JP2004036243A - Antifreezing apparatus - Google Patents

Antifreezing apparatus Download PDF

Info

Publication number
JP2004036243A
JP2004036243A JP2002195293A JP2002195293A JP2004036243A JP 2004036243 A JP2004036243 A JP 2004036243A JP 2002195293 A JP2002195293 A JP 2002195293A JP 2002195293 A JP2002195293 A JP 2002195293A JP 2004036243 A JP2004036243 A JP 2004036243A
Authority
JP
Japan
Prior art keywords
valve
water
working chamber
sleeve
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002195293A
Other languages
Japanese (ja)
Other versions
JP3983118B2 (en
Inventor
Masabumi Minami
南 正文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002195293A priority Critical patent/JP3983118B2/en
Priority to CN 03137857 priority patent/CN1237237C/en
Publication of JP2004036243A publication Critical patent/JP2004036243A/en
Application granted granted Critical
Publication of JP3983118B2 publication Critical patent/JP3983118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Check Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antifreezing apparatus which simplifies a structure, facilitates assembly, and prevents a hindrance to a valve opening operation even if drainage is partially frozen. <P>SOLUTION: This antifreezing apparatus is equipped with: a cylindrical body 3, one end of which is connected to water supply piping 1; a sleeve 10 which is concentrically fixed to the inside of the body 3 and whose valve port 12 is formed at its end on the side of the piping 1; a cylindrical operation chamber 6 which is formed between an inner surface of the body 3 and an outer surface of the sleeve 10, in which an end on the other side of the pipe 1 is closed, and inside which water is to be stored; a valve element 20 which has a sealing part 21 for slidably sealing the water supply piping-side end of the operation chamber 6, and which is slid in the axial direction with respect to the body 3 and the sleeve 10 by virtue of a volume expansion action at the freezing of water in the operation chamber 6, so as to open the valve port 12; and a drainage passage 29 for discharging water in the piping 1 to the outside from the valve port 12 through the inside of the sleeve 10 by the valve opening operation of the valve element 20. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は上水道など送水配管内の水の凍結を防止する凍結防止装置に関するものである。
【0002】
【従来の技術】
従来、感温センサなどを用いることなく、水の物性を利用して水道配管の凍結を確実に防止できる凍結防止装置が提案されている(特開平8−28732号公報)。図7はこの凍結防止装置の一例を示す。
図において、40は送水配管、41は送水配管40に接続されたボデー、42はボデー41の内部に同心状に固定されたスリーブである。ボデー41とスリーブ42との間には円筒状の作動室43が形成されている。弁体44は、作動室43の上端部を摺動自在に封止する封止部44aと、ボデー41に形成された弁口45を開閉する弁部44bとを備えている。
【0003】
外気温度の低下により作動室43内の水が凝固すると、その体積膨張作用により弁体44が押し上げられ、弁口45を開く。この弁体44の開弁動作により送水配管40内の水がスリーブ42の中の排水通路46を通過するため、その水の保有熱がスリーブ42を介して作動室43内の氷を溶かす。そのため、作動室43の体積が小さくなり、弁体44を閉弁させることができる。つまり、排水通路46を流れる水の保有熱によって作動室43の氷を融解させるので、寒冷期でも短時間で弁体44を閉じることができ、水を節約できる。
【0004】
【発明が解決しようとする課題】
上記構造の凍結防止装置の場合、弁口45をボデー41の内部に形成する関係で、ボデー41がジョイント部41aとシリンダ部41bの2部品で構成され、弁体44も2部品で構成されている。つまり、弁口45の上面に着座する弁部44bと、作動室43内を摺動する封止部44aとが上下に分割され、封止部44aに一体に形成された軸部44cが弁口45を貫通し、その上端に弁部44bが螺着されている。そのため、ボデー41および弁体44の構造が複雑になり、組付作業に手間がかかるとともに、コスト上昇を招くという問題があった。
【0005】
また、弁体44が弁口45を開いた時、送水配管40の水は弁口45、軸部44cに設けた排水穴、スリーブ42の中を通って排出される。ところが、排水の一部が弁口45より下流側、例えば弁体44の軸部44cと弁口45との間や弁体44とスリーブ42との間に溜まることがある。この部分は大気に開放しているので、溜まった水が凍結し、弁体44の円滑な開弁動作を阻害する可能性があった。
【0006】
そこで、本発明の目的は、構造を簡素にし、組付を容易にするとともに、排水の一部が凍っても、開弁動作に支障をきたさない凍結防止装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明は、一端部が送水配管に接続された筒形のボデーと、上記ボデーの内部に同心状に固定され、その送水配管側の端部に弁口が形成されたスリーブと、上記ボデーの内面とスリーブの外面との間に形成され、送水配管側と反対側の端部が閉鎖され、内部に水を貯留する円筒状の作動室と、上記作動室の送水配管側の端部を摺動自在に封止する封止部を有し、作動室内の水凝固時の体積膨張作用により上記ボデーおよびスリーブに対して軸方向に摺動し、上記弁口を開く弁体と、上記弁体の開弁動作により、送水配管内部の水を上記弁口からスリーブの内側を通って外部へ排出する排水通路と、を具備したことを特徴とする凍結防止装置を提供する。
【0008】
作動室の水凝固により体積膨張が起こると、作動室の一端側を封止している弁体が軸方向に押される。この弁体の軸方向移動により、弁口が開かれ、送水配管内部の水が弁口からスリーブの内側を通って外部に排出される。
送水配管内部の水が排水通路を通って外部に排出されると、その水の持つ保有熱が弁体、ボデーあるいはスリーブを介して作動室に伝わり、作動室内部の氷を溶かす。そのため、作動室の体積が小さくなり、弁体は送水配管の水圧あるいはスプリング力などによって自動的に閉弁する。
【0009】
作動室は固定部材であるボデーとスリーブとの間に形成され、その一端側を弁体が摺動自在に封止しているので、水凝固時の体積膨張圧力が弁体に対して軸方向にのみ作用し、弁体は円滑に軸方向に移動でき、鋭敏な開弁動作を行うことができる。
弁口はボデーではなく、作動室の内壁を構成するスリーブの送水配管側の端部に形成されている。そのため、弁口が開かれた時、水は弁口からスリーブの中を通って排出されるに過ぎない。つまり、弁口より下流側の排水経路には、弁体の摺動部が存在しないので、たとえ排水の一部が凍っても、弁体の開弁動作に悪影響を及ぼさない。
また、弁口がスリーブの送水配管側端部に形成されているので、ボデーを複雑な構造に加工する必要がなく、1部品で構成することも可能となる。弁体もスリーブの上端に嵌合するキャップ形状にすれば、封止部と弁部とを一体部品で構成できるので、構造が簡単で小型化が可能となる。また、弁体の組付も、スリーブの端部に嵌合するだけでよく、組付作業が用意になる。
【0010】
請求項2のように、ボデーに、送水配管の内部と作動室の送水配管側と反対側の端部とを連通させ、作動室より先に凍結して封止される流入通路を形成するのがよい。
作動室には常に水を充満させる必要があるが、何らかの理由で空気が入ると、水が凍っても空気が圧縮されるだけで、弁体を開くことができなくなる。そこで、送水配管から作動室へ溝を供給する流入通路を設けることで、常に作動室を水で満たすことができる。
流入通路は作動室より先に凍結して封止される必要があり、また排水時には流入通路の氷は溶けない方がよい。なぜなら、作動室が先に凍ると、その体積膨張分が流入通路を介して逃げるので、弁体が開かなくなるからである。また、排水時に流入通路の氷が先に溶けると、作動室の体積膨張圧力が流入通路を介して逃げ、作動室の氷が溶ける前に弁体が閉じるからである。流入通路は、送水配管の内部と作動室の送水配管側と反対側の端部とを連通させているので、流入通路は作動室より先に凍結し、かつ排水時には流入通路の氷が溶けるのを作動室の氷が溶けるより遅らせることができる。
なお、流入通路は、ボデーの側壁に一体に設けてもよいし、細いパイプを用いて送水配管と作動室とを連結してもよい。
【0011】
【発明の実施の形態】
図1〜図5は本発明にかかる凍結防止装置Aの一例を示す。
上水道配管などの送水配管1の途中にはT形継手2が接続されており、この継手2の下部接続口2aには凍結防止装置Aの円筒形ボデー3が接続されている。配管1,継手2およびボデー3はテーパねじ1a,2b,3aによって螺着しているため、互いにシールされている。
【0012】
継手2の接続口2a内に挿入されたボデー3の上端開口部には、ロックリング4を介してバネ受け具5が装着されている。バネ受け具5は後述する弁体20を閉弁方向に付勢するリターンスプリング27の一端を支えるものであり、その中心部には、弁体20が開いた時の流量を調整するためのオリフィス5aが形成されている。
【0013】
ボデー3の上端開口部の近傍には外方へ膨出した弁室3bが形成され、この弁室3bはバネ受け具5のオリフィス5aを介して送水配管1の内部と連通している。弁室3b内に弁体20の頂部に設けた弁部24が臨んでいる。ボデー3の内部には略円筒形のスリーブ10が下方より挿入され、スリーブ10の下端部に設けられた外フランジ10aがボデー3の下端部内面に形成された内フランジ3cの下面に当接させることで位置決めされている。ボデー3の下端部にはロックナット16が螺着され、このロックナット16によって樹脂製のホースジョイント17のフランジを介してスリーブ10のフランジ10aがボデー3の内フランジ3cの下面に圧着される。これにより、スリーブ10はボデー3の内部に同心状に固定されている。
【0014】
ボデー3の内面とスリーブ10の外面との間には、内部に水を貯留する円筒状の作動室6が形成されている。作動室6の下端側(送水配管側と反対側)は、スリーブ10の外フランジ10aの外周に装着されたOリング等のシール材11によって閉じられている。ボデー3の内フランジ3cとスリーブ10の外フランジ10aとの間に小さな環状空間13が形成されており、環状空間13と作動室6とは内フランジ3cを上下に貫通する流入穴14を介して連通している。環状空間13は流入通路7を介してボデー3の弁室3bと連通している。流入通路7はボデー3の外壁部に一体形成された軸方向に延びる突条部8(図2参照)の内部に形成されている。この実施例では、流入通路7は突条部8に対して軸方向に貫通する貫通穴を形成し、その下端をセットボルト15で封止するとともに、環状空間13から貫通穴に対して斜め方向にキリ穴12を形成したものである。
上記実施例では、環状空間13と作動室6の下端部とを連通させるため、内フランジ3cに流入穴14を形成したが、スリーブ10の外周面と内フランジ3cの内周面との隙間(図6参照)を介して連通させてもよい。
【0015】
