JP2004036557A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
JP2004036557A
JP2004036557A JP2002196760A JP2002196760A JP2004036557A JP 2004036557 A JP2004036557 A JP 2004036557A JP 2002196760 A JP2002196760 A JP 2002196760A JP 2002196760 A JP2002196760 A JP 2002196760A JP 2004036557 A JP2004036557 A JP 2004036557A
Authority
JP
Japan
Prior art keywords
oxygen concentration
generation amount
intake oxygen
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196760A
Other languages
Japanese (ja)
Inventor
Shigeki Nakayama
中山 茂樹
Tomihisa Oda
小田 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002196760A priority Critical patent/JP2004036557A/en
Publication of JP2004036557A publication Critical patent/JP2004036557A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for an internal combustion engine capable of adjusting a discrepancy between a value of an amount of NOx produced in a transient state and a target value by a parameter other than the timing of fuel injection. <P>SOLUTION: The target value of an intake air oxygen concentration is controlled based on the deviation between the standard value of a cylinder wall temperature determined by a drive condition of the internal combustion engine 1, and the present value of the cylinder wall temperature. By controlling the operation of an EGR valve 11 as an instrument for influencing the intake air oxygen concentration according to the target value of the intake air oxygen concentration controlled based on the deviation, the discrepancy between the value of the amount of NOx corresponding to the deviation of the wall temperature and the target value is negated, and the amount of NOx produced is maintained the same as when the cylinder wall temperature is the standard value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関が過渡状態のときに吸気酸素濃度を操作してNOx生成量を制御する内燃機関の制御装置に関する。
【0002】
【従来の技術】
内燃機関のNOx生成量は燃料混合気の燃焼温度と密接に関係し、燃焼温度はシリンダ壁温の影響を受ける。従って、内燃機関の運転状態を制御するために操作される各種の運転パラメータ(例えば燃料の噴射時期、噴射圧、EGR弁の開度、スロットル弁の開度等)が同一であっても、シリンダ壁温が異なればNOx生成量は変化する。そこで、特許第2990362号公報に開示された制御装置では、シリンダ壁温が所定の温度から高いほど燃料噴射タイミングを遅くしてNOx生成量を抑制している。
【0003】
【発明が解決しようとする課題】
ところで、内燃機関を開発して市場に送り出す際には、内燃機関の排気ガス、騒音、振動等の特性が各種の規制を満たすような内燃機関の制御則を特定することを目的として、適合と呼ばれる作業が行なわれる。一般に、適合作業は、内燃機関の回転数及び負荷(燃料噴射量、又はトルクで代替されることがある。)を特定の状態に固定し、その状態で排気ガス等の規制対象が所定の目標値を満足するような内燃機関の各種の運転パラメータの組み合わせを見つけ出すことにより行なわれる。適合作業において設定される機関回転数及び負荷が一定値に固定された状態を定常状態と言い、適合作業で得られた各種のパラメータの値を適合値と言う。適合作業は様々な機関回転数及び負荷に対して行なわれる。そして、一連の適合作業によって見出された各種のパラメータの適合値は、機関回転数及び機関負荷と対応付けた二次元マップ、あるいは演算式として制御装置のROMに記憶される。内燃機関が実際に運転される際には、それらのマップや演算式が参照されて各種のパラメータが機関回転数及び負荷に応じた値に制御される。
【0004】
しかしながら、適合作業は内燃機関を定常状態という一種の理想的な状態で運転させて行なわれているので、実際の内燃機関の運転状態は適合時の状態からずれることがある。このような応答遅れに起因して内燃機関が適合時の状態からずれて運転されている状態は過渡状態と呼ばれる。過渡状態では、内燃機関の運転パラメータを適合値に設定しても内燃機関の運転状態が適合時の状態からずれているので、NOxの生成量が目標値からずれる。特に、シリンダ壁温のような温度については、燃料噴射量等の操作に対して応答が遅れるので適合時の基準値からのずれが生じ易く、NOx生成量の制御に対してそのずれが与える影響は無視できない。
【0005】
上述した特許第2990362号公報の制御装置において、適合時のシリンダ壁温を基準値とし、その基準値とシリンダ壁温の現在値との偏差に応じて燃料噴射時期を変化させたならば、過渡状態におけるNOx生成量の目標値からのずれを抑制することが可能である。しかし、燃料噴射時期が遅れ側に変化すると内燃機関の出力トルクが低下する。一般の内燃機関の制御装置では、そのトルク低下を補うべく吸入空気量及び燃料噴射量を増加させる制御が行なわれるので、燃料噴射時期を調整してNOx生成量を制御したならば、燃料噴射量が不必要に増加して燃料消費率が悪化する。
【0006】
そこで、本発明は、過渡状態におけるNOx生成量の目標値からのずれを燃料噴射時期以外のパラメータによって調整することが可能な内燃機関の制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、内燃機関のシリンダ壁温の現在値を特定する現在値特定手段と、前記内燃機関の運転条件に応じて定まるシリンダ壁温の基準値と、前記現在値との偏差に基づいて、吸気酸素濃度の目標値を制御する目標値制御手段と、前記偏差に基づいて制御された吸気酸素濃度の目標値に従って、吸気酸素濃度に影響を与える機器の動作を制御する吸気酸素濃度制御手段と、を備えた内燃機関の制御装置により、上述した課題を解決する(請求項1)。
【0008】
