能の安定化を図り、かつ、部品点数の削減により材料費や組み立て工数の削減をしコストダウンを図ることができるようになる。
【0021】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0022】
(実施例1)
図1は本発明の実施例1の暖房装置の温風運転時の要部断面図である。図2は異常時の要部断面図である。図1において11は燃焼ガスを発生する燃焼部で、発生した燃焼ガスを上方に導くように配置した燃焼筒14で覆われている。12は燃焼部11からの燃焼ガスにより加熱され採熱した熱を輻射エネルギーとして発生する輻射体であり上記輻射体12の前面には燃焼ガスを機器の外に排出する小さな排気孔12aが全面に開いている。そして上記輻射体12に燃焼ガスを燃焼筒14を介して導く輻射体加熱風路13が設けられている。
【0023】
機器の背部には送風手段として送風ファン16が配置されており、上記輻射体12を冷却する空気流と、燃焼部11からの燃焼ガスを混合し温風として機器の外に排出する温風吹き出し口15から排出する空気流を供給する。
【0024】
そして燃焼筒14の上部に本体冷却風路17を設け、この本体冷却風路17を介して輻射体加熱風路13と機器の間に流し機器への熱の伝わりを遮断する輻射体冷却風路18に送風ファンからの空気流Aを供給するようになっている。
【0025】
19は送風ファン16からの空気流Aを輻射体冷却風路18側かあるいは温風吹き出し口15側へ空気流Aの流れを切り替える燃焼ガス切り替え手段である。そして上記燃焼ガス切り替え手段19に連動して、燃焼ガス切り替え手段19が送風ファン16からの空気流を輻射手段冷却手段風路18側へ切り替えた時に、燃焼部11からの燃焼ガスを輻射体加熱風路13へ導き、温風吹き出し口15側に漏れないように燃焼筒14と温風吹き出し口15につながる空間を閉塞し、また燃焼ガス切り替え手段19が送風手段からの空気流を温風吹き出し口15側へ切り替えた時は、燃焼部11からの燃焼ガスBを温風吹き出し口15へ導く。
【0026】
そして上記構成により、該機器の運転を輻射体12から輻射エネルギーを発生させて暖房する輻射運転と温風吹き出し口15から温風を排出して暖房する温風運転とを切り替える構成としている。
【0027】
また燃焼筒14の本体冷却風路17側の適所には連通口20が設けられ、本体冷却風路17の外郭の適所には温度検出手段21を設けている。
【0028】
上記した構成により通常の温風運転を図1で説明すると、燃焼ガス切り替え手段19により輻射体冷却風路18と本体冷却風路17を遮断し、送風ファン16からの空気流Aを、本体冷却風路17と燃焼筒14を温風吹き出し口15に連結させることにより燃焼部11からの燃焼ガスBと送風ファン16より送られる空気流Aを混合させ温風吹き出し口15より温風Cを本体外部に放出し暖房を行う。
【0029】
そして異物が挿入されるなど何らかの理由で送風ファン16がストップするという異常時を図2で説明すると、本体冷却風路17には送風ファン16による空気流Aはなくなり、燃焼部11で発生した燃焼ガスBは燃焼筒14の連通穴20から本体冷却風路内17に流出し本体冷却風路17の外郭に設けた温度検出手段21を急速に加熱し、温度検出手段21は機器の異常過熱を検知し燃焼部11の燃焼を停止させように制御している。
【0030】
このように機器が運転中に送風ファン16の故障など何らかの理由で送風が停止した時に、温度検出手段21により機器内部の異常過熱を迅速に検知し、燃焼部11からの燃焼ガスBを停止させることができ、機器の異常な温度上昇を防止し、機器自身の熱による損傷および機器が異常高温となる不安全状態を回避することができるようになる。
【0031】
(実施例2)
図3は実施例2の暖房装置の温風運転時の要部断面図であり、図4は異常時の要部断面図である。実施例1で述べた部分と同一部分は同一番号を付記し、異なる部分のみを説明する。
【0032】
22は燃焼筒14から切り起こしたフィン形状の整風板22で、この切り起こしで形成される開口で燃焼筒14に連通穴20が形成してある。
【0033】
上記構成により、通常温風運転時は図3で示されるように、整風板22により送風ファン16からの空気流Aは燃焼筒14内に流入せず、燃焼部11の燃焼が不安定になることを防止する。
【0034】
一方送風ファン16の故障などによる何らかの理由で送風ファン16がストップした時は、図4で示されるように、本体冷却風路17には送風ファン16による空気流Aはなくなり、燃焼部11で発生した燃焼ガスBは燃焼筒14の連通穴20から本体冷却風路内17に流出し本体冷却風路17の外郭に設けた温度検出手段21を急速に加熱し、温度検出手段21は機器の異常過熱を検知し燃焼部11の燃焼を停止させ、機器の不安全状態を回避するように制御している。
【0035】