スリーブ10の上端部はボデー3の弁室3aまで延びており、その上端にはやや小径に絞られた弁口12が形成されている。上記スリーブ10の上端部には、図3に示すように、キャップ形状の弁体20が軸方向に移動自在に嵌合されている。弁体20の下端部には、作動室6の上端側をシールする円筒形の封止部21が一体に形成されている。封止部21の内外周には、スリーブ10の外周面に接触するOリング等のシール材22と、ボデー3の内周面に接触するシール材23とが取り付けられている。弁体20の上端部には円筒状の弁部24が設けられ、この弁部24の内部天井面には、上記弁口12を開閉するバルブガスケット25が取り付けられている。弁体20の弁部24と封止部21との間には、外周面と内周面とを連通させる連通穴26が設けられ、弁室3b内の水は、この連通穴26を通ってスリーブ10(弁口12)の外周面に常時導かれている。この実施例では、弁口12がスリーブ10の直径よりやや小径であるため、弁部24の内周面と弁口12の外周面との間に環状空間9(図4参照)が形成され、この環状空間9に連通穴26を介して水が導かれている。弁体20の弁部24上面とバネ受け具5との間には、弁体20を下方へ付勢し、ガスケット21を弁口12に押し付けるためのリターンスプリング27が配置されている。この実施例では、リターンスプリング27のばね荷重は低く設定されており、例えば凍結防止装置Aが送水配管1に対して斜め方向に取り付けられた場合でも、弁体20が弁口12に対して安定して着座するように支持する役割を有する。
【0016】
この実施例では、弁口12がスリーブ10の上端に形成されているので、キャップ形状の弁体20をボデー3の上端開口部から挿入し、スリーブ10の上端部に嵌合するだけで組み付けることができ、組付が簡単になる。また、ボデー3に弁口を形成する必要がないので、ボデー3の構造が簡素となる。その結果、弁体20およびボデー3をそれぞれ1部品で構成することが可能となり、弁体20およびボデー3を小型化することが可能となるという利点がある。
【0017】
スリーブ10の内部には、樹脂製排水パイプ29が挿着されている。弁体20が弁口6を開いた時、送水配管1内の水は、弁室3b、連通穴25、弁口12を通り、スリーブ10の内部に挿着された排水パイプ29、ホースジョイント17を介して外部へ排水される。したがって、排水パイプ29およびホースジョイント17により排水通路が形成される。排水パイプ29およびホースジョイント17は、送水配管1内の水を排水する際に、水滴がスリーブ10の内面に付着して氷結するのを防止するものであり、四フッ化エチレン樹脂などの熱伝導性の低い樹脂材料で形成するのがよい。そのため、排水時の水の保有熱がスリーブ10に伝わり難くなるが、後述するように作動室6の水が僅かに溶けただけで閉弁されるので、排水パイプ29による影響は殆どない。なお、必要に応じて排水パイプ29を省略あるいは図示のものより短くし、排水がスリーブ10の内面を伝って流れるようにしてもよい。
【0018】
ボデー3は真鍮のような熱伝導度の高い材料で形成するのがよい。そのため、外気温度が低下した時、流入通路7や作動室6の水の保有熱は外壁を構成するボデー3の外表面から放散され、流入通路7や作動室6内の水を速やかに凝固させる。しかも、作動室6は薄肉な円筒状空間で構成されているため、容積に対するボデー3との接触面積が大きく、外気温度に迅速に反応できる。
一方、弁体20はボデー3より熱伝導度の低い材料(例えばステンレス)で形成するのがよい。即ち、弁体20もボデー3と同様に熱伝導度の高い材料で形成した場合、弁室3b内部の水の保有熱が弁体20を介して作動室6に伝わり、作動室6の水の凝固を遅らせる可能性がある。これに対し、弁体20をボデー3に比べて熱伝導度の低い材料で形成すれば、弁室3bから弁体20を介して作動室6に伝わる熱量が少なくなり、作動室6の水を速やかに凝固させることができるからである。
また、スリーブ10もボデー3より熱伝導度の低い材料(例えばステンレス)で形成してもよい。その理由は、作動室6の内壁を構成するスリーブ10の内側の空気層の熱が作動室6に伝わるのを抑制し、作動室6の水の凝固が遅れるのを防止するためである。但し、スリーブ10をボデー3と同様に熱伝導度の高い材料で形成してもよいことは勿論である。
【0019】
上記作動室6の上部に位置するボデー3の側壁には、内側端部が弁体20の封止部21の外周面に通じ、外側端部が外部に通じるブロー孔30が形成されている。ブロー孔30の外側端部には雌ねじ31が形成され、この雌ねじ31にブロー孔30を開閉自在なブロー弁32が螺合している。ブロー弁32には、ブロー孔30を流れた水を外部に排出する排出孔33が形成されている。
ブロー弁32を開くと、作動室6の内圧が低下するため、送水配管1内の水は、弁室3b、流入通路7を通って作動室6に下方より導入される。それに伴って、作動室6内の水は弁体20の外周面とボデー3との隙間から、ブロー孔30およびブロー弁32の排出孔33を介して排出されるが、同時に作動室6の上部に溜まった空気も水とともに排出される。空気は圧縮性流体であるため、作動室6に空気が少しでも残留していると、弁体20の開弁動作を著しく遅らせることになるが、上記のように流入通路7が作動室6の最下部に連通し、ブロー孔30が作動室6の最上部に連通しているので、作動室6の残留空気を効率良く排出できる。
【0020】
次に、上記構成の凍結防止装置Aの作動を説明する。
外気温度が零度以下に低下すると、流入通路7および作動室6内の水の保有熱がボデー3を介して放出され、流入通路7の水が先に凍結し、しかる後作動室6内の水が凝固し始める。特に、弁室3b内部の水の保有熱の影響のため、作動室6の内、弁室3bに近い上部に比べて、下部の方が早く凝固する。作動室6内の水が凝固し始めると、流入通路7は既に凍結して閉止されているので、作動室6の水凝固時の体積膨張によって弁体20が押し上げられ、弁口12を開く(図5参照)。そのため、送水配管1内の水が弁室3b、弁口12、排水パイプ29を通って外部に排出される。その結果、送水配管1内の水の流通を促して送水配管1の凍結を防止できるとともに、排出される水の保有熱が、ボデー3、弁体20あるいはスリーブ10を介して作動室6に伝導され、作動室6の氷を溶かす。その結果、作動室6の体積が縮小し、弁体20は送水配管1の水圧およびスプリング27のばね力によって押し下げられ、自動的に閉弁する。以後、上記の動作を繰り返す。
【0021】
上記開弁動作において、弁体20は作動室6の上端側に配置されており、作動室6の体積膨張による軸方向力のみを受けるので、弁体20の軸方向移動が非常に円滑となる。そのため、作動室6の中の水がシャーベット状に凝固し始めるだけで開弁でき、外気温度の低下に対し鋭敏に反応して送水配管1などの他の配管の凍結を確実に防止できる。また、弁口12を開いて排水した時、排水の保有熱により作動室6内のシャーベット状の氷は速やかに溶けるので、多量の水が無駄に排出されることなく閉弁でき、水を節約できる。
【0022】
上記のように弁口12が作動室6の内壁を構成するスリーブ10の上端部に形成されているため、弁口12が開かれた時、弁室3b内の水は弁口12を通って排出されるに過ぎない。つまり、弁口12を通った水が弁体20とボデー3との隙間や、弁体20とスリーブ10との隙間を経由せずに排出される。小型の凍結防止装置では、スリーブ10の内径が小さくなるので、排水通路29内に排水の一部が溜まることがあり、排水通路29は大気に開放しているので、溜まった排水が凍る可能性がある。しかし、弁口12より下流側の排水通路29には、弁体20の摺動部が存在しないので、たとえ溜まった排水が排水通路29で凍っても、弁体20の開弁動作に全く悪影響を及ぼさない。
なお、排水通路29内で凍った氷は、弁口12が開かれて送水配管1の水が流れ込めば、瞬時に溶けるので、問題がない。また、排水パイプ29として四フッ化エチレン樹脂などの摩擦係数の小さい材料を使用することで、開弁時の差圧によっても氷を排出できる。
弁口12より上流側(弁室3b,連通穴26,環状空間9)は、給水配管1と連通し、かつ加圧下の水で満たされているので、凍結することはない。
【0023】
上記実施例では、流入通路7をボデー3の外壁部に一体形成された突条部8の内部に形成したが、図6に示すように、別体のパイプ18を接続することで流入通路を形成してもよい。流入パイプ18は、内部の水が作動室6より早く凍結する必要があるので、薄肉でかつ熱伝導の良好な金属パイプで構成するのがよい。この場合には、流入パイプ18の全周が外気に露出しているので、凍結を早めることができる。
【0024】
本発明の凍結防止装置Aは、図1のような送水配管1の途中に取り付ける場合に限らず、あらゆる部位に取り付けることが可能である。例えば、配管末端部の給水栓の近傍に取り付けたり、給湯器の配管に取り付けることもできる。
上記実施例では、凍結防止装置Aのボデー3を一体構造物で構成したが、特開平8−28732号公報と同様に複数部品で構成することも可能である。例えば、継手2に螺着されるジョイント部分を別部品で構成すれば、継手2の接続口の直径が異なる場合でもジョイントを交換するだけで簡単に対応できる。
上記実施例では、流入通路7が先に凍結して閉止された後、作動室6の水が凝固することで、弁体20を動作させる例を示したが、流入通路7に逆止弁を設け、流入通路7が先に凍結しなくても、作動室6の水の凝固による膨張圧力が流入通路7に逃げるのを防止してもよい。
【0025】
【発明の効果】
以上の説明で明らかなように、本発明によれば、弁口をボデーではなく、作動室の内壁を構成するスリーブの送水配管側端部に形成したので、弁口より下流側の排水経路には、弁体の摺動部が存在しない。そのため、排水の一部がスリーブの中で凍っても、弁体の開弁動作に悪影響を及ぼさない。
また、弁口がスリーブの送水配管側端部に形成されているので、ボデーに弁口を形成する場合のようにボデーを複雑な構造に加工する必要がなく、弁体もスリーブの上端に被さるキャップ形状にすれば、封止部と弁部とを一体部品で構成できるので、構造が簡単で、組付も容易である。そのため、安価で小型の凍結防止装置を実現できる。
【図面の簡単な説明】
【図1】本発明にかかる凍結防止装置の第1実施例の全体断面図である。
【図2】図1のB−B線断面図である。
【図3】弁体の斜視図である。
【図4】図1の要部の拡大図である。
【図5】動作時における図1の要部拡大図である。
【図6】本発明にかかる凍結防止装置の第2実施例の断面図である。
【図7】従来の凍結防止装置の断面図である。
【符号の説明】
A   凍結防止装置
1      送水配管
3   ボデー
6      作動室
7   流入通路
10  スリーブ
12  弁口
20    弁体
21  封止部
24  弁部
25    ガスケット
27    リターンスプリング
29  排水パイプ(排水通路)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a freezing prevention device for preventing freezing of water in a water supply pipe such as a water supply system.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been proposed an anti-freezing device capable of reliably preventing water pipes from freezing using physical properties of water without using a temperature-sensitive sensor or the like (Japanese Patent Application Laid-Open No. 8-28732). FIG. 7 shows an example of the freeze prevention device.
In the figure, 40 is a water supply pipe, 41 is a body connected to the water supply pipe 40, and 42 is a sleeve fixed concentrically inside the body 41. A cylindrical working chamber 43 is formed between the body 41 and the sleeve 42. The valve body 44 includes a sealing portion 44a that slidably seals an upper end portion of the working chamber 43, and a valve portion 44b that opens and closes a valve port 45 formed in the body 41.
[0003]
When the water in the working chamber 43 solidifies due to a decrease in the outside air temperature, the valve body 44 is pushed up by the volume expansion action, and the valve port 45 is opened. Since the water in the water supply pipe 40 passes through the drain passage 46 in the sleeve 42 by the valve-opening operation of the valve body 44, the heat retained by the water melts the ice in the working chamber 43 through the sleeve 42. Therefore, the volume of the working chamber 43 is reduced, and the valve body 44 can be closed. In other words, since the ice in the working chamber 43 is melted by the retained heat of the water flowing through the drain passage 46, the valve body 44 can be closed in a short time even in the cold season, and water can be saved.