この発明によれば、吸気酸素濃度はNOx生成量に影響を与えるので、シリンダ壁温の基準値と現在値との偏差に応じて吸気酸素濃度の目標値を制御することにより、シリンダ壁温が基準値からずれた過渡状態においても、NOx生成量を、シリンダ壁温が基準値に保持されているときの目標値に維持することができる。
【0009】
本発明の内燃機関の制御装置において、シリンダ壁温の基準値は内燃機関の運転条件を規定する種々のパラメータと関連付けて定めてよい。例えば、本発明の制御装置は、内燃機関の回転数(回転速度)と燃料噴射量とに基づいて前記基準値を特定する基準値特定手段を備えてもよい(請求項2)。機関回転数及び燃料噴射量は、内燃機関において単位時間当たりに入力される熱エネルギーに相関するから、シリンダ壁温の基準値をこれらのパラメータと関連付けることによりシリンダ壁温の基準値を適切に変化させることができる。
【0010】
また、本発明の制御装置において、前記目標値制御手段は、予め求められているシリンダ壁温とNOx生成量との対応関係に従って、前記シリンダ壁温の基準値と現在値との偏差に対応したNOx生成量の偏差を特定するとともに、予め求められている吸気酸素濃度とNOx生成量との対応関係に従って前記NOx生成量の偏差を吸気酸素濃度の変化量に置き換えて前記吸気酸素濃度の前記目標値を制御してもよい(請求項3)。より詳しくは、前記目標値制御手段は、予め求められている前記シリンダ壁温とNOx生成量との対応関係に従って、既定の吸気酸素濃度の目標値に対応するNOx生成量を特定し、その特定されたNOx生成量を前記NOx生成量の偏差で補正してNOx生成量の目標値を特定するとともに、予め与えられている前記吸気酸素濃度とNOx生成量との対応関係に従って前記NOx生成量の目標値に対応する吸気酸素濃度を新たな吸気酸素濃度の目標値として特定してもよい(請求項4)。
【0011】
このように、シリンダ壁温とNOx生成量との対応関係と、吸気酸素濃度とNOx生成量との対応関係とを予め求めておけば、シリンダ壁温の現在値と基準値との偏差を吸気酸素濃度の制御量に簡単に置き換えることができる。
【0012】
なお、本発明において、前記吸気酸素濃度に影響を与える機器としては種々のものが考えられる。例えば、前記吸気酸素濃度制御手段はEGR量を調整するための弁手段の動作を制御してもよい(請求項5)。この場合には、EGRガスの吸気系への環流量を増減させて吸気酸素濃度を所望値に操作することができる。
【0013】
【発明の実施の形態】
図1は本発明の制御装置及びそれによって制御される内燃機関の一実施形態を示している。内燃機関1は、例えば自動車に原動機として搭載される直列式の4気筒ガソリンエンジンとして構成されている。周知のように、内燃機関1の吸気通路2には、スロットルバルブ4の開度に応じた空気(一次空気)がエアフィルタ3を介して吸入され、その空気はインテークマニホールド5を介して各シリンダ6に取り込まれる。インテークマニホールド5には燃料を噴射するための燃料噴射弁7がシリンダ6毎に設けられている。なお、燃料噴射弁7はシリンダ6内に直接燃料を噴射するものでもよい。
【0014】
シリンダ6内の燃焼によって生成される排気ガスは排気通路8を経て触媒9に導かれて浄化された後、不図示の消音器を経て大気へ排出される。触媒9はHC、COを酸化する一方で、NOxを還元する周知の三元触媒である。排気通路8には、触媒9を通過した排気ガスをインテークマニホールド5に還流させるためのEGR通路10が接続される。EGR通路10を通過する排気ガスの流量はEGR弁11によって制御される。
【0015】
吸気通路2には吸入空気流量に対応した信号を出力するエアフローメータ12、吸気温度に対応した信号を出力する吸気温センサ13、スロットルバルブ4の開度に対応した信号を出力するスロットル開度センサ14が、排気通路8には排気ガス中のNOx量に対応した信号を出力するNOxセンサ15がそれぞれ設けられる。各センサ12〜15の出力信号は制御装置としてのエンジンコントロールユニット(ECU)16に導かれる。ECU16はマイクロプロセッサ、及びその動作に必要なROM、RAM等の周辺回路を備えたコンピュータとして構成される。ECU16は各種のセンサの出力信号を参照して、内燃機関1の運転制御に必要な各種の演算処理及び各種の機器の動作制御を実行する。例えば、ECU16はエアフローメータ12の出力信号を参照して所定の空燃比の混合気が形成されるように燃料噴射弁7の燃料噴射量を制御し、NOxセンサ15の出力信号を参照してEGR弁11の開度(デューティー比)を制御する。ECU16が参照するセンサとしては、上記のセンサ12〜15の他にも、内燃機関1の冷却水温度に対応した信号を出力する水温センサ、クランク軸の角度に対応した信号を出力するクランク角センサ等が存在するが、それらの図示は省略した。
【0016】
ECU16は所定のプログラムを実行することにより、内燃機関1の吸気酸素濃度(吸気O濃度と表記することがある。)を制御する装置として機能する。図2は吸気酸素濃度を制御するためにECU16内に構成される目標吸気酸素濃度取得モデルを示している。このモデルは、現在温度特定部21と、基準温度特定部22と、壁温−NOx変換部23と、NOx生成量偏差算出部24と、目標NOx算出部25と、酸素濃度(O濃度)−NOx変換部26とを備えている。
【0017】
現在温度特定部21は内燃機関1の現在のシリンダ壁温Tpを特定する。シリンダ壁温は、シリンダ壁温を検出するセンサの出力に基づいて特定してもよいし、シリンダ壁温と相関する物理量から推定してもよい。一方、基準温度特定部22は、内燃機関1の機関回転数(回転速度)と燃料噴射量とを変数とする二次元マップからシリンダ壁温の基準温度Tcを特定する。基準温度Tcを特定するための二次元マップは適合作業によって与えられるものであり、ECU16のROMに予め記憶される。つまり、基準温度Tcを特定するための二次元マップは、内燃機関1が定常状態で運転されているときのシリンダ壁温を機関回転数と燃料噴射量とに対応付けて特定したものである。
【0018】
壁温−NOx変換部23は、予め実験的に求められているシリンダ壁温とNOx生成量との対応関係を記述したマップを保有し、そのマップに従ってシリンダ壁温Tp、TcをNOx生成量のNOxA、NOxBにそれぞれ変換する(図3参照)。NOx生成量偏差算出部24は、変換されたNOx生成量NOxA、NOxBの偏差dNOx(=NOxA−NOxB)を算出する。目標NOx算出部25は酸素濃度−NOx変換部26から与えられる目標吸気酸素濃度に対応したNOx生成量NOxCを偏差dNOxで補正して目標NOx生成量NOxT(=NOxC−dNOx)を算出する。
【0019】
酸素濃度−NOx変換部26は、予め実験的に求められている吸気酸素濃度とNOx生成量との対応関係を記述したマップを保有し、そのマップに従って目標吸気酸素濃度L1をNOx生成量NOxCに変換するとともに、目標NOx算出部25から与えられる目標NOx生成量NOxTを吸気酸素濃度L2に変換する(図4参照)。この酸素濃度−NOx変換部26にて特定される目標NOx生成量NOxTに対応した吸気酸素濃度L2が、シリンダ壁温の基準温度Tcと現在温度Tpとの偏差dNOxに応じて補正された吸気酸素濃度に相当する。なお、酸素濃度−NOx変換部26のマップは、シリンダ壁温を定常時の温度に設定したときの吸気酸素濃度とNOx生成量との対応関係を示している。各変換部23,26のマップは、いずれもECU16のROMに予め記憶されている。
【0020】
図5は上述したモデルが実装されたECU16が吸気酸素濃度の目標値を取得するために適当な周期で実行する目標吸気酸素濃度取得ルーチンを示すフローチャートである。このルーチンにおいて、ECU16はステップS1で現在の壁面温度Tpを取得し、ステップS2でその壁面温度Tpに対応するNOx生成量NOxAを壁温−NOx変換部23のマップに従って取得する。続くステップS3ではシリンダ壁面の基準温度Tcを取得し、ステップS4ではその基準温度Tcに対応するNOx生成量NOxBを壁温−NOx変換部23のマップに従って取得する。
【0021】