つまり、送風手段からの空気流が燃焼筒に流入しないように、燃焼筒の連通穴近傍に整風板22を設けてあるので、実施例1の送風停止時の安全性確保の効果が得られると共に、通常運転時は送風ファン16からの空気流Aの燃焼筒14への流入を防ぐことにより、燃焼部11の燃焼を安定させ、燃焼不良などの不安全状態を回避することができるようになる。
【0036】
また、燃焼筒14と整風板22を一体化成形することにより、組立時の寸法バラツキを減少させることでき、性能の安定化を図り、かつ、部品点数の削減により材料費や組み立て工数の削減をしコストダウンを図ることができる。
【0037】
(実施例3)
図5は実施例3の暖房装置の輻射運転時の要部断面図であり、図6は異常時の要部断面図である。実施例1で述べた部分と同一部分は同一番号を付記し、異なる部分のみを説明する。
【0038】
燃焼ガス切り替え手段19に、輻射運転時に本体冷却風路17に連通する通気口23を設けた構成としてある。
【0039】
上記構成により、通常輻射運転時は図5で示されるように、燃焼ガス切り替え手段19で燃焼筒14と本体冷却風路17を遮断することにより、燃焼ガスBが燃焼筒14から輻射体加熱風路13を通過しながら輻射体12の採熱面を加熱し輻射体12の排気孔12aより本体の外部に流出しドラフト効果により輻射体12にそって上部に流れ輻射体12の表面から輻射熱が放出される。このとき送風手段16から送られる空気流Aは本体冷却風路17と輻射体冷却風路18を通過し燃焼筒14から機器に伝わる熱および輻射体12から機器に伝わる熱を遮断しながら本体上部より流出する。
【0040】
そして輻射運転時に送風ファン16が故障するなど何らかの理由で送風がストップした時を図6で説明すると、燃焼ガス切り替え手段19の下に蓄積する燃焼ガスBを通気口23より本体冷却風路17に逃がし、温度検出手段21をより迅速に加熱し、温度検出手段21の温度反応性を良くしている。
【0041】
このように、運転中に送風ファン16の故障など何らかの理由で送風が停止した時に、温度検出手段21により機器内部の異常過熱を迅速に検知し、燃焼部11からの燃焼ガスBを停止させることで、機器の異常な温度上昇を防止し、機器自身の熱による損傷および機器が異常高温となる不安全状態を回避することができるようになる。
【0042】
(実施例4)
図7は実施例3の暖房装置の輻射運転時の要部断面図であり、図8は異常時の要部断面図である。実施例1で述べた部分と同一部分は同一番号を付記し、異なる部分のみを説明する。
【0043】
24は燃焼ガス切り替え手段19から切り起したフィン形状の遮風板24で、この切り起こしで形成される開口で燃焼ガス切り替え手段19に通気口23が形成した構成としてある。
【0044】
上記構成により、通常輻射運転時は図7で示されるように、遮風板24により送風ファン16からの空気流Aが輻射体加熱風路13に流入による輻射体12の温度低下を防ぎ輻射量の低下を防いでいる。
【0045】
一方送風ファン16の故障などによる何らかの理由で送風ファン16がストップした時は、図8で示されるように、燃焼ガス切り替え手段19の下に蓄積する燃焼ガスBを通気口23より本体冷却風路17に逃がし、温度検出手段21をより迅速に加熱し、温度検出手段21は機器の異常過熱を検知し燃焼部11の燃焼を停止させ、機器の不安全状態を回避するように制御している。
【0046】
つまり、燃焼ガス切り替え手段19から切り起したフィン形状の遮風板24を設けてあるので、実施例3の送風停止時の安全性確保の効果が得られると共に、通常輻射運転時は遮風板24により送風ファン16からの空気流Aは輻射体加熱風路13に流入による輻射体12の温度低下を防ぎ、輻射体12から放出される輻射エネルギー低下による快適性の低下を防ぎ、輻射量の確保ができるようになる。
【0047】
また、燃焼ガス切り替え手段19と遮風板24を一体化成形することにより、組立時の寸法バラツキを減少させることでき、性能の安定化を図り、かつ、部品点数の削減により材料費や組み立て工数の削減をしコストダウンを図ることができる。
【0048】
【発明の効果】
以上のように請求項1の発明によれば、機器が運転中に送風手段の故障などにより送風がストップした時に、燃焼ガス発生手段からの燃焼ガスが燃焼筒の連通穴を通り温度検出手段の受熱面を加熱し、温度検出手段により機器内部の異常過熱を迅速に検知し燃焼ガス発生手段からの燃焼ガスを停止させることで、機器の異常な温度上昇を防止し、機器自身の熱による損傷および機器が異常高温となる不安全状態を回避するものである。
【図面の簡単な説明】
【図1】本発明の実施例1における暖房装置の温風運転時の断面図
【図2】本発明の実施例1における暖房装置の異常時の断面図
【図3】本発明の実施例2における温風運転時の暖房装置の断面図
【図4】本発明の実施例2における異常時の暖房装置の断面図
【図5】本発明の実施例3における輻射運転時の暖房装置の断面図
【図6】本発明の実施例3における異常時の暖房装置の断面図
【図7】本発明の実施例4における輻射時の暖房装置の断面図
【図8】本発明の実施例4における異常時の暖房装置の断面図
【図9】従来の暖房装置の構成図
【符号の説明】
11 燃焼部
12 輻射体
12a 排気孔
13 輻射体加熱風路
14 燃焼筒
15 温風吹き出し口
16 送風手段
17 本体冷却風路
18 輻射体冷却風路
19 燃焼ガス切り替え手段
20 連通口
21 温度検出手段
22 整風板
23 通気口
24 遮風板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heating device using radiant heating.
[0002]
[Prior art]
Conventionally, a heating device of this type has generally been described in Japanese Utility Model Publication No. 63-11548. As shown in FIG. 9, the heating device includes a burner 1 provided at a lower portion of the main body, a hollow thin box-shaped heat exchanger 2 for passing combustion gas generated by the burner 1, and both sides of the heat exchanger 2. , A far-infrared paint painted on at least the front surface of the heat exchanger 2, and indoor air blown to the heat exchanger 2 to exchange heat and emit hot air from the main body discharge port. The heat exchanger 2 comprises a convection fan 5 which discharges the air, and the heat exchanger 2 is provided with a hollow passage 7 having a hollow interior so that the combustion gas 6 from the burner 1 passes therethrough. A configuration was adopted in which a concave bead 8 was provided in a part of the passage 7 so that the gas 6 could spread, and the combustion gas was discharged from the opening 3.
[0003]
Then, the combustion gas generated by the burner is passed through the heat exchanger 2 and heated to 300 ° C. to 500 ° C., thereby radiating far infrared rays from the front surface coated with far infrared paint to perform radiant heating. At the same time, the room air taken in by the convection fan 5 is blown along the rear surface of the heat exchanger 2, mixed with the combustion gas discharged at the opening 3 of the heat exchanger 2, discharged into the room as warm air, and Perform heating.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, there has been a problem that a sudden rise in temperature of the airframe that occurs when the convection device breaks down while the device is operating and the airflow is stopped cannot be detected immediately, and becomes unsafe.
[0005]
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a safe heating device by quickly detecting abnormal overheating when a blower is stopped.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a combustion unit that generates a combustion gas, a combustion tube that is installed to guide the combustion gas generated from the combustion unit upward, and a radiation that is heated by the combustion gas and emits radiant heat. A body, a hot-air outlet that mixes the combustion gas and the air flow and blows out the hot air, a blowing unit that supplies the air flow, a main body cooling air passage that cools the main body by the air flow, A radiator cooling air path for cooling the radiator, and a combustion gas switching means for switching the air flow to the hot air outlet or the radiant cooling air path; and a main body cooling air path in an appropriate position of the combustion cylinder. And a temperature detecting means provided at an appropriate position on the outer wall of the main body cooling air passage, and when the blowing from the blowing means is stopped during the combustion of the combustion part, the hot air passing through the communicating hole causes the temperature to reach the temperature. Detection hand It is detected by a so as to stop the combustion in the combustion section.
[0007]
With the configuration described above, the present invention provides a radiant heating air passage through a combustion tube, in which the combustion gas switching means switches the air flow from the blowing means to the radiant body cooling air path during normal operation. When the combustion gas switching means switches the air flow from the blowing means to the hot air outlet side, the combustion gas from the combustion gas generating means is guided to the hot air outlet to radiate the operation of the device. The mode is switched between a radiation mode in which radiant energy is generated from the body for heating and a warm air mode in which warm air is discharged from a hot air outlet to heat the body.
[0008]
Then, when the blowing from the blowing means is stopped during combustion, the combustion gas from the combustion gas generating means passes through the communication hole of the combustion cylinder and heats the heat receiving surface of the temperature detecting means, thereby quickly detecting abnormal overheating inside the device. Therefore, when the blower stops for some reason such as a failure of the blower while the equipment is operating, abnormal detection of abnormal overheating inside the equipment is quickly detected by the temperature detector, and the combustion gas from the combustion gas generator is removed. By stopping the operation, abnormal temperature rise of the device can be prevented, and damage to the device itself due to heat and an unsafe state in which the device becomes abnormally high can be avoided.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above-mentioned problem, a first aspect of the present invention provides a combustion unit that generates a combustion gas, a combustion cylinder that is installed to guide the combustion gas generated from the combustion unit upward, and that is heated by the combustion gas. A radiator that emits radiant heat, a hot-air outlet that mixes the combustion gas and the air flow and blows out as hot air, a blowing unit that supplies the air flow, and a main body cooling air passage that cools the main body by the air flow, A radiator cooling air passage for cooling the radiator by the air flow, and a combustion gas switching means for switching the air flow to the hot air outlet or the radiant cooling air passage, and A communication hole communicating with the main body cooling air passage, and a temperature detection unit provided at an appropriate position on the outer wall of the main body cooling air passage, and when the blowing from the blowing unit is stopped during combustion of the combustion unit, the air passes through the communication hole. Hot air Is detected by the degree detecting means is adapted to stop the combustion in the combustion section.
[0010]
Then, during normal operation, when the combustion gas switching means switches the air flow from the blowing means to the radiant body cooling air path, the combustion gas from the combustion gas generating means is guided to the radiant body heating air path via the combustion tube, and When the combustion gas switching means switches the air flow from the blowing means to the hot air outlet side, the combustion gas from the combustion gas generating means is guided to the hot air outlet, and the operation of the device is performed by radiating the radiant energy from the radiator. The mode is switched between a radiant mode for generating and heating and a warm air mode for discharging and heating warm air from a warm air outlet.