[0004]
[Problems to be solved by the invention]
In the case of the freeze prevention device having the above-described structure, the body 41 is composed of two parts, the joint part 41a and the cylinder part 41b, because the valve port 45 is formed inside the body 41, and the valve body 44 is also composed of two parts. I have. That is, the valve portion 44b seated on the upper surface of the valve port 45 and the sealing portion 44a that slides in the working chamber 43 are vertically divided, and the shaft portion 44c formed integrally with the sealing portion 44a is a valve port. 45, and a valve portion 44b is screwed to the upper end thereof. For this reason, the structures of the body 41 and the valve body 44 become complicated, and there is a problem that the assembling work is troublesome and the cost is increased.
[0005]
When the valve body 44 opens the valve port 45, the water in the water supply pipe 40 is discharged through the valve port 45, the drain hole provided in the shaft 44c, and the sleeve 42. However, part of the drainage may accumulate downstream of the valve port 45, for example, between the shaft portion 44c of the valve body 44 and the valve port 45 or between the valve body 44 and the sleeve 42. Since this portion is open to the atmosphere, the accumulated water freezes, and there is a possibility that the smooth opening operation of the valve body 44 may be hindered.
[0006]
Therefore, an object of the present invention is to provide a freezing prevention device that simplifies the structure, facilitates assembly, and does not hinder the valve opening operation even if part of the drainage freezes.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a cylindrical body having one end connected to a water supply pipe, and is concentrically fixed inside the body, and a valve port is formed at an end on the water supply pipe side. A cylindrical working chamber that is formed between the inner surface of the body and the outer surface of the sleeve, the end opposite to the water supply pipe side is closed, and stores water therein; It has a sealing portion that slidably seals the end on the pipe side, and slides in the axial direction with respect to the body and the sleeve by the volume expansion effect at the time of water coagulation in the working chamber to open the valve port. A freezing prevention device, comprising: a valve body; and a drainage passage that discharges water in a water supply pipe from the valve port to the outside through the inside of the sleeve by opening the valve body. I do.
[0008]
When volume expansion occurs due to water coagulation in the working chamber, the valve body sealing one end of the working chamber is pushed in the axial direction. Due to the axial movement of the valve element, the valve port is opened, and water in the water supply pipe is discharged from the valve port to the outside through the inside of the sleeve.
When the water inside the water supply pipe is discharged to the outside through the drain passage, the retained heat of the water is transmitted to the working chamber via the valve body, body or sleeve, and melts the ice inside the working chamber. Therefore, the volume of the working chamber is reduced, and the valve body is automatically closed by the water pressure of the water supply pipe or the spring force.
[0009]
The working chamber is formed between the body, which is a fixed member, and the sleeve. One end of the working chamber is slidably sealed by the valve body. , The valve body can move smoothly in the axial direction, and a sharp valve opening operation can be performed.
The valve port is formed not at the body but at the end on the water supply pipe side of the sleeve constituting the inner wall of the working chamber. Thus, when the valve port is opened, water only drains from the valve port through the sleeve. That is, since the sliding portion of the valve element does not exist in the drainage path downstream of the valve port, even if part of the drainage freezes, the valve opening operation of the valve element is not adversely affected.
Further, since the valve port is formed at the end of the sleeve on the side of the water supply pipe, it is not necessary to process the body into a complicated structure, and it is possible to constitute the body with one part. If the valve body also has a cap shape fitted to the upper end of the sleeve, the sealing portion and the valve portion can be formed as an integral part, so that the structure is simple and the size can be reduced. Also, the valve body need only be fitted to the end of the sleeve, and the work of assembling becomes easy.
[0010]
According to a second aspect of the present invention, the inside of the water supply pipe and the end of the working chamber opposite to the water supply pipe side communicate with the body to form an inflow passage which is frozen and sealed before the working chamber. Is good.
The working chamber must always be filled with water, but if air enters for any reason, even if the water freezes, the air is only compressed and the valve cannot be opened. Therefore, by providing an inflow passage for supplying a groove from the water supply pipe to the working chamber, the working chamber can always be filled with water.
The inflow passage must be frozen and sealed before the working chamber, and the ice in the inflow passage should not melt during drainage. This is because, when the working chamber freezes first, the volume expansion escapes through the inflow passage, so that the valve body cannot be opened. Further, if the ice in the inflow passage melts first during drainage, the volume expansion pressure of the working chamber escapes through the inflow passage, and the valve body closes before the ice in the working chamber melts. Since the inflow passage connects the inside of the water supply pipe with the end of the working chamber opposite to the water supply pipe side, the inflow passage freezes before the working chamber, and the ice in the inflow passage melts during drainage. The working chamber ice can be slower than melting.