次に、ECU16は目標吸気酸素濃度L1を取得する。ここで取得する目標吸気酸素濃度L1は、内燃機関1を所定の運転状態に維持するためにECU16が各種の運転パラメータを参照して決定した値である。目標吸気酸素濃度L1の取得後はステップS6へ進み、取得した目標吸気酸素濃度L1に対応するNOx生成量NOxCを酸素濃度−NOx変換部26のマップに従って取得する。次のステップS7では、現在のシリンダ壁温Tpに対応したNOx生成量NOxAから、基準温度Tcに対応したNOx生成量NOxBを減算してNOx生成量の偏差dNOxを取得する。偏差dNOxは、シリンダ壁面についての現在温度Tpと基準温度Tcとの偏差に対応したNOx生成量のずれに相当する。従って、シリンダ壁温Tpが基準温度Tcからずれている過渡状態であっても、NOx生成量を定常運転時の値(つまり、基準温度Tcに対応した生成量)に正しく制御するためには、偏差dNOxに対応する量だけNOx生成量が増加又は減少するように吸気酸素濃度を調整すればよい。
【0022】
そこで、ステップS8において目標吸気酸素濃度L1に対応するNOx生成量NOxCから偏差dNOxを減算して目標NOx生成量NOxTを取得し、続くステップS9にて目標NOx生成量NOxTに対応する吸気酸素濃度L2を酸素濃度−NOx変換部26のマップに従って取得する。これにより図5の処理を終える。
【0023】
以上のようにして得られた吸気酸素濃度L2は、ステップS5で取得した吸気酸素濃度L1を、NOx生成量の偏差dNOxに相当する量だけ修正した値に相当する。従って、ECU16は、ステップS9で得られた吸気酸素濃度L2を最終的な吸気酸素濃度の目標値として設定し、その吸気酸素濃度L2に対応したEGR率が実現されるようにEGR弁11のデューティー比を制御する。これにより、シリンダ壁面温度が基準温度からずれている過渡状態において、シリンダ壁温の基準温度からの偏差に応じて発生するNOx生成量のずれを打ち消すように吸気酸素濃度が調整され、NOx生成量は定常状態の値、つまり、シリンダ壁温が内燃機関1の運転条件に応じて与えられる基準温度Tcに保持されているときのNOx生成量に維持される。
【0024】
以上の実施形態では、図2の目標吸気酸素濃度取得モデルにおける現在値特定部21が現在値特定手段に、壁温−NOx変換部23、NOx生成量偏差算出部24、目標NOx特定部25及び酸素濃度−NOx変換部26の組み合わせが目標値制御手段に、基準温度特定部22が基準値特定手段にそれぞれ相当する。また、特定された吸気酸素濃度の目標値に基づいてEGR弁11のデューティー比を制御するECU16が吸気酸素濃度制御手段に相当し、EGR弁11が吸気酸素濃度に影響を与える機器としての弁手段に相当する。
【0025】
但し、本発明は上記の実施形態に限定されることなく、種々の形態にて実施してよい。例えば、図2の壁温−NOx変換部23のマップをシリンダ壁温の変化量とNOx生成量の変化量とを対応付けたマップに変更して、シリンダ壁温の偏差(Tp−Tc)に対応する偏差dNOxをマップから取得してもよい。また、酸素濃度−NOx変換部26のマップを、吸気酸素濃度の変化量とNOx生成量の変化量とを対応付けたマップに変更して、偏差dNOxに対応する吸気酸素濃度の変化量を特定し、その特定された変化量を既定の吸気酸素濃度の目標値L1に対して加算又は減算して吸気酸素濃度の目標値L2を取得してもよい。
【0026】
上記の実施形態ではシリンダ壁温の現在値Tpが基準温度Tcよりも低い場合には、現在温度Tpに対応するNOx生成量NOxAよりも基準温度Tcに対応するNOx生成量NOxBが大きいので、吸気酸素濃度L1はNOx生成量を増加させる方向に修正される。このような状態は例えば車両の加速時に見られる。NOx生成量を適合時の状態に維持する観点からは、たとえNOx生成量を増加させる方向の制御であってもこれを実行することが好ましい。しかし、NOx生成量の絶対的な排出量を減らすことを優先する場合には、NOx生成量が減少する方向にのみ本発明の目標値の制御が行われるように制限を設けてもよい。この場合には、例えば図5のステップS7において偏差dNOxが負の値であったときにステップS8及びS9をスキップして目標吸気酸素濃度L1をそのまま目標値として使用すればよい。
【0027】
【発明の効果】
以上に説明したように、本発明によれば、シリンダ壁温の基準値と現在値との偏差に応じて吸気酸素濃度の目標値を制御することにより、シリンダ壁温が基準値からずれた過渡状態においても、NOx生成量をシリンダ壁温が基準値に保持されているときの目標値に維持することができる。しかも、吸気酸素濃度の操作によってNOx生成量を制御しているので、燃料噴射時期を遅らせる場合のようなトルク低下は発生せず、燃料消費率が低下するおそれがない。
【図面の簡単な説明】
【図1】本発明の内燃機関の制御装置の一実施形態を示す図。
【図2】図1のECUに組み込まれる目標吸気酸素濃度取得モデルの機能ブロック図。
【図3】図2の壁温−NOx変換部において行なわれるマップを示す図。
【図4】図2の酸素濃度−NOx変換部において行なわれるマップを示す図。
【図5】図2のECUが実行する目標吸気酸素濃度取得ルーチンを示すフローチャート。
【符号の説明】
1 内燃機関
6 シリンダ
7 燃料噴射弁
11 EGR弁(弁手段)
16 エンジンコントロールユニット(吸気酸素濃度制御手段)
21 現在温度特定部(現在値特定手段)
22 基準温度特定部
23 壁温−NOx変換部(目標値制御手段)
24 NOx生成量偏差算出部(目標値制御手段)
25 目標NOx算出部(目標値制御手段)
26 酸素濃度−NOx変換部(目標値制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an internal combustion engine that controls the amount of NOx generated by operating the intake oxygen concentration when the internal combustion engine is in a transient state.
[0002]
[Prior art]
The amount of NOx generated in the internal combustion engine is closely related to the combustion temperature of the fuel mixture, and the combustion temperature is affected by the cylinder wall temperature. Therefore, even if various operating parameters (eg, fuel injection timing, injection pressure, EGR valve opening, throttle valve opening, etc.) operated to control the operating state of the internal combustion engine are the same, the cylinder If the wall temperature is different, the NOx generation amount changes. Therefore, in the control device disclosed in Japanese Patent No. 2990362, as the cylinder wall temperature becomes higher than a predetermined temperature, the fuel injection timing is delayed to suppress the NOx generation amount.
[0003]
[Problems to be solved by the invention]