[0011]
Also, when the blower from the blower is stopped during combustion for some reason due to a failure of the blower during the operation of the equipment, the combustion gas from the combustion gas generator passes through the communication hole of the combustion cylinder and the temperature detector. The heat receiving surface is heated to detect abnormal overheating inside the equipment quickly, so that the temperature detecting means can quickly detect abnormal overheating inside the equipment and stop the combustion gas from the combustion gas generating means. Thus, it is possible to avoid an unsafe state of the device.
[0012]
Further, in the invention according to claim 2, a wind regulating plate is provided near the communication hole to prevent the inflow of airflow from the blowing means.
[0013]
The air conditioning plate is provided near the communication hole of the combustion cylinder so that the airflow from the air blowing means does not flow into the combustion cylinder, so that the effect of securing safety at the time of stopping the ventilation of claim 1 can be obtained, During normal operation, the air flow from the air blower does not flow into the combustion cylinder by the air conditioner, so that the combustion of the combustion gas generator can be prevented from becoming unstable, and stable characteristics can be obtained. Further, in the invention described in claim 3, the air conditioning plate has a fin shape cut and raised from the combustion cylinder, and the opening formed by the cut and raised is a communication hole.
[0014]
The air conditioning plate cut and raised from the combustion cylinder and the opening formed by the cutting and raising provide the effect of stabilizing the combustion of claim 2 and ensuring the safety at the time of stopping the ventilation, and the air conditioning plate is separated from the combustion cylinder. The fin shape is cut and raised.By integrally molding the combustion cylinder and the air conditioning plate, dimensional variations during assembly can be reduced, performance is stabilized, and material costs are reduced by reducing the number of parts. The number of assembly steps can be reduced, and costs can be reduced.
[0015]
According to a fourth aspect of the present invention, there is provided a combustion section for generating a combustion gas, a combustion cylinder installed to guide the combustion gas generated from the combustion section upward, and a radiator which is heated by the combustion gas and emits radiant heat. A hot-air outlet that mixes the combustion gas and the air flow and blows out the mixture as a hot air, a blowing unit that supplies the air flow, a main body cooling air passage that cools the main body by the air flow, and radiated by the air flow. A radiator cooling air passage for cooling the body, and combustion gas switching means for switching the air flow to the hot air outlet or the radiant cooling air passage, wherein the combustion gas switching means changes the air flow to the radiator. A vent is provided at an appropriate position of the combustion gas switching means when switching to the cooling air path side, and a temperature detecting means is provided at an appropriate position on the outer wall of the main body cooling air path, and the blowing means is provided during combustion of the combustion part. Hot air blast al has passed from the vents to stop and to stop the combustion of the combustion portion detected by said temperature detecting means.
[0016]
Further, the combustion gas switching means is provided with a vent communicating with the main body cooling air passage during the radiation operation, and when ventilation is stopped for any reason such as a failure of the ventilation means during the radiation operation, the air is accumulated under the combustion gas switching means. Combustion gas is released from the vent to the cooling air path of the main body, and the heat receiving surface of the temperature detecting means is heated to detect abnormal overheating inside the equipment quickly. And stopping the combustion gas from the combustion gas generating means, it is possible to avoid an unsafe state of the device.
[0017]
Further, in the invention according to claim 5, a wind regulating plate for preventing the inflow of the airflow from the blowing means is provided near the ventilation port.
[0018]
Further, a wind shield is provided near the ventilation port of the combustion gas switching means so that the air flow from the blowing means does not flow into the air path for heating the radiator during the radiation operation. The effect of ensuring safety at the time of stoppage is obtained, and at the time of normal radiation operation, the airflow from the blowing means is prevented by the windbreak plate from flowing into the radiant heating air path, and the radiant body's temperature is prevented, and the radiation amount is secured. become able to.
[0019]
In the invention described in claim 6, the air conditioner plate has a fin shape cut and raised from the combustion tube, and the opening formed by the cut and raised is a communication hole.
[0020]
The air conditioner plate cut and raised from the combustion gas switching means and the opening formed by the cut and raised portion provide the effect of preventing the radiator temperature from decreasing and ensuring the safety at the time of stopping the blower according to the fifth aspect. Since the plate has a fin shape cut and raised from the combustion gas switching means, dimensional variation during assembly can be reduced by integrally forming the combustion cylinder and the air conditioning plate, stabilizing performance, and By reducing the number of points, material costs and man-hours for assembly can be reduced, and cost can be reduced.
[0021]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
(Example 1)
FIG. 1 is a cross-sectional view of a main part of a heating device according to a first embodiment of the present invention during a hot air operation. FIG. 2 is a cross-sectional view of a main part when an abnormality occurs. In FIG. 1, reference numeral 11 denotes a combustion section for generating combustion gas, which is covered with a combustion tube 14 arranged to guide the generated combustion gas upward. Numeral 12 is a radiator that generates heat as radiation energy by being heated by the combustion gas from the combustion unit 11 and collects heat. A small exhaust hole 12a for discharging the combustion gas to the outside of the apparatus is provided on the front surface of the radiator 12. is open. Further, a radiator heating air passage 13 for guiding the combustion gas to the radiator 12 through a combustion tube 14 is provided.
[0023]
A blower fan 16 is disposed at the back of the device as a blower. Hot air blows out by mixing the air flow for cooling the radiator 12 and the combustion gas from the combustion unit 11 and discharging the mixture as warm air to the outside of the device. An air flow exhausting from the port 15 is supplied.
[0024]
Further, a main body cooling air passage 17 is provided above the combustion tube 14, and a radiant body cooling air passage that flows between the radiant body heating air passage 13 and the device through the main body cooling air passage 17 to block the transmission of heat to the device. 18 is supplied with an air flow A from a blower fan.
[0025]
Reference numeral 19 denotes combustion gas switching means for switching the flow of the air flow A from the blower fan 16 to the radiator cooling air passage 18 side or the hot air outlet 15 side. In conjunction with the combustion gas switching means 19, when the combustion gas switching means 19 switches the air flow from the blower fan 16 to the radiating means cooling means air passage 18 side, the combustion gas from the combustion part 11 heats the radiant body. The space leading to the combustion tube 14 and the hot air outlet 15 is closed so as not to leak to the hot air outlet 15 side to the air passage 13, and the combustion gas switching means 19 blows the air flow from the blowing means to the hot air outlet. When switching to the port 15 side, the combustion gas B from the combustion section 11 is guided to the hot air outlet 15.
[0026]
With the configuration described above, the operation of the device is switched between a radiant operation in which radiant energy is generated from the radiator 12 for heating and a hot air operation in which warm air is discharged from the hot air outlet 15 and heated.
[0027]
A communication port 20 is provided at an appropriate position on the main body cooling air passage 17 side of the combustion cylinder 14, and a temperature detecting means 21 is provided at an appropriate position on the outer periphery of the main body cooling air passage 17.
[0028]
The normal hot air operation with the above configuration will be described with reference to FIG. 1. The radiator cooling air passage 18 and the main body cooling air passage 17 are cut off by the combustion gas switching means 19, and the air flow A from the blower fan 16 is cooled by the main body cooling air. By connecting the air passage 17 and the combustion tube 14 to the hot air outlet 15, the combustion gas B from the combustion unit 11 and the air flow A sent from the blower fan 16 are mixed, and the warm air C is discharged from the hot air outlet 15 to the main body. Release to outside for heating.
[0029]
An abnormal time when the blower fan 16 stops for some reason such as insertion of foreign matter will be described with reference to FIG. 2. The airflow A by the blower fan 16 disappears in the main body cooling air passage 17, and the combustion generated in the combustion section 11 is stopped. The gas B flows out of the communication hole 20 of the combustion tube 14 into the main body cooling air passage 17 and rapidly heats the temperature detecting means 21 provided on the outer periphery of the main body cooling air passage 17, and the temperature detecting means 21 detects abnormal overheating of the equipment. The detection is performed so that the combustion of the combustion unit 11 is stopped.