The inflow passage may be provided integrally with the side wall of the body, or the water supply pipe and the working chamber may be connected using a thin pipe.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 5 show an example of an antifreezing device A according to the present invention.
A T-shaped joint 2 is connected in the middle of a water supply pipe 1 such as a water supply pipe, and a cylindrical body 3 of an antifreezing device A is connected to a lower connection port 2 a of the joint 2. Since the pipe 1, the joint 2 and the body 3 are screwed by the tapered screws 1a, 2b, 3a, they are sealed from each other.
[0012]
A spring receiver 5 is attached via a lock ring 4 to an upper end opening of the body 3 inserted into the connection port 2 a of the joint 2. The spring receiver 5 supports one end of a return spring 27 for urging the valve body 20 described later in the valve closing direction, and has an orifice at the center thereof for adjusting the flow rate when the valve body 20 is opened. 5a are formed.
[0013]
A valve chamber 3b bulging outward is formed near the upper end opening of the body 3, and this valve chamber 3b communicates with the inside of the water supply pipe 1 through the orifice 5a of the spring receiver 5. A valve portion 24 provided at the top of the valve body 20 faces the valve chamber 3b. A substantially cylindrical sleeve 10 is inserted into the body 3 from below, and an outer flange 10a provided on the lower end of the sleeve 10 is brought into contact with the lower surface of an inner flange 3c formed on the inner surface of the lower end of the body 3. It is positioned by that. A lock nut 16 is screwed to the lower end of the body 3, and the lock nut 16 presses the flange 10 a of the sleeve 10 to the lower surface of the inner flange 3 c of the body 3 via a flange of a hose joint 17 made of resin. Thus, the sleeve 10 is fixed concentrically inside the body 3.
[0014]
Between the inner surface of the body 3 and the outer surface of the sleeve 10, a cylindrical working chamber 6 for storing water therein is formed. The lower end side (the side opposite to the water supply pipe side) of the working chamber 6 is closed by a sealing material 11 such as an O-ring mounted on the outer periphery of the outer flange 10 a of the sleeve 10. A small annular space 13 is formed between the inner flange 3c of the body 3 and the outer flange 10a of the sleeve 10, and the annular space 13 and the working chamber 6 are formed through an inflow hole 14 vertically passing through the inner flange 3c. Communicating. The annular space 13 communicates with the valve chamber 3b of the body 3 via the inflow passage 7. The inflow passage 7 is formed inside an axially extending ridge 8 (see FIG. 2) integrally formed with the outer wall of the body 3. In this embodiment, the inflow passage 7 forms a through hole that penetrates the ridge 8 in the axial direction, the lower end thereof is sealed with a set bolt 15, and the inflow direction from the annular space 13 is oblique to the through hole. And a drill hole 12 is formed in the hole.
In the above embodiment, the inflow hole 14 was formed in the inner flange 3c in order to communicate the annular space 13 and the lower end of the working chamber 6, but the gap between the outer peripheral surface of the sleeve 10 and the inner peripheral surface of the inner flange 3c ( (See FIG. 6).
[0015]
The upper end of the sleeve 10 extends to the valve chamber 3a of the body 3, and the upper end thereof is formed with a valve port 12 having a slightly reduced diameter. As shown in FIG. 3, a cap-shaped valve element 20 is fitted to the upper end of the sleeve 10 so as to be movable in the axial direction. A cylindrical sealing portion 21 for sealing the upper end side of the working chamber 6 is formed integrally with a lower end portion of the valve body 20. A seal member 22 such as an O-ring that contacts the outer peripheral surface of the sleeve 10 and a seal member 23 that contacts the inner peripheral surface of the body 3 are attached to the inner and outer periphery of the sealing portion 21. A cylindrical valve portion 24 is provided at an upper end portion of the valve body 20, and a valve gasket 25 for opening and closing the valve port 12 is attached to an inner ceiling surface of the valve portion 24. A communication hole 26 is provided between the valve portion 24 of the valve body 20 and the sealing portion 21 to allow communication between the outer peripheral surface and the inner peripheral surface. Water in the valve chamber 3 b passes through the communication hole 26. It is always guided to the outer peripheral surface of the sleeve 10 (valve port 12). In this embodiment, since the diameter of the valve port 12 is slightly smaller than the diameter of the sleeve 10, an annular space 9 (see FIG. 4) is formed between the inner peripheral surface of the valve portion 24 and the outer peripheral surface of the valve port 12. Water is guided to the annular space 9 through the communication hole 26. A return spring 27 for urging the valve body 20 downward and pressing the gasket 21 against the valve port 12 is disposed between the upper surface of the valve portion 24 of the valve body 20 and the spring receiver 5. In this embodiment, the spring load of the return spring 27 is set low, so that the valve body 20 is stable with respect to the valve port 12 even when, for example, the freeze prevention device A is installed obliquely with respect to the water supply pipe 1. It has the role of supporting the user to sit down.
[0016]
In this embodiment, since the valve port 12 is formed at the upper end of the sleeve 10, the cap-shaped valve body 20 is inserted from the upper end opening of the body 3, and is assembled only by fitting into the upper end of the sleeve 10. And assembly is simplified. Further, since there is no need to form a valve port in the body 3, the structure of the body 3 is simplified. As a result, each of the valve body 20 and the body 3 can be composed of one part, and there is an advantage that the valve body 20 and the body 3 can be reduced in size.