By the way, when developing an internal combustion engine and launching it on the market, the purpose is to identify the control law of the internal combustion engine such that the characteristics of the exhaust gas, noise, vibration, etc. of the internal combustion engine satisfy various regulations. A called operation is performed. Generally, in the adaptation work, the rotation speed and the load of the internal combustion engine (which may be replaced by the fuel injection amount or torque) are fixed to a specific state, and in this state, the target of regulation such as exhaust gas is a predetermined target. This is done by finding combinations of various operating parameters of the internal combustion engine that satisfy the values. A state in which the engine speed and load set in the adaptation work are fixed to constant values is called a steady state, and values of various parameters obtained in the adaptation work are called adaptation values. The adaptation work is performed for various engine speeds and loads. Then, the adaptive values of various parameters found by a series of adaptive operations are stored in the ROM of the control device as a two-dimensional map associated with the engine speed and the engine load, or as an arithmetic expression. When the internal combustion engine is actually operated, various parameters are controlled to values corresponding to the engine speed and the load by referring to the maps and the arithmetic expressions.
[0004]
However, since the adaptation operation is performed while the internal combustion engine is operated in a kind of ideal state of a steady state, the actual operation state of the internal combustion engine may deviate from the state at the time of adaptation. A state in which the internal combustion engine is operated with a deviation from the state at the time of adaptation due to such a response delay is called a transient state. In the transient state, even if the operating parameters of the internal combustion engine are set to the appropriate values, the operating state of the internal combustion engine deviates from the state at the time of the appropriateness, so that the NOx generation amount deviates from the target value. In particular, as for the temperature such as the cylinder wall temperature, the response to the operation of the fuel injection amount and the like is delayed, so that the deviation from the reference value at the time of the adaptation is likely to occur, and the deviation affects the control of the NOx generation amount. Cannot be ignored.
[0005]
In the control device disclosed in Japanese Patent No. 2990362 described above, if the cylinder wall temperature at the time of adaptation is set as a reference value and the fuel injection timing is changed in accordance with the deviation between the reference value and the current value of the cylinder wall temperature, a transient occurs. It is possible to suppress the deviation of the NOx generation amount from the target value in the state. However, when the fuel injection timing changes to the delay side, the output torque of the internal combustion engine decreases. In a control device for a general internal combustion engine, control is performed to increase the intake air amount and the fuel injection amount to compensate for the decrease in torque. Therefore, if the fuel injection timing is adjusted to control the NOx generation amount, the fuel injection amount Unnecessarily increases and the fuel consumption rate deteriorates.
[0006]
Accordingly, an object of the present invention is to provide a control device for an internal combustion engine that can adjust a deviation of a NOx generation amount from a target value in a transient state by using a parameter other than the fuel injection timing.
[0007]
[Means for Solving the Problems]
The present invention, a current value specifying means for specifying the current value of the cylinder wall temperature of the internal combustion engine, a reference value of the cylinder wall temperature determined according to the operating conditions of the internal combustion engine, based on the deviation of the current value, Target value control means for controlling a target value of the intake oxygen concentration, and intake oxygen concentration control means for controlling the operation of a device that affects the intake oxygen concentration according to the target value of the intake oxygen concentration controlled based on the deviation. The above-mentioned problem is solved by a control device for an internal combustion engine provided with (1).
[0008]
According to the present invention, since the intake oxygen concentration affects the NOx generation amount, the cylinder wall temperature is controlled by controlling the target value of the intake oxygen concentration according to the deviation between the reference value and the current value of the cylinder wall temperature. Even in a transient state deviating from the reference value, the NOx generation amount can be maintained at the target value when the cylinder wall temperature is maintained at the reference value.
[0009]
In the control device for an internal combustion engine according to the present invention, the reference value of the cylinder wall temperature may be determined in association with various parameters that define operating conditions of the internal combustion engine. For example, the control device of the present invention may include a reference value specifying unit that specifies the reference value based on a rotation speed (rotation speed) of the internal combustion engine and a fuel injection amount (claim 2). Since the engine speed and the fuel injection amount are correlated with the heat energy input per unit time in the internal combustion engine, the reference value of the cylinder wall temperature is appropriately changed by associating the reference value of the cylinder wall temperature with these parameters. Can be done.
[0010]
Further, in the control device of the present invention, the target value control means corresponds to a deviation between a reference value and a current value of the cylinder wall temperature according to a predetermined relationship between the cylinder wall temperature and the NOx generation amount. The deviation of the NOx generation amount is specified, and the deviation of the NOx generation amount is replaced with the change amount of the intake oxygen concentration in accordance with a predetermined relationship between the intake oxygen concentration and the NOx generation amount. The value may be controlled (claim 3). More specifically, the target value control means specifies a NOx generation amount corresponding to a predetermined target value of the intake oxygen concentration according to a predetermined relationship between the cylinder wall temperature and the NOx generation amount. The specified NOx generation amount is corrected by the deviation of the NOx generation amount to specify the target value of the NOx generation amount, and the NOx generation amount is calculated in accordance with a predetermined relationship between the intake oxygen concentration and the NOx generation amount. The intake oxygen concentration corresponding to the target value may be specified as a new intake oxygen concentration target value.
[0011]
In this way, if the correspondence between the cylinder wall temperature and the NOx generation amount and the correspondence between the intake oxygen concentration and the NOx generation amount are determined in advance, the deviation between the current value of the cylinder wall temperature and the reference value is determined by the intake air. It can be easily replaced with a controlled amount of oxygen concentration.
[0012]
In the present invention, various devices can be considered as devices that affect the intake oxygen concentration. For example, the intake oxygen concentration control means may control an operation of a valve means for adjusting an EGR amount (claim 5). In this case, it is possible to control the intake oxygen concentration to a desired value by increasing or decreasing the ring flow rate of the EGR gas to the intake system.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of a control device of the present invention and an internal combustion engine controlled by the control device. The internal combustion engine 1 is configured as, for example, an in-line four-cylinder gasoline engine mounted as a prime mover in an automobile. As is well known, air (primary air) corresponding to the opening degree of the throttle valve 4 is sucked into the intake passage 2 of the internal combustion engine 1 through the air filter 3, and the air is passed through the intake manifold 5 to each cylinder. 6. A fuel injection valve 7 for injecting fuel is provided for each cylinder 6 in the intake manifold 5. Note that the fuel injection valve 7 may directly inject fuel into the cylinder 6.
[0014]
Exhaust gas generated by combustion in the cylinder 6 is guided to a catalyst 9 via an exhaust passage 8 and purified, and then discharged to the atmosphere via a silencer (not shown). The catalyst 9 is a known three-way catalyst that reduces NOx while oxidizing HC and CO. The exhaust passage 8 is connected to an EGR passage 10 for recirculating the exhaust gas passing through the catalyst 9 to the intake manifold 5. The flow rate of the exhaust gas passing through the EGR passage 10 is controlled by the EGR valve 11.
[0015]
In the intake passage 2, an air flow meter 12 that outputs a signal corresponding to the intake air flow rate, an intake temperature sensor 13 that outputs a signal corresponding to the intake air temperature, a throttle opening sensor that outputs a signal corresponding to the opening of the throttle valve 4 The exhaust passage 8 is provided with a NOx sensor 15 that outputs a signal corresponding to the amount of NOx in the exhaust gas. Output signals of the sensors 12 to 15 are guided to an engine control unit (ECU) 16 as a control device. The ECU 16 is configured as a computer including a microprocessor and peripheral circuits such as a ROM and a RAM required for its operation. The ECU 16 refers to output signals of various sensors to execute various arithmetic processes necessary for operation control of the internal combustion engine 1 and control operations of various devices. For example, the ECU 16 controls the fuel injection amount of the fuel injection valve 7 so as to form an air-fuel mixture having a predetermined air-fuel ratio with reference to the output signal of the air flow meter 12 and EGR with reference to the output signal of the NOx sensor 15. The opening degree (duty ratio) of the valve 11 is controlled. Other than the above sensors 12 to 15, the ECU 16 refers to a water temperature sensor that outputs a signal corresponding to the coolant temperature of the internal combustion engine 1, and a crank angle sensor that outputs a signal corresponding to the angle of the crankshaft. And the like, but their illustration is omitted.