[0030]
As described above, when the blower stops for some reason such as a failure of the blower fan 16 during operation of the device, the temperature detection unit 21 quickly detects abnormal overheating inside the device and stops the combustion gas B from the combustion unit 11. This can prevent an abnormal rise in temperature of the device, and can avoid damage due to heat of the device itself and an unsafe state in which the device becomes abnormally high.
[0031]
(Example 2)
FIG. 3 is a cross-sectional view of a main part of the heating device according to the second embodiment during a hot air operation, and FIG. 4 is a cross-sectional view of a main part in an abnormal state. The same portions as those described in the first embodiment are denoted by the same reference numerals, and only different portions will be described.
[0032]
Reference numeral 22 denotes a fin-shaped air conditioning plate 22 cut and raised from the combustion cylinder 14, and an opening formed by the cut and raised has a communication hole 20 formed in the combustion cylinder 14.
[0033]
With the above configuration, during normal hot air operation, as shown in FIG. 3, the airflow A from the blower fan 16 does not flow into the combustion cylinder 14 due to the air conditioning plate 22, and the combustion in the combustion unit 11 becomes unstable. To prevent that.
[0034]
On the other hand, when the blower fan 16 is stopped for some reason due to a failure of the blower fan 16 or the like, as shown in FIG. The combustion gas B flows out from the communication hole 20 of the combustion tube 14 into the main body cooling air passage 17 and rapidly heats the temperature detecting means 21 provided on the outer periphery of the main body cooling air passage 17. Control is performed so as to detect overheating and stop the combustion of the combustion unit 11 to avoid an unsafe state of the device.
[0035]
That is, the air conditioning plate 22 is provided in the vicinity of the communication hole of the combustion cylinder so that the airflow from the blowing means does not flow into the combustion cylinder, so that the effect of securing safety when the air supply is stopped in the first embodiment can be obtained. During normal operation, by preventing the air flow A from the blower fan 16 from flowing into the combustion cylinder 14, the combustion in the combustion section 11 is stabilized, and an unsafe state such as poor combustion can be avoided. .
[0036]
In addition, by integrally molding the combustion cylinder 14 and the air conditioning plate 22, dimensional variations during assembly can be reduced, performance can be stabilized, and material costs and assembly man-hours can be reduced by reducing the number of parts. Cost can be reduced.
[0037]
(Example 3)
FIG. 5 is a cross-sectional view of a main part of the heating device according to the third embodiment during a radiation operation, and FIG. 6 is a cross-sectional view of a main part when an abnormality occurs. The same portions as those described in the first embodiment are denoted by the same reference numerals, and only different portions will be described.
[0038]
The combustion gas switching means 19 is provided with a vent 23 communicating with the main body cooling air passage 17 during the radiation operation.
[0039]
With the above configuration, during normal radiation operation, as shown in FIG. 5, the combustion gas switching means 19 cuts off the combustion tube 14 and the main body cooling air passage 17 so that the combustion gas B flows from the combustion tube 14 to the radiant heating air. While passing through the passage 13, the heat collecting surface of the radiator 12 is heated, flows out of the main body through the exhaust hole 12 a of the radiator 12, flows upward along the radiator 12 by a draft effect, and radiant heat is emitted from the surface of the radiator 12. Released. At this time, the air flow A sent from the blowing means 16 passes through the main body cooling air path 17 and the radiator cooling air path 18 and cuts off the heat transmitted from the combustion tube 14 to the device and the heat transmitted from the radiator 12 to the device while blocking the heat transmitted from the radiator 12 to the device. More outflow.
[0040]
FIG. 6 illustrates the case where the blower fan 16 breaks down during the radiation operation and the blower is stopped for some reason. For example, the combustion gas B accumulated under the combustion gas switching means 19 is supplied from the ventilation port 23 to the main body cooling air passage 17. This allows the temperature detecting means 21 to be heated more quickly, thereby improving the temperature responsiveness of the temperature detecting means 21.