[0017]
A resin drain pipe 29 is inserted into the sleeve 10. When the valve element 20 opens the valve port 6, the water in the water supply pipe 1 passes through the valve chamber 3 b, the communication hole 25, the valve port 12, the drain pipe 29 inserted into the sleeve 10, and the hose joint 17. Drained to the outside via. Therefore, a drain passage is formed by the drain pipe 29 and the hose joint 17. The drain pipe 29 and the hose joint 17 prevent water droplets from adhering to the inner surface of the sleeve 10 and freezing when draining the water in the water supply pipe 1. It is preferable to use a resin material having low properties. As a result, the heat retained in the water at the time of drainage is less likely to be transmitted to the sleeve 10, but since the water in the working chamber 6 is slightly melted and the valve is closed as described later, there is almost no influence by the drainage pipe 29. If necessary, the drainage pipe 29 may be omitted or shorter than that shown, so that drainage flows along the inner surface of the sleeve 10.
[0018]
The body 3 is preferably made of a material having high thermal conductivity such as brass. Therefore, when the outside air temperature decreases, the heat retained in the water in the inflow passage 7 and the working chamber 6 is radiated from the outer surface of the body 3 constituting the outer wall, and the water in the inflow passage 7 and the working chamber 6 is quickly solidified. . Moreover, since the working chamber 6 is formed of a thin cylindrical space, the contact area of the working chamber 6 with the body 3 with respect to the volume is large, and the working chamber 6 can quickly respond to the outside air temperature.
On the other hand, the valve body 20 is preferably made of a material having a lower thermal conductivity than the body 3 (for example, stainless steel). That is, when the valve body 20 is also formed of a material having high thermal conductivity like the body 3, the heat retained in the water inside the valve chamber 3b is transmitted to the working chamber 6 through the valve body 20, and the water in the working chamber 6 is May delay clotting. On the other hand, if the valve body 20 is formed of a material having a lower thermal conductivity than the body 3, the amount of heat transmitted from the valve chamber 3b to the working chamber 6 via the valve body 20 is reduced, and water in the working chamber 6 is removed. This is because it can be rapidly solidified.
Also, the sleeve 10 may be formed of a material having a lower thermal conductivity than the body 3 (for example, stainless steel). The reason for this is to prevent the heat of the air layer inside the sleeve 10 constituting the inner wall of the working chamber 6 from being transmitted to the working chamber 6, and to prevent the solidification of water in the working chamber 6 from being delayed. However, it goes without saying that the sleeve 10 may be formed of a material having high thermal conductivity like the body 3.
[0019]
On the side wall of the body 3 located at the upper part of the working chamber 6, a blow hole 30 is formed in which an inner end communicates with the outer peripheral surface of the sealing portion 21 of the valve body 20 and an outer end communicates with the outside. A female screw 31 is formed at the outer end of the blow hole 30, and a blow valve 32 capable of opening and closing the blow hole 30 is screwed into the female screw 31. The blow valve 32 has a discharge hole 33 for discharging the water flowing through the blow hole 30 to the outside.
When the blow valve 32 is opened, the internal pressure of the working chamber 6 decreases, so that the water in the water supply pipe 1 is introduced into the working chamber 6 from below through the valve chamber 3 b and the inflow passage 7. Accordingly, the water in the working chamber 6 is discharged from the gap between the outer peripheral surface of the valve body 20 and the body 3 through the blow hole 30 and the discharge hole 33 of the blow valve 32. The air that has accumulated in the tank is discharged together with the water. Since the air is a compressive fluid, if any air remains in the working chamber 6, the valve opening operation of the valve body 20 will be significantly delayed. Since the blow hole 30 communicates with the lowermost part and the blow hole 30 communicates with the uppermost part of the working chamber 6, the residual air in the working chamber 6 can be efficiently discharged.
[0020]
Next, the operation of the antifreezing device A having the above configuration will be described.
When the outside air temperature drops below zero, the heat retained in the water in the inflow passage 7 and the working chamber 6 is released through the body 3, and the water in the inflow passage 7 is frozen first, and then the water in the working chamber 6 is cooled. Begins to solidify. In particular, due to the effect of the retained heat of water in the valve chamber 3b, the lower part of the working chamber 6 solidifies faster than the upper part near the valve chamber 3b. When the water in the working chamber 6 starts to solidify, the inflow passage 7 is already frozen and closed, so that the valve body 20 is pushed up by the volume expansion of the working chamber 6 at the time of water solidification, and the valve port 12 is opened ( (See FIG. 5). Therefore, the water in the water supply pipe 1 is discharged outside through the valve chamber 3b, the valve port 12, and the drain pipe 29. As a result, the flow of water in the water supply pipe 1 is promoted to prevent the water supply pipe 1 from freezing, and the retained heat of the discharged water is transmitted to the working chamber 6 via the body 3, the valve body 20 or the sleeve 10. Then, the ice in the working chamber 6 is melted. As a result, the volume of the working chamber 6 is reduced, the valve body 20 is pushed down by the water pressure of the water supply pipe 1 and the spring force of the spring 27, and the valve is automatically closed. Thereafter, the above operation is repeated.