[0016]
ECU16 by executing a predetermined program, functions as a device for controlling the (sometimes referred to as the intake O 2 concentration.) Intake oxygen concentration of the internal combustion engine 1. FIG. 2 shows a target intake oxygen concentration acquisition model configured in the ECU 16 for controlling the intake oxygen concentration. This model includes a current temperature specifying unit 21, a reference temperature specifying unit 22, a wall temperature-NOx converting unit 23, a NOx generation amount deviation calculating unit 24, a target NOx calculating unit 25, and an oxygen concentration (O 2 concentration). A NOx conversion unit 26.
[0017]
The current temperature specifying unit 21 specifies a current cylinder wall temperature Tp of the internal combustion engine 1. The cylinder wall temperature may be specified based on the output of a sensor that detects the cylinder wall temperature, or may be estimated from a physical quantity correlated with the cylinder wall temperature. On the other hand, the reference temperature specifying unit 22 specifies the reference temperature Tc of the cylinder wall temperature from a two-dimensional map using the engine speed (rotation speed) of the internal combustion engine 1 and the fuel injection amount as variables. The two-dimensional map for specifying the reference temperature Tc is given by an adaptation operation, and is stored in the ROM of the ECU 16 in advance. That is, the two-dimensional map for specifying the reference temperature Tc specifies the cylinder wall temperature when the internal combustion engine 1 is operating in a steady state in association with the engine speed and the fuel injection amount.
[0018]
The wall temperature-NOx conversion unit 23 has a map that describes the correspondence between the cylinder wall temperature and the NOx generation amount that is experimentally obtained in advance, and calculates the cylinder wall temperatures Tp and Tc according to the map based on the NOx generation amount. They are converted into NOxA and NOxB, respectively (see FIG. 3). The NOx generation amount deviation calculator 24 calculates a deviation dNOx (= NOxA-NOxB) between the converted NOx generation amounts NOxA and NOxB. The target NOx calculation unit 25 corrects the NOx generation amount NOxC corresponding to the target intake oxygen concentration provided from the oxygen concentration-NOx conversion unit 26 with the deviation dNOx to calculate a target NOx generation amount NOxT (= NOxC-dNOx).
[0019]
The oxygen concentration-NOx conversion unit 26 has a map describing the correspondence between the intake oxygen concentration and the NOx generation amount which is experimentally obtained in advance, and converts the target intake oxygen concentration L1 to the NOx generation amount NOxC according to the map. In addition to the conversion, the target NOx generation amount NOxT given from the target NOx calculation unit 25 is converted into the intake oxygen concentration L2 (see FIG. 4). The intake oxygen concentration L2 corresponding to the target NOx generation amount NOxT specified by the oxygen concentration-NOx conversion unit 26 is corrected according to the difference dNOx between the reference temperature Tc of the cylinder wall temperature and the current temperature Tp. It corresponds to the concentration. Note that the map of the oxygen concentration-NOx conversion unit 26 shows the correspondence between the intake oxygen concentration and the NOx generation amount when the cylinder wall temperature is set to the steady state temperature. Both maps of the conversion units 23 and 26 are stored in the ROM of the ECU 16 in advance.
[0020]
FIG. 5 is a flowchart showing a target intake oxygen concentration acquisition routine that is executed at an appropriate cycle by the ECU 16 in which the above-described model is implemented to acquire a target value of the intake oxygen concentration. In this routine, the ECU 16 obtains the current wall surface temperature Tp in step S1, and obtains the NOx generation amount NOxA corresponding to the wall surface temperature Tp in step S2 according to the map of the wall temperature-NOx converter 23. In the following step S3, the reference temperature Tc of the cylinder wall surface is obtained, and in step S4, the NOx generation amount NOxB corresponding to the reference temperature Tc is obtained according to the map of the wall temperature-NOx conversion unit 23.
[0021]
Next, the ECU 16 acquires the target intake oxygen concentration L1. The target intake oxygen concentration L1 acquired here is a value determined by the ECU 16 with reference to various operating parameters in order to maintain the internal combustion engine 1 in a predetermined operating state. After the acquisition of the target intake oxygen concentration L1, the process proceeds to step S6, and the NOx generation amount NOxC corresponding to the acquired target intake oxygen concentration L1 is acquired according to the map of the oxygen concentration-NOx conversion unit 26. In the next step S7, a deviation dNOx of the NOx generation amount is obtained by subtracting the NOx generation amount NOxB corresponding to the reference temperature Tc from the NOx generation amount NOxA corresponding to the current cylinder wall temperature Tp. The deviation dNOx corresponds to a deviation of the NOx generation amount corresponding to the deviation between the current temperature Tp and the reference temperature Tc on the cylinder wall. Therefore, even in a transient state in which the cylinder wall temperature Tp deviates from the reference temperature Tc, in order to correctly control the NOx generation amount to a value at the time of steady operation (that is, a generation amount corresponding to the reference temperature Tc), The intake oxygen concentration may be adjusted so that the NOx generation amount increases or decreases by an amount corresponding to the deviation dNOx.
[0022]
Therefore, in step S8, the target NOx generation amount NOxT is obtained by subtracting the deviation dNOx from the NOx generation amount NOxC corresponding to the target intake oxygen concentration L1, and in the subsequent step S9, the intake oxygen concentration L2 corresponding to the target NOx generation amount NOxT. Is obtained according to the map of the oxygen concentration-NOx conversion unit 26. Thus, the process of FIG. 5 is completed.
[0023]
The intake oxygen concentration L2 obtained as described above corresponds to a value obtained by correcting the intake oxygen concentration L1 obtained in step S5 by an amount corresponding to the deviation dNOx of the NOx generation amount. Therefore, the ECU 16 sets the intake oxygen concentration L2 obtained in step S9 as a final target value of the intake oxygen concentration, and sets the duty ratio of the EGR valve 11 so that the EGR rate corresponding to the intake oxygen concentration L2 is realized. Control the ratio. Accordingly, in a transient state in which the cylinder wall temperature is deviated from the reference temperature, the intake oxygen concentration is adjusted so as to cancel the deviation in the NOx generation amount generated according to the deviation of the cylinder wall temperature from the reference temperature, and the NOx generation amount is adjusted. Is maintained at a steady-state value, that is, the NOx generation amount when the cylinder wall temperature is maintained at the reference temperature Tc given according to the operating conditions of the internal combustion engine 1.
[0024]
In the above embodiment, the current value specifying unit 21 in the target intake oxygen concentration acquisition model in FIG. 2 is used as the current value specifying unit as the wall temperature-NOx conversion unit 23, the NOx generation amount deviation calculating unit 24, the target NOx specifying unit 25, The combination of the oxygen concentration-NOx conversion unit 26 corresponds to a target value control unit, and the reference temperature specification unit 22 corresponds to a reference value specification unit. Further, the ECU 16 that controls the duty ratio of the EGR valve 11 based on the specified target value of the intake oxygen concentration corresponds to intake oxygen concentration control means, and the EGR valve 11 is a valve means as a device that affects the intake oxygen concentration. Is equivalent to
[0025]
However, the present invention is not limited to the above embodiment, and may be implemented in various forms. For example, the map of the wall temperature-NOx conversion unit 23 in FIG. 2 is changed to a map in which the change amount of the cylinder wall temperature and the change amount of the NOx generation amount are associated with each other, and the deviation (Tp-Tc) of the cylinder wall temperature is calculated. The corresponding deviation dNOx may be obtained from the map. Further, the map of the oxygen concentration-NOx conversion unit 26 is changed to a map in which the change amount of the intake oxygen concentration and the change amount of the NOx generation amount are associated, and the change amount of the intake oxygen concentration corresponding to the deviation dNOx is specified. Then, the specified change amount may be added to or subtracted from a predetermined target value L1 of the intake oxygen concentration to obtain the target value L2 of the intake oxygen concentration.
[0026]
In the above embodiment, when the current value Tp of the cylinder wall temperature is lower than the reference temperature Tc, the NOx generation amount NOxB corresponding to the reference temperature Tc is larger than the NOx generation amount NOxA corresponding to the current temperature Tp. The oxygen concentration L1 is corrected so as to increase the NOx generation amount. Such a condition is observed, for example, when the vehicle is accelerating. From the viewpoint of maintaining the NOx generation amount at the time of adaptation, it is preferable to execute the control even in the direction of increasing the NOx generation amount. However, when giving priority to reducing the absolute emission amount of the NOx generation amount, a limitation may be provided so that the target value control of the present invention is performed only in the direction in which the NOx generation amount decreases. In this case, for example, when the deviation dNOx is a negative value in step S7 in FIG. 5, steps S8 and S9 may be skipped and the target intake oxygen concentration L1 may be used as the target value.
[0027]
【The invention's effect】
As described above, according to the present invention, by controlling the target value of the intake oxygen concentration according to the deviation between the reference value and the current value of the cylinder wall temperature, the transient state in which the cylinder wall temperature deviates from the reference value Even in this state, the NOx generation amount can be maintained at the target value when the cylinder wall temperature is maintained at the reference value. Moreover, since the NOx generation amount is controlled by manipulating the intake oxygen concentration, the torque does not decrease as in the case of delaying the fuel injection timing, and the fuel consumption rate does not decrease.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a control device for an internal combustion engine of the present invention.
FIG. 2 is a functional block diagram of a target intake oxygen concentration acquisition model incorporated in the ECU of FIG. 1;
FIG. 3 is a view showing a map performed in a wall temperature-NOx conversion unit in FIG. 2;
FIG. 4 is a view showing a map performed in an oxygen concentration-NOx conversion section of FIG. 2;
FIG. 5 is a flowchart showing a target intake oxygen concentration acquisition routine executed by the ECU of FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 6 Cylinder 7 Fuel injection valve 11 EGR valve (valve means)
16 Engine control unit (intake oxygen concentration control means)
21 Current temperature specification part (current value specification means)
22 Reference temperature identification unit 23 Wall temperature-NOx conversion unit (target value control means)
24 NOx generation amount deviation calculation unit (target value control means)
25 Target NOx calculation unit (target value control means)
26 Oxygen concentration-NOx conversion unit (target value control means)

Claims (5)

内燃機関のシリンダ壁温の現在値を特定する現在値特定手段と、
前記内燃機関の運転条件に応じて定まるシリンダ壁温の基準値と、前記現在値との偏差に基づいて、吸気酸素濃度の目標値を制御する目標値制御手段と、
前記偏差に基づいて制御された吸気酸素濃度の目標値に従って、吸気酸素濃度に影響を与える機器の動作を制御する吸気酸素濃度制御手段と、
を備えたことを特徴とする内燃機関の制御装置。
Current value specifying means for specifying a current value of a cylinder wall temperature of the internal combustion engine;
A target value control unit that controls a target value of the intake oxygen concentration based on a deviation between the reference value of the cylinder wall temperature determined according to the operating condition of the internal combustion engine and the current value,