[0041]
As described above, when the blower is stopped for some reason such as a failure of the blower fan 16 during operation, abnormal overheating inside the device is quickly detected by the temperature detecting means 21 and the combustion gas B from the combustion unit 11 is stopped. Thus, an abnormal rise in temperature of the device can be prevented, and damage due to heat of the device itself and an unsafe state in which the device becomes abnormally high can be avoided.
[0042]
(Example 4)
FIG. 7 is a cross-sectional view of a main part of the heating device according to the third embodiment during a radiation operation, and FIG. 8 is a cross-sectional view of a main part when an abnormality occurs. The same portions as those described in the first embodiment are denoted by the same reference numerals, and only different portions will be described.
[0043]
Reference numeral 24 denotes a fin-shaped wind shield plate 24 cut and raised from the combustion gas switching means 19, and has an opening formed by cutting and raising the ventilation port 23 in the combustion gas switching means 19.
[0044]
With the above configuration, during normal radiation operation, as shown in FIG. 7, the airflow A from the blower fan 16 prevents the temperature of the radiator 12 from decreasing due to inflow into the radiator heating air passage 13 by the wind shield plate 24, and the radiation amount is reduced. To prevent the decline.
[0045]
On the other hand, when the blower fan 16 stops for some reason due to a failure of the blower fan 16 or the like, as shown in FIG. 17, the temperature detecting means 21 is heated more quickly, and the temperature detecting means 21 detects abnormal overheating of the device, stops the combustion of the combustion section 11, and controls so as to avoid an unsafe state of the device. .
[0046]
That is, since the fin-shaped wind shield plate 24 cut and raised from the combustion gas switching means 19 is provided, the effect of securing safety when the air supply is stopped in the third embodiment is obtained, and the wind shield plate is normally used during the radiation operation. 24 prevents the air flow A from the blower fan 16 from lowering the temperature of the radiator 12 due to inflow into the radiator heating air passage 13, preventing a decrease in comfort due to a reduction in radiant energy emitted from the radiator 12, and reducing the amount of radiation. It will be able to secure.
[0047]
Further, by integrally forming the combustion gas switching means 19 and the wind shield plate 24, dimensional variations during assembly can be reduced, performance can be stabilized, and material costs and assembly man-hours can be reduced by reducing the number of parts. And cost can be reduced.
[0048]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the blower is stopped due to a failure of the blower during the operation of the device, the combustion gas from the combustion gas generator passes through the communication hole of the combustion cylinder and the temperature detector detects the combustion gas. By heating the heat receiving surface, detecting abnormal overheating inside the device quickly by temperature detection means and stopping the combustion gas from the combustion gas generation means, preventing abnormal temperature rise of the device, damage to the device itself due to heat And an unsafe state in which the equipment becomes abnormally high temperature is avoided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a heating device according to a first embodiment of the present invention during a hot air operation. FIG. 2 is a cross-sectional view of a heating device according to a first embodiment of the present invention when an abnormality occurs. FIG. FIG. 4 is a cross-sectional view of a heating device at the time of warm air operation in FIG. 4; FIG. 5 is a cross-sectional view of a heating device at the time of abnormality in the second embodiment of the present invention; FIG. 6 is a cross-sectional view of a heating device at the time of an abnormality according to the third embodiment of the present invention. FIG. 7 is a cross-sectional view of a heating device at the time of radiation according to the fourth embodiment of the present invention. FIG. 9 is a cross-sectional view of a heating device at a time. FIG. 9 is a configuration diagram of a conventional heating device.
DESCRIPTION OF SYMBOLS 11 Combustion part 12 Radiator 12a Exhaust hole 13 Radiant heating air path 14 Combustion cylinder 15 Hot air outlet 16 Blower 17 Body cooling air path 18 Radiant cooling air path 19 Combustion gas switching means 20 Communication port 21 Temperature detecting means 22 Air conditioner 23 Vent 24 Wind shield