[0021]
In the valve opening operation, the valve element 20 is disposed on the upper end side of the working chamber 6 and receives only the axial force due to the volume expansion of the working chamber 6, so that the axial movement of the valve element 20 becomes very smooth. . Therefore, the valve can be opened only when the water in the working chamber 6 starts to solidify in a sherbet-like manner, and the other pipes such as the water supply pipe 1 can be reliably prevented from reacting sharply to a decrease in the outside air temperature. Also, when the valve port 12 is opened and drained, the sherbet-like ice in the working chamber 6 is quickly melted by the retained heat of the drainage, so that the valve can be closed without wasting a large amount of water, thereby saving water. it can.
[0022]
As described above, since the valve port 12 is formed at the upper end of the sleeve 10 constituting the inner wall of the working chamber 6, when the valve port 12 is opened, water in the valve chamber 3 b passes through the valve port 12. It is only emitted. That is, the water that has passed through the valve port 12 is discharged without passing through the gap between the valve body 20 and the body 3 or the gap between the valve body 20 and the sleeve 10. In a small anti-freezing device, since the inner diameter of the sleeve 10 is small, a part of the drainage may accumulate in the drainage passage 29. Since the drainage passage 29 is open to the atmosphere, the accumulated drainage may freeze. There is. However, since the sliding portion of the valve body 20 does not exist in the drain passage 29 downstream of the valve port 12, even if the accumulated drain water freezes in the drain passage 29, the valve opening operation of the valve body 20 is completely adversely affected. Has no effect.
The ice frozen in the drain passage 29 is instantaneously melted when the valve port 12 is opened and the water in the water supply pipe 1 flows, so that there is no problem. Further, by using a material having a small coefficient of friction such as a tetrafluoroethylene resin as the drain pipe 29, ice can be discharged even by a differential pressure at the time of opening the valve.
The upstream side of the valve port 12 (the valve chamber 3b, the communication hole 26, and the annular space 9) communicates with the water supply pipe 1 and is filled with water under pressure, so that it does not freeze.
[0023]
In the above embodiment, the inflow passage 7 is formed inside the ridge 8 integrally formed on the outer wall of the body 3. However, as shown in FIG. 6, the inflow passage is connected by connecting a separate pipe 18. It may be formed. The inflow pipe 18 should be formed of a thin metal pipe with good heat conduction, because the water inside must be frozen earlier than the working chamber 6. In this case, since the entire circumference of the inflow pipe 18 is exposed to the outside air, freezing can be accelerated.
[0024]
The anti-freezing device A of the present invention is not limited to being installed in the middle of the water supply pipe 1 as shown in FIG. For example, it can be attached near the water tap at the end of the pipe, or attached to the pipe of the water heater.
In the above embodiment, the body 3 of the anti-freezing device A is constituted by an integral structure, but may be constituted by a plurality of parts as in JP-A-8-28732. For example, if the joint portion to be screwed to the joint 2 is formed of a separate part, even if the diameter of the connection port of the joint 2 is different, it can be easily dealt with only by replacing the joint.
In the above-described embodiment, the example in which the valve body 20 is operated by the water in the working chamber 6 solidifying after the inflow passage 7 is frozen and closed first, but a check valve is provided in the inflow passage 7. Even if the inflow passage 7 does not freeze first, the expansion pressure due to solidification of the water in the working chamber 6 may be prevented from escaping to the inflow passage 7.
[0025]
【The invention's effect】
As apparent from the above description, according to the present invention, since the valve port is formed not at the body but at the end of the water supply pipe side of the sleeve constituting the inner wall of the working chamber, the drain port is formed at the drain path downstream from the valve port. Does not have a sliding portion of the valve element. Therefore, even if a part of the drainage freezes in the sleeve, the valve opening operation of the valve body is not adversely affected.
Further, since the valve port is formed at the end of the sleeve on the water supply pipe side, there is no need to process the body into a complicated structure as in the case of forming the valve port on the body, and the valve body also covers the upper end of the sleeve. With the cap shape, the sealing portion and the valve portion can be configured as an integral part, so that the structure is simple and the assembly is easy. Therefore, an inexpensive and small freezing prevention device can be realized.
[Brief description of the drawings]
FIG. 1 is an overall sectional view of a first embodiment of an antifreezing device according to the present invention.
FIG. 2 is a sectional view taken along line BB of FIG.
FIG. 3 is a perspective view of a valve body.
FIG. 4 is an enlarged view of a main part of FIG.
FIG. 5 is an enlarged view of a main part of FIG. 1 during operation.
FIG. 6 is a sectional view of a second embodiment of an antifreezing device according to the present invention.
FIG. 7 is a sectional view of a conventional anti-freezing device.
[Explanation of symbols]
A antifreeze device 1 water supply pipe 3 body 6 working chamber 7 inflow passage 10 sleeve 12 valve port 20 valve body 21 sealing portion 24 valve portion 25 gasket 27 return spring 29 drainage pipe (drainage passage)