According to a target value of the intake oxygen concentration controlled based on the deviation, intake oxygen concentration control means for controlling the operation of equipment that affects the intake oxygen concentration,
A control device for an internal combustion engine, comprising:
前記内燃機関の回転数と燃料噴射量とに基づいて前記基準値を特定する基準値特定手段を備えたことを特徴とする請求項1に記載の内燃機関の制御装置。2. The control device for an internal combustion engine according to claim 1, further comprising a reference value specifying unit that specifies the reference value based on a rotation speed and a fuel injection amount of the internal combustion engine. 3. 前記目標値制御手段は、予め求められているシリンダ壁温とNOx生成量との対応関係に従って、前記シリンダ壁温の基準値と現在値との偏差に対応したNOx生成量の偏差を特定するとともに、予め求められている吸気酸素濃度とNOx生成量との対応関係に従って前記NOx生成量の偏差を吸気酸素濃度の変化量に置き換えて前記吸気酸素濃度の前記目標値を制御することを特徴とする請求項2に記載の内燃機関の制御装置。The target value control means specifies a deviation of a NOx generation amount corresponding to a deviation between a reference value and a current value of the cylinder wall temperature according to a correspondence relationship between a cylinder wall temperature and a NOx generation amount which is obtained in advance. And controlling the target value of the intake oxygen concentration by replacing the deviation of the NOx generation amount with a change amount of the intake oxygen concentration in accordance with a predetermined relationship between the intake oxygen concentration and the NOx generation amount. The control device for an internal combustion engine according to claim 2. 前記目標値制御手段は、予め求められている前記シリンダ壁温とNOx生成量との対応関係に従って、既定の吸気酸素濃度の目標値に対応するNOx生成量を特定し、その特定されたNOx生成量を前記NOx生成量の偏差で補正してNOx生成量の目標値を特定するとともに、予め与えられている前記吸気酸素濃度とNOx生成量との対応関係に従って前記NOx生成量の目標値に対応する吸気酸素濃度を新たな吸気酸素濃度の目標値として特定する、ことを特徴とする請求項2に記載の内燃機関の制御装置。The target value control means specifies a NOx generation amount corresponding to a predetermined target value of the intake oxygen concentration according to a predetermined relationship between the cylinder wall temperature and the NOx generation amount, and determines the specified NOx generation amount. The amount is corrected by the deviation of the NOx generation amount to specify the target value of the NOx generation amount, and corresponds to the target value of the NOx generation amount in accordance with a predetermined relationship between the intake oxygen concentration and the NOx generation amount. The control device for an internal combustion engine according to claim 2, wherein the intake oxygen concentration to be performed is specified as a new target value of the intake oxygen concentration. 前記吸気酸素濃度に影響を与える機器として、前記吸気酸素濃度制御手段はEGR量を調整するための弁手段の動作を制御することを特徴とする請求項1〜4のいずれか1項に記載の内燃機関の制御装置。5. The device according to claim 1, wherein, as a device that affects the intake oxygen concentration, the intake oxygen concentration control unit controls an operation of a valve unit for adjusting an EGR amount. 6. Control device for internal combustion engine.
JP2002196760A 2002-07-05 2002-07-05 Controller for internal combustion engine Pending JP2004036557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196760A JP2004036557A (en) 2002-07-05 2002-07-05 Controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196760A JP2004036557A (en) 2002-07-05 2002-07-05 Controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004036557A true JP2004036557A (en) 2004-02-05

Family

ID=31704708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196760A Pending JP2004036557A (en) 2002-07-05 2002-07-05 Controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004036557A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150290A (en) * 2007-12-20 2009-07-09 Mitsubishi Fuso Truck & Bus Corp Exhaust gas purification apparatus for engine
US20120124970A1 (en) * 2010-11-18 2012-05-24 Hyundai Motor Company METHOD FOR PREDICTING NOx AMOUNT AMD EXHAUST SYSTEM USING THE SAME
US20120124973A1 (en) * 2010-11-18 2012-05-24 Hyundai Motor Company Method for Predicting NOx Amount and Exhaust System Using the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150290A (en) * 2007-12-20 2009-07-09 Mitsubishi Fuso Truck & Bus Corp Exhaust gas purification apparatus for engine
US20120124970A1 (en) * 2010-11-18 2012-05-24 Hyundai Motor Company METHOD FOR PREDICTING NOx AMOUNT AMD EXHAUST SYSTEM USING THE SAME
US20120124973A1 (en) * 2010-11-18 2012-05-24 Hyundai Motor Company Method for Predicting NOx Amount and Exhaust System Using the Same
US8776506B2 (en) * 2010-11-18 2014-07-15 Hyundai Motor Company Method for predicting NOx amount and exhaust system using the same
US8776505B2 (en) * 2010-11-18 2014-07-15 Hyundai Motor Company Method for predicting NOx amount and exhaust system using the same

Similar Documents

Publication Publication Date Title
JP4788647B2 (en) Control device for internal combustion engine
JP3878398B2 (en) Engine self-diagnosis device and control device
CN103249927B (en) Internal combustion engine control device
WO2014006721A1 (en) Internal combustion engine
JP2004044454A (en) Fuel injection amount control device for internal combustion engine
JP2005194891A (en) Engine controller
JP4065784B2 (en) Control device for internal combustion engine
JP2008101591A (en) Ignition timing control device of internal combustion engine
US10690065B2 (en) Control device of vehicle
JP2007009807A (en) Control device for internal combustion engine
JP2005273524A (en) Air-fuel ratio control device for internal combustion engine
JP2009030613A (en) Air-fuel ratio control device of internal combustion engine
JP2007247426A (en) Air-fuel ratio control device of internal combustion engine
JP2009257192A (en) Fuel injection ratio control device for internal combustion engine
JP2009079557A (en) Engine controller
JP2006070701A (en) Control device of internal combustion engine
JP2004019629A (en) Controller for internal combustion engine
JP2006329003A (en) Secondary air supply device for internal combustion engine
JP2004036557A (en) Controller for internal combustion engine
JP2009156034A (en) Fuel injection control system for internal combustion engine
JP2008240675A (en) Control device for internal combustion engine
JP2007231750A (en) Air-fuel ratio control device of internal combustion engine
JP2004044484A (en) Control device of internal combustion engine
US11028748B2 (en) Controller and control method for internal combustion engine
JP4548373B2 (en) Air-fuel ratio control device for internal combustion engine