Claims (2)

一端部が送水配管に接続された筒形のボデーと、
上記ボデーの内部に同心状に固定され、その送水配管側の端部に弁口が形成されたスリーブと、
上記ボデーの内面とスリーブの外面との間に形成され、送水配管側と反対側の端部が閉鎖され、内部に水を貯留する円筒状の作動室と、
上記作動室の送水配管側の端部を摺動自在に封止する封止部を有し、作動室内の水凝固時の体積膨張作用により上記ボデーおよびスリーブに対して軸方向に摺動し、上記弁口を開く弁体と、
上記弁体の開弁動作により、送水配管内部の水を上記弁口からスリーブの内側を通って外部へ排出する排水通路と、を具備したことを特徴とする凍結防止装置。
A cylindrical body with one end connected to the water supply pipe,
A sleeve fixed concentrically inside the body and having a valve port formed at an end of the water supply pipe side;
A cylindrical working chamber formed between the inner surface of the body and the outer surface of the sleeve, the end opposite to the water supply pipe side being closed, and storing water therein;
A sealing portion that slidably seals an end of the working chamber on a water supply pipe side, and slides in the axial direction with respect to the body and the sleeve by a volume expansion effect at the time of water coagulation in the working chamber; A valve element for opening the valve port,
A dewatering passage for discharging water inside the water supply pipe from the valve port to the outside through the inside of the sleeve by opening the valve body.
請求項1に記載の凍結防止装置において、
上記ボデーには、送水配管の内部と作動室の送水配管側と反対側の端部とを連通させ、作動室より先に凍結して封止される流入通路が形成されていることを特徴とする凍結防止装置。
The freeze prevention device according to claim 1,
The body has an inflow passage that connects the inside of the water supply pipe and an end of the working chamber on the side opposite to the water supply pipe side and is frozen and sealed before the working chamber. Antifreeze device.
JP2002195293A 2002-07-03 2002-07-03 Freezing prevention device Expired - Fee Related JP3983118B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002195293A JP3983118B2 (en) 2002-07-03 2002-07-03 Freezing prevention device
CN 03137857 CN1237237C (en) 2002-07-03 2003-05-28 Antifreezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195293A JP3983118B2 (en) 2002-07-03 2002-07-03 Freezing prevention device

Publications (2)

Publication Number Publication Date
JP2004036243A true JP2004036243A (en) 2004-02-05
JP3983118B2 JP3983118B2 (en) 2007-09-26

Family

ID=29997025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195293A Expired - Fee Related JP3983118B2 (en) 2002-07-03 2002-07-03 Freezing prevention device

Country Status (2)

Country Link
JP (1) JP3983118B2 (en)
CN (1) CN1237237C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111874436A (en) * 2020-08-18 2020-11-03 广州尚功塑胶有限公司 Full plastic pump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059177B2 (en) * 2014-04-25 2017-01-11 リンナイ株式会社 Freezing prevention device
CN106764021B (en) * 2016-12-03 2018-12-18 武海强 A kind of ice driving freezing protection control device
CN108266554B (en) * 2016-12-30 2019-07-02 水伯格五金(深圳)有限公司 A kind of device that can prevent water supply pipe from freezing
EP3985314A1 (en) * 2020-10-19 2022-04-20 Danfoss A/S Controller and actuator for a heat exchanger valve
CN112728181A (en) * 2021-01-18 2021-04-30 路达(厦门)工业有限公司 Anti-freezing angle pressure reducing valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111874436A (en) * 2020-08-18 2020-11-03 广州尚功塑胶有限公司 Full plastic pump

Also Published As

Publication number Publication date
JP3983118B2 (en) 2007-09-26
CN1237237C (en) 2006-01-18
CN1469019A (en) 2004-01-21

Similar Documents

Publication Publication Date Title
JP4200003B2 (en) Metering valve
US6532986B1 (en) Freeze protection device for wall hydrants/faucets
CA2488953C (en) Freeze protection device for wall hydrants/faucets
US6883534B2 (en) Freeze protection device for wall hydrants/faucets
JP2004036243A (en) Antifreezing apparatus
KR970032964A (en) Selective drainage device of water purifier
US6857442B1 (en) Freeze protection device for wall hydrants/faucets
JP4919018B2 (en) Pipe drain plug
US5947150A (en) Freezeless dripping wall faucet-hydrant
US6830063B1 (en) Freezeless protection device for wall hydrants/faucets
JP3636377B2 (en) Freezing prevention device
US4766923A (en) Freeze safe valve
JPH06146367A (en) Antifreezing type flush valve
JPH01287320A (en) Anti-freezing device
JP2002004348A (en) Antifreezing method for water service pipe and bellows valve used therefor
JP2005016693A (en) Automatic drain valve
JP3754661B2 (en) Water faucet using anti-freezing valve device
JP4916196B2 (en) Faucet column
JPH01304230A (en) Anti-freezing equipment
JPH02256726A (en) Freeze preventer for water supply stopper
JPS6141807Y2 (en)
JPS6125554Y2 (en)
JPS5842541Y2 (en) intake valve
JP2001336181A (en) Antifreeze device
JP6059177B2 (en) Freezing prevention device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070213

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees