JP3636377B2 - Freezing prevention device - Google Patents

Freezing prevention device Download PDF

Info

Publication number
JP3636377B2
JP3636377B2 JP19176594A JP19176594A JP3636377B2 JP 3636377 B2 JP3636377 B2 JP 3636377B2 JP 19176594 A JP19176594 A JP 19176594A JP 19176594 A JP19176594 A JP 19176594A JP 3636377 B2 JP3636377 B2 JP 3636377B2
Authority
JP
Japan
Prior art keywords
working chamber
water
water supply
valve
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19176594A
Other languages
Japanese (ja)
Other versions
JPH0828732A (en
Inventor
正文 南
Original Assignee
正文 南
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正文 南 filed Critical 正文 南
Priority to JP19176594A priority Critical patent/JP3636377B2/en
Publication of JPH0828732A publication Critical patent/JPH0828732A/en
Application granted granted Critical
Publication of JP3636377B2 publication Critical patent/JP3636377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は上水道など送水配管内の水の凍結を防止する凍結防止装置に関するものである。
【0002】
【従来の技術】
従来、感温センサなどを用いることなく、水の物性を利用して水道配管の凍結を確実に防止できる凍結防止装置が提案されている(特開平1−287320号公報,特開平1−304230号公報)。この凍結防止装置は、送水配管の開口部に固定されるシリンダと、シリンダの内部に摺動自在に挿通され、弁口を開閉する弁体と、弁体外周面とシリンダ内周面との間の環状空間に形成され、水凝固時の体積膨張作用により弁体を開弁動作させる作動室と、上記弁体の内部に形成され、弁体の開弁動作により送水配管内部の水を外部に排出する排水通路と、送水配管内部と上記作動室とを結ぶ給水通路とを設けたものである。
この場合には、弁体の開弁動作により送水配管内の水が弁体内部の排水通路から流出するため、送水配管の水の保有する熱が弁体に伝わって作動室内の氷を溶かし、弁体を閉動作させることができる。つまり、排水通路を流れる水の保有熱によって作動室の氷を融解させるので、寒冷期でも短時間で弁体を閉じることができ、排水を節約できる。
【0003】
【発明が解決しようとする課題】
上記の凍結防止装置の場合、作動室はシリンダの内面と弁体の外面との間の環状空間に形成されている。そのため、作動室の水が凝固して体積膨張した時、その膨張圧力を受けて弁体が軸方向に移動する必要がある。ところが、作動室内で凝固した氷は作動室の内側壁を構成する弁体の外面に密着し、この氷が弁体の軸方向移動を阻害する恐れがあった。その結果、作動室内の水がかなりの程度凝固し、膨張圧力が弁体への氷の密着力に打ち勝って弁体を軸方向に移動させるまで開弁できず、外気温度の低下に対して鋭敏に動作できない場合があった。
【0004】
本発明の目的は、作動室の水凝固時における弁体の軸方向移動を円滑に行うことができ、外気温度の低下に対して極めて鋭敏に動作する凍結防止装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の凍結防止装置は、一端部が送水配管の開口部に接続され、この一端部側に弁口が形成された筒形のボデーと、上記ボデーの内部に同心状に固定されたスリーブと、上記ボデーの内面とスリーブの外面との間に形成され、内部に水を貯留する円筒状の作動室と、上記作動室の一端側を封止する封止部を有するとともに、作動室内の水凝固時の体積膨張作用により上記ボデーおよびスリーブに対して軸方向に摺動し、上記弁口を開く弁体と、上記弁体の開弁動作により、上記送水配管内部の水を弁口からスリーブの内側を通って外部へ排出する排水通路と、上記ボデーの側壁部に形成され、上記送水配管の内部と作動室の他端部とを連通させ、上記作動室より先に凍結して封止される給水通路と、を具備したものである。
また、上記ボデーの一端部側に送水配管との間を中継するジョイントを接続し、ジョイントと弁体との間に、弁体を閉弁方向に付勢するスプリングを介装するのが望ましい。
【0006】
【作用】
作動室はシリンダとスリーブとの間に形成されているので、作動室の水凝固により体積膨張が起こると、作動室の一端側を封止している弁体が軸方向に押される。この弁体の軸方向移動により、弁口が開かれ、送水配管内部の水が弁口からスリーブの内側を通って外部に排出される。
水凝固時の体積膨張圧力が弁体に対して軸方向にのみ作用するので、弁体は非常に円滑に軸方向に移動でき、作動室内の水が僅かに凝固しただけで、鋭敏な開弁動作を行うことができる。
送水配管内部の水が排水通路を通って外部に排出されると、その水の持つ保有熱が弁体、ボデーあるいはスリーブを介して作動室に伝わり、内部の氷を溶かす。そのため、作動室の体積が小さくなり、弁体は送水配管の水圧あるいはスプリング力などによって自動的に閉弁する。
【0007】
【実施例】
図1〜図3は本発明にかかる凍結防止装置Aの一例を示す。
上水道配管などの送水配管1の途中にはT形継手2が接続されており、この継手2の下部接続口2aにはジョイント4を介して凍結防止装置Aの円筒形のボデー3が接続されている。配管1,継手2およびジョイント4はテーパねじ1a,2b,4aによって螺着しているため、互いにシールされている。ジョイント4とボデー3とは通常のねじ4b,3aで螺着されており、両者の間にOリングのようなシール材5を介在させることより水漏れが防止されている。
ボデー3の上端開口部、即ちジョイント4側の開口部には、内側に若干突出した弁口6が形成されている。
【0008】
ボデー3の下部内側には略円筒形のスリーブ10が挿入され、ボデー3の下端部に螺着されたニップル15でスリーブ10の下端フランジ10aをボデー3の下面に圧着することにより、ボデー3の内部に同心状に固定されている。そのため、ボデー3の内面とスリーブ10の外面との間には、内部に水を貯留する円筒状の作動室7が形成される。作動室7の下端側は、ボデー3とスリーブ10との間に配置したOリングのようなシール材11によって閉じられている。作動室7の下端部は、ボデー3とスリーブ10との狭い隙間12を介して、スリーブ10の外周面の環状溝によって形成された環状空間13に連通しており、この環状空間13はボデー3の側壁部に軸方向に形成された給水通路8を介してジョイント4の内部と連通している。給水通路8はボデー3の側壁部に下端部近傍まで延びるように一体形成された膨出部9(図2参照)の内部に形成されている。
【0009】
上記ニップル15は、スリーブ10をボデー3に固定するための固定具としての機能の他に、ホースなどをつなぐための接続具としての機能と、後述する排水パイプ29の下端に溜まった水滴が凝固するのを防止する風除けおよび保護筒としての機能とを有する。
上記のような狭い隙間12を設けたのは、給水通路8の下部または作動室7の下部が少しでも凍結すれば、作動室7と給水通路8との間を閉止できるようにするためである。また、環状空間13を設けたのは、後述するブロー弁32により作動室7内の空気を脱気する際、給水通路8から作動室7へスリーブ10の全周から水を導入させ、脱気をスムーズに行うためである。
上記給水通路8の下端部を作動室7の上部に接続することもできるが、この場合にはジョイント4内の水の保有熱により作動室7より早期に凍結させることが難しい。これに対し、実施例のように給水通路8を作動室7の下端側に接続し、給水通路8を作動室7の外側に形成すれば、ジョイント4内の水の保有熱による影響を少なくできるとともに、給水通路8の放熱面積を大きくできる。そのため、外気温度が低下した時、給水通路8が作動室7より早く凍結し、作動室7と送水配管1との間を閉止できる。また、後述する排水通路を流れる水による融解は作動室7より遅い。
【0010】
ボデー3の上部内側には、図3に示す弁体20が軸方向に移動自在に挿入されている。この弁体20の下端部には、ボデー3とスリーブ10との間に挿入される円筒形の封止部21が一体に形成されており、この封止部21の内外周には作動室7の上端側をシールするOリング等のシール材22,23が取り付けられている。弁体20の上端部には、上記弁口6を開閉するシール用パッキン25を備えたばね受け具24が螺着一体化されている。
ばね受け具24の上面とジョイント4の上端部の内側段差部4cとの間には、パッキン25を弁口6に押し付けるための閉弁用のスプリング26が配置されている。なお、ジョイント4の内側段差部4cには、上記スプリング26の圧接力によってスクリーン27が同時に保持されている。このスクリーン27は、送水配管1内部のスケール等がボデー3内に入るのを防止している。
弁口6の下側と弁体20の上面との隙間には、クリーニング用リング28が上下動自在に配置されている。このリング28は、弁口6が開かれた時、弁口6を流れる水の流れによって上下に揺動し、弁体20が摺接するボデー3の内壁面を自動的にクリーニングするものである。
【0011】
弁体20の中央部には、側方へ貫通する排水孔20aが形成され、かつ弁体20の軸心部には排水パイプ29の上端部が挿着されている。排水パイプ29は四フッ化エチレン樹脂などの内面が円滑なパイプで構成され、このパイプ29の上端は排水孔20aに連通している。排水パイプ29はスリーブ10の中心孔10bの中を下方へ貫通している。
弁体20が弁口6を開いた時、送水配管1内の水は、弁口6から上記排水孔20a、排水パイプ29を通り、外部へ排水される。したがって、排水孔20aおよび排水パイプ29により排水通路が形成される。
なお、排水パイプ29は、送水配管1内の水を排水する際に、水滴が弁体20とスリーブ10との間やスリーブ10の内面に付着して、氷結するのを防止するものである。しかし、排水パイプ29が熱伝導性の低い材料で形成されているため、排水時の水の保有熱がスリーブ10に伝わり難くなるが、後述するように作動室7の水が僅かに溶けただけで閉弁されるので、排水パイプ29による影響は殆どない。なお、必要に応じて排水パイプ29を省略あるいは図示のものより短くし、排水がスリーブ10の内面を伝って流れるようにしてもよい。
排水パイプ29とスリーブ10の下端部との間には、所定幅の空隙30が設けられている。この空隙30により、排水パイプ29からスリーブ10への熱伝導性を低くし、排水パイプ29内を通る水の保有熱によって隙間12や環状空間13に凝固した氷が溶けるのを防止している。
【0012】
ボデー3は真鍮のような熱伝導度の高い材料で形成されている。そのため、外気温度が低下した時、給水通路8や作動室7の水の保有熱は外壁を構成するボデー3の外表面から放散され、給水通路8や作動室7内の水を速やかに凝固させる。しかも、作動室7は薄肉な円筒状空間で構成されているため、容積に対するボデー3との接触面積が大きく、外気温度に迅速に反応できる。
一方、弁体20はボデー3より熱伝導度の低い材料(例えばステンレス)で形成されている。そのため、敏感な開弁作動を行うことができる。即ち、弁体20もボデー3と同様に熱伝導度の高い材料で形成した場合、ジョイント4内部の水の保有熱が弁体20を介して作動室7に伝わり、作動室7の水の凝固を遅らせる可能性がある。これに対し、弁体20をボデー3に比べて熱伝導度の低い材料で形成すれば、ジョイント4から弁体20を介して作動室7に伝わる熱量が少なくなり、作動室7の水を速やかに凝固させることができるからである。
また、スリーブ10もボデー3より熱伝導度の低い材料(例えばステンレス)で形成されている。その理由は、作動室7の内壁を構成するスリーブ10の内側は外気に比べて温かい空気層であるため、その空気層の熱が作動室7に伝わるのを抑制し、作動室7の水の凝固が遅れるのを防止するためである。
【0013】
上記作動室7の上部に位置するボデー3の側壁には、内側端部が弁体20の封止部21の外周面に通じ、外側端部が外部に通じるブロー孔30が形成されている。ブロー孔30の外側端部には雌ねじ31が形成され、この雌ねじ31にブロー孔30を開閉自在なブロー弁32が螺合している。
ブロー弁32を開くと、作動室7の内圧が低下するため、送水配管1内の水は給水通路8を通って作動室7に下方より導入される。それに伴って、作動室7の水は弁体20の外周面とボデー3との隙間から、ブロー孔30およびブロー弁32の排出孔33を介して排出されるが、同時に作動室7の上部に溜まった空気も水とともに排出される。特に、空気は圧縮性流体であるため、作動室7に空気が少しでも残留していると、弁体20の開弁動作を著しく遅らせることになるが、上記のように給水通路8が作動室7の最下部に連通し、ブロー孔30が作動室7の最上部に連通しているので、作動室7の残留空気を効率良く排出できる。
【0014】
次に、上記構成の凍結防止装置の作動を説明する。
外気温度が零度以下に低下すると、給水通路8および作動室7内の水の保有熱がボデー3を介して放出され、給水通路8の水が先に凍結し、しかる後作動室7内の水が凝固し始める。特に、ジョイント4内部の水の保有熱の影響のため、作動室7の内、ジョイント4に近い上部に比べて、下部の方が早く凝固する。作動室7内の水が凝固し始めると、給水通路8は既に凍結して閉止されているので、作動室7の水凝固時の体積膨張によって弁体20が押し上げられ、弁口6を開く。そのため、送水配管1内の水がジョイント4、弁口6、排水孔20aおよび排水パイプ29を通って外部に排出される。その結果、送水配管1内の水の流通を促して送水配管1の凍結を防止できるとともに、排出される水の保有熱が、ボデー3、弁体20あるいはスリーブ10を介して作動室7に伝導され、作動室7の氷を溶かす。その結果、作動室7の体積が縮小し、弁体20は送水配管1の水圧およびスプリング26のばね力によって押し下げられ、閉弁する。以後、上記の動作を繰り返す。
【0015】
上記開弁動作において、弁体20は作動室10の上端側に配置されており、作動室10の体積膨張による軸方向力のみを受けることになる。そのため、弁体20の軸方向移動が非常に円滑となり、作動室10の僅かな体積膨張でも弁体20が弁口6を開くことができる。つまり、作動室7の中の水がシャーベット状に凝固し始めるだけで開弁でき、外気温度の低下に対し非常に鋭敏に反応できる。したがって、送水配管1などの他の配管の凍結を確実に防止できる。しかも、弁口6を開いて排水した時、排水の保有熱により作動室7内のシャーベット状の氷は速やかに溶けるので、多量の水が無駄に排出されることなく閉弁できる。
【0016】
本発明の凍結防止装置は、図1のような送水配管1の途中に取り付ける場合に限らず、あらゆる部位に取り付けることが可能である。
図4は本発明の凍結防止装置Aを、配管末端部の給水栓の近傍に取り付けた例を示す。
コンクリート柱などの側壁40に送水配管1の端部が開口しており、この開口端部にジョイント41を介して給水栓42が接続されている。ジョイント41の下部接続口41aには、凍結防止装置Aがジョイント4を介して接続されている。ジョイント41の内部には、樹脂製の循環パイプ43が挿通され、一端のフランジ43aをジョイント41の導入口に係止することにより、抜け止めされている。循環パイプ43の他端部は給水栓42の中に挿入されている。
そのため、凍結防止装置Aの弁体20が開いた時、送水配管1の水は矢印で示すように、給水栓42の中に入った後、循環パイプ43の外側を通って凍結防止装置Aへ流れる。そのため、給水栓42の凍結を確実に防止できる。
なお、給水栓42を開いた時に、パイプ43の外側の空間が負圧になるのを防止するため、パイプ43の内外を連通させる負圧防止孔43bが形成されている。
【0017】
上記実施例では、凍結防止装置Aのボデー3をジョイント4を介して送水配管1に接続した例を示したが、ボデー3を送水配管1に直接接続してもよい。ただ、ジョイント4を用いれば、送水配管1側の接続口の直径が異なる場合でもジョイント4を交換するだけで簡単に対応できるとともに、水道配管で一般に用いられているテーパネジを容易に形成できる利点がある。また、弁体20を閉弁方向に付勢するスプリング26やスクリーン27の配置も簡単となる。
【0018】
【発明の効果】
以上の説明で明らかなように、本発明によれば、作動室をシリンダとスリーブとの間に形成し、弁体の一部が作動室の一端側を封止するようにしたので、作動室の水凝固時の体積膨張圧力を弁体に対して軸方向にのみ作用させることができ、弁体は円滑に軸方向に移動できる。そのため、作動室内の水が僅かに凝固しただけで開弁でき、外気温度の低下に対して極めて鋭敏に動作する凍結防止装置を得ることができる。
【図面の簡単な説明】
【図1】本発明にかかる凍結防止装置の一例の全体断面図である。
【図2】図1のB−B線断面図である。
【図3】弁体の斜視図である。
【図4】本発明の凍結防止装置を給水栓近傍に取り付けた例の断面図である。
【符号の説明】
1 送水配管
3 ボデー
4 ジョイント
6 弁口
7 作動室
8 給水通路
10 スリーブ
20 弁体
26 閉弁用スプリング
29 排水パイプ
30 ブロー孔
32 ブロー弁
[0001]
[Industrial application fields]
The present invention relates to a freeze prevention device for preventing freezing of water in a water supply pipe such as a water supply.
[0002]
[Prior art]
Conventionally, anti-freezing devices have been proposed that can reliably prevent freezing of water pipes using the physical properties of water without using a temperature sensor or the like (JP-A-1-287320, JP-A-1-304230). Publication). This anti-freezing device includes a cylinder that is fixed to an opening of a water supply pipe, a valve body that is slidably inserted into the cylinder, and that opens and closes a valve port, and between a valve body outer peripheral surface and a cylinder inner peripheral surface. Formed in the annular space, and is formed inside the valve body to open the valve body by the volume expansion action at the time of water coagulation, and the water inside the water supply pipe is made outside by the valve body opening operation. A drainage passage for discharging and a water supply passage connecting the inside of the water supply pipe and the working chamber are provided.
In this case, since the water in the water supply pipe flows out of the drainage passage inside the valve body due to the valve opening operation of the valve body, the heat held by the water in the water supply pipe is transmitted to the valve body to melt the ice in the working chamber, The valve body can be closed. That is, since the ice in the working chamber is melted by the retained heat of the water flowing through the drainage passage, the valve body can be closed in a short time even in the cold season, and drainage can be saved.
[0003]
[Problems to be solved by the invention]
In the case of the anti-freezing device described above, the working chamber is formed in an annular space between the inner surface of the cylinder and the outer surface of the valve body. Therefore, when the water in the working chamber is solidified and undergoes volume expansion, the valve body needs to move in the axial direction under the expansion pressure. However, the ice solidified in the working chamber is in close contact with the outer surface of the valve body constituting the inner wall of the working chamber, and this ice may hinder the axial movement of the valve body. As a result, the water in the working chamber solidifies to a considerable extent, and the valve cannot be opened until the expansion pressure overcomes the adhesion force of ice to the valve body and moves the valve body in the axial direction, and is sensitive to a decrease in the outside air temperature. There was a case that could not work.
[0004]
An object of the present invention is to provide an anti-freezing device that can smoothly move the valve body in the axial direction during water coagulation of the working chamber and operates extremely sensitively to a decrease in the outside air temperature.
[0005]
[Means for Solving the Problems]
To achieve the above object, the freeze prevention device of the present invention has one end connected to the opening of the water feed pipe, a cylindrical shaped body which valve port is formed on the one end side, concentric with the interior of the body a sleeve which is fixed in, is formed between the inner and outer surfaces of the sleeve of the body, a cylindrical working chamber for storing water therein, a seal for sealing the one end of the working chamber and having, axially slidable relative to the body and sleeve by volume expansion action during water coagulation of the working chamber, and the valve open mouth valve, the valve opening operation of the valve body, the interior the water pipe A drainage passage for discharging water from the valve port to the outside through the inside of the sleeve and the side wall portion of the body, the inside of the water supply pipe and the other end portion of the working chamber communicate with each other, from the working chamber a water supply passage which is sealed by freezing above, also equipped with a It is.
Moreover , it is desirable to connect a joint that relays between the water supply pipe to one end of the body, and to interpose a spring that biases the valve body in the valve closing direction between the joint and the valve body.
[0006]
[Action]
Since the working chamber is formed between the cylinder and the sleeve, when volume expansion occurs due to water coagulation of the working chamber, the valve body sealing one end side of the working chamber is pushed in the axial direction. By the axial movement of the valve body, the valve port is opened, and water inside the water supply pipe is discharged from the valve port to the outside through the inside of the sleeve.
Since the volume expansion pressure during water coagulation acts only on the valve body in the axial direction, the valve body can move very smoothly in the axial direction, and the valve opens sharply even if the water in the working chamber is slightly solidified. The action can be performed.
When the water inside the water supply pipe is discharged to the outside through the drainage passage, the retained heat of the water is transferred to the working chamber through the valve body, body or sleeve, and the internal ice is melted. Therefore, the volume of the working chamber is reduced, and the valve body is automatically closed by the water pressure of the water supply pipe or the spring force.
[0007]
【Example】
1 to 3 show an example of an antifreezing device A according to the present invention.
A T-shaped joint 2 is connected in the middle of a water supply pipe 1 such as a water supply pipe, and a cylindrical body 3 of the antifreezing device A is connected to a lower connection port 2a of the joint 2 via a joint 4. Yes. Since the pipe 1, the joint 2 and the joint 4 are screwed by the taper screws 1a, 2b and 4a, they are sealed with each other. The joint 4 and the body 3 are screwed with ordinary screws 4b and 3a, and water leakage is prevented by interposing a sealing material 5 such as an O-ring between them.
A valve port 6 that protrudes slightly inward is formed at the upper end opening of the body 3, that is, the opening on the joint 4 side.
[0008]
A substantially cylindrical sleeve 10 is inserted inside the lower portion of the body 3, and the lower end flange 10 a of the sleeve 10 is pressed against the lower surface of the body 3 with a nipple 15 screwed to the lower end portion of the body 3. It is fixed concentrically inside. Therefore, a cylindrical working chamber 7 that stores water therein is formed between the inner surface of the body 3 and the outer surface of the sleeve 10. The lower end side of the working chamber 7 is closed by a sealing material 11 such as an O-ring disposed between the body 3 and the sleeve 10. The lower end of the working chamber 7 communicates with an annular space 13 formed by an annular groove on the outer peripheral surface of the sleeve 10 via a narrow gap 12 between the body 3 and the sleeve 10. It communicates with the inside of the joint 4 through a water supply passage 8 formed in the axial direction on the side wall portion of the joint 4. The water supply passage 8 is formed inside a bulging portion 9 (see FIG. 2) integrally formed on the side wall portion of the body 3 so as to extend to the vicinity of the lower end portion.
[0009]
The nipple 15 functions not only as a fixing tool for fixing the sleeve 10 to the body 3, but also as a connection tool for connecting a hose and the like, and water droplets collected at the lower end of a drain pipe 29 to be described later are solidified. It has a function as a windbreak and a protective cylinder for preventing the above.
The reason why the narrow gap 12 as described above is provided is to allow the space between the working chamber 7 and the water supply passage 8 to be closed if the lower portion of the water supply passage 8 or the lower portion of the working chamber 7 freezes even a little. . In addition, the annular space 13 is provided when the air in the working chamber 7 is degassed by a blow valve 32 described later, and water is introduced from the entire circumference of the sleeve 10 from the water supply passage 8 to the working chamber 7. It is for performing smoothly.
Although the lower end portion of the water supply passage 8 can be connected to the upper portion of the working chamber 7, in this case, it is difficult to freeze it earlier than the working chamber 7 due to the retained heat of the water in the joint 4. On the other hand, if the water supply passage 8 is connected to the lower end side of the working chamber 7 and the water supply passage 8 is formed outside the working chamber 7 as in the embodiment, the influence of the retained heat of the water in the joint 4 can be reduced. In addition, the heat radiation area of the water supply passage 8 can be increased. Therefore, when the outside air temperature decreases, the water supply passage 8 is frozen earlier than the working chamber 7, and the space between the working chamber 7 and the water supply pipe 1 can be closed. Further, melting by water flowing through a drainage passage described later is slower than that of the working chamber 7.
[0010]
A valve body 20 shown in FIG. 3 is inserted inside the upper portion of the body 3 so as to be movable in the axial direction. A cylindrical sealing portion 21 inserted between the body 3 and the sleeve 10 is integrally formed at the lower end portion of the valve body 20, and the working chamber 7 is formed on the inner and outer periphery of the sealing portion 21. Sealing materials 22 and 23 such as O-rings are attached to seal the upper end side. A spring receiver 24 having a seal packing 25 for opening and closing the valve port 6 is screwed and integrated with an upper end portion of the valve body 20.
A valve closing spring 26 for pressing the packing 25 against the valve port 6 is disposed between the upper surface of the spring support 24 and the inner stepped portion 4 c at the upper end of the joint 4. The screen 27 is simultaneously held on the inner step portion 4 c of the joint 4 by the pressure contact force of the spring 26. The screen 27 prevents the scale and the like inside the water supply pipe 1 from entering the body 3.
In the gap between the lower side of the valve port 6 and the upper surface of the valve body 20, a cleaning ring 28 is disposed so as to be movable up and down. The ring 28 swings up and down by the flow of water flowing through the valve port 6 when the valve port 6 is opened, and automatically cleans the inner wall surface of the body 3 with which the valve body 20 is in sliding contact.
[0011]
A drain hole 20 a penetrating to the side is formed in the central portion of the valve body 20, and an upper end portion of a drain pipe 29 is inserted into the axial center portion of the valve body 20. The drain pipe 29 is formed of a pipe having a smooth inner surface such as a tetrafluoroethylene resin, and the upper end of the pipe 29 communicates with the drain hole 20a. The drain pipe 29 penetrates through the center hole 10b of the sleeve 10 downward.
When the valve body 20 opens the valve port 6, the water in the water supply pipe 1 is drained from the valve port 6 through the drain hole 20 a and the drain pipe 29 to the outside. Accordingly, a drainage passage is formed by the drainage hole 20 a and the drainage pipe 29.
The drainage pipe 29 prevents water droplets from adhering between the valve body 20 and the sleeve 10 or the inner surface of the sleeve 10 when the water in the water supply pipe 1 is drained. However, since the drain pipe 29 is formed of a material having low thermal conductivity, the retained heat of the water at the time of draining is not easily transmitted to the sleeve 10, but the water in the working chamber 7 is only slightly melted as described later. Therefore, the drainage pipe 29 has almost no influence. If necessary, the drain pipe 29 may be omitted or shorter than that shown in the drawing so that the drainage flows along the inner surface of the sleeve 10.
A gap 30 having a predetermined width is provided between the drain pipe 29 and the lower end portion of the sleeve 10. The gap 30 reduces the thermal conductivity from the drain pipe 29 to the sleeve 10, and prevents the solidified ice in the gap 12 and the annular space 13 from melting due to the retained heat of the water passing through the drain pipe 29.
[0012]
The body 3 is made of a material having high thermal conductivity such as brass. Therefore, when the outside air temperature decreases, the retained heat of the water in the water supply passage 8 and the working chamber 7 is dissipated from the outer surface of the body 3 constituting the outer wall, and the water in the water supply passage 8 and the working chamber 7 is quickly solidified. . In addition, since the working chamber 7 is constituted by a thin cylindrical space, the contact area with the body 3 with respect to the volume is large, and the working chamber 7 can react quickly to the outside air temperature.
On the other hand, the valve body 20 is formed of a material (for example, stainless steel) having a lower thermal conductivity than the body 3. Therefore, a sensitive valve opening operation can be performed. That is, when the valve body 20 is also formed of a material having high thermal conductivity like the body 3, the heat retained in the water in the joint 4 is transmitted to the working chamber 7 through the valve body 20, and the water in the working chamber 7 is solidified. There is a possibility of delaying. On the other hand, if the valve body 20 is formed of a material having a lower thermal conductivity than that of the body 3, the amount of heat transferred from the joint 4 to the working chamber 7 via the valve body 20 is reduced, and the water in the working chamber 7 is quickly discharged. This is because it can be solidified.
The sleeve 10 is also formed of a material (for example, stainless steel) having a lower thermal conductivity than the body 3. The reason is that since the inside of the sleeve 10 constituting the inner wall of the working chamber 7 is a warm air layer compared to the outside air, the heat of the air layer is prevented from being transmitted to the working chamber 7, and the water in the working chamber 7 is This is to prevent the solidification from being delayed.
[0013]
A blow hole 30 is formed in the side wall of the body 3 located at the upper portion of the working chamber 7 so that the inner end portion communicates with the outer peripheral surface of the sealing portion 21 of the valve body 20 and the outer end portion communicates with the outside. A female screw 31 is formed at the outer end of the blow hole 30, and a blow valve 32 that can freely open and close the blow hole 30 is screwed into the female screw 31.
When the blow valve 32 is opened, the internal pressure of the working chamber 7 decreases, so that the water in the water supply pipe 1 is introduced into the working chamber 7 from below through the water supply passage 8. Along with this, water in the working chamber 7 is discharged from the gap between the outer peripheral surface of the valve body 20 and the body 3 through the blow hole 30 and the discharge hole 33 of the blow valve 32. The accumulated air is also discharged with water. In particular, since air is a compressive fluid, if any air remains in the working chamber 7, the valve opening operation of the valve body 20 is significantly delayed. However, as described above, the water supply passage 8 is provided in the working chamber. Since the blow hole 30 communicates with the uppermost part of the working chamber 7, the residual air in the working chamber 7 can be discharged efficiently.
[0014]
Next, the operation of the antifreezing device having the above configuration will be described.
When the outside air temperature drops below zero degrees, the heat retained in the water supply passage 8 and the working chamber 7 is released through the body 3, the water in the water supply passage 8 is frozen first, and then the water in the working chamber 7 is discharged. Begins to solidify. In particular, due to the heat retained by water inside the joint 4, the lower part of the working chamber 7 solidifies faster than the upper part near the joint 4. When the water in the working chamber 7 starts to solidify, the water supply passage 8 has already been frozen and closed, so that the valve body 20 is pushed up by the volume expansion of the working chamber 7 during water coagulation, and the valve port 6 is opened. Therefore, the water in the water supply pipe 1 is discharged outside through the joint 4, the valve port 6, the drain hole 20 a and the drain pipe 29. As a result, the circulation of water in the water supply pipe 1 can be promoted to prevent the water supply pipe 1 from freezing, and the retained heat of the discharged water is conducted to the working chamber 7 via the body 3, the valve body 20 or the sleeve 10. The ice in the working chamber 7 is melted. As a result, the volume of the working chamber 7 is reduced, and the valve body 20 is pushed down by the water pressure of the water supply pipe 1 and the spring force of the spring 26 to close the valve. Thereafter, the above operation is repeated.
[0015]
In the valve opening operation, the valve body 20 is disposed on the upper end side of the working chamber 10 and receives only an axial force due to the volume expansion of the working chamber 10. Therefore, the axial movement of the valve body 20 becomes very smooth, and the valve body 20 can open the valve port 6 even with a slight volume expansion of the working chamber 10. That is, the water in the working chamber 7 can be opened simply by starting to solidify in a sherbet shape, and can react very sensitively to a decrease in the outside air temperature. Therefore, freezing of other pipes such as the water supply pipe 1 can be reliably prevented. Moreover, when the valve port 6 is opened and drained, the sherbet-like ice in the working chamber 7 is quickly melted by the retained heat of the drainage, so that a large amount of water can be closed without being wasted.
[0016]
The anti-freezing device of the present invention is not limited to being attached in the middle of the water supply pipe 1 as shown in FIG.
FIG. 4 shows an example in which the antifreezing device A of the present invention is attached in the vicinity of the water tap at the end of the pipe.
An end portion of the water supply pipe 1 is opened in a side wall 40 such as a concrete pillar, and a water tap 42 is connected to the open end portion via a joint 41. The antifreezing device A is connected to the lower connection port 41 a of the joint 41 through the joint 4. A resin-made circulation pipe 43 is inserted into the joint 41, and is prevented from coming off by locking a flange 43 a at one end to the introduction port of the joint 41. The other end of the circulation pipe 43 is inserted into the water tap 42.
Therefore, when the valve body 20 of the freeze prevention device A is opened, the water in the water supply pipe 1 enters the water faucet 42 as shown by the arrow, and then passes through the outside of the circulation pipe 43 to the freeze prevention device A. Flowing. Therefore, it is possible to reliably prevent the water faucet 42 from freezing.
In order to prevent the space outside the pipe 43 from becoming negative pressure when the water tap 42 is opened, a negative pressure prevention hole 43b that connects the inside and outside of the pipe 43 is formed.
[0017]
In the said Example, although the body 3 of the freeze prevention apparatus A was connected to the water supply pipe 1 via the joint 4, the body 3 may be directly connected to the water supply pipe 1. However, if the joint 4 is used, even if the diameter of the connection port on the side of the water supply pipe 1 is different, it is possible to simply cope with the replacement of the joint 4, and it is possible to easily form a taper screw generally used in water pipes. is there. Further, the arrangement of the spring 26 and the screen 27 for urging the valve body 20 in the valve closing direction is also simplified.
[0018]
【The invention's effect】
As apparent from the above description, according to the present invention, the working chamber is formed between the cylinder and the sleeve, and a part of the valve body seals one end side of the working chamber. The volume expansion pressure during water coagulation can be applied only to the valve body in the axial direction, and the valve body can smoothly move in the axial direction. Therefore, it is possible to obtain an antifreezing device that can be opened just by slightly solidifying water in the working chamber and that operates extremely sensitively to a decrease in the outside air temperature.
[Brief description of the drawings]
FIG. 1 is an overall cross-sectional view of an example of an anti-freezing device according to the present invention.
FIG. 2 is a cross-sectional view taken along line BB in FIG.
FIG. 3 is a perspective view of a valve body.
FIG. 4 is a cross-sectional view of an example in which the freeze prevention device of the present invention is attached in the vicinity of a water tap.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water supply piping 3 Body 4 Joint 6 Valve opening 7 Actuation chamber 8 Water supply passage 10 Sleeve 20 Valve body 26 Valve closing spring 29 Drain pipe 30 Blow hole 32 Blow valve

Claims (2)

一端部が送水配管の開口部に接続され、この一端部側に弁口が形成された筒形のボデーと、
上記ボデーの内部に同心状に固定されたスリーブと、
上記ボデーの内面とスリーブの外面との間に形成され、内部に水を貯留する円筒状の作動室と、
上記作動室の一端側を封止する封止部を有するとともに、作動室内の水凝固時の体積膨張作用により上記ボデーおよびスリーブに対して軸方向に摺動し、上記弁口を開く弁体と、
上記弁体の開弁動作により、上記送水配管内部の水を弁口からスリーブの内側を通って外部へ排出する排水通路と、
上記ボデーの側壁部に形成され、上記送水配管の内部と作動室の他端部とを連通させ、上記作動室より先に凍結して封止される給水通路と、を具備したことを特徴とする凍結防止装置。
A cylindrical body having one end connected to the opening of the water supply pipe and a valve port formed on the one end;
A sleeve fixed coaxially inside said body,
Is formed between the outer surface of the inner surface and the sleeve of the body, a cylindrical working chamber for storing water therein,
A valve body that seals one end side of the working chamber, and that slides in an axial direction with respect to the body and the sleeve by a volume expansion action during water coagulation in the working chamber and opens the valve port; ,
The valve opening operation of the valve body, a drain passage for discharging to the outside through the inside of the sleeve the water inside the water supply pipe from the valve port,
A water supply passage formed on the side wall of the body, communicating the interior of the water supply pipe with the other end of the working chamber, and being frozen and sealed before the working chamber , Anti-freezing device.
請求項1に記載の凍結防止装置において、
上記ボデーの一端部側には、上記送水配管との間を中継するジョイントが接続され、上記ジョイントと上記弁体との間に、上記弁体を閉弁方向に付勢するスプリングが介装されていることを特徴とする凍結防止装置。
The freeze prevention device according to claim 1,
A joint that relays between the body and the water supply pipe is connected to one end of the body, and a spring that biases the valve body in the valve closing direction is interposed between the joint and the valve body. An anti-freezing device characterized by that.
JP19176594A 1994-07-22 1994-07-22 Freezing prevention device Expired - Fee Related JP3636377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19176594A JP3636377B2 (en) 1994-07-22 1994-07-22 Freezing prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19176594A JP3636377B2 (en) 1994-07-22 1994-07-22 Freezing prevention device

Publications (2)

Publication Number Publication Date
JPH0828732A JPH0828732A (en) 1996-02-02
JP3636377B2 true JP3636377B2 (en) 2005-04-06

Family

ID=16280146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19176594A Expired - Fee Related JP3636377B2 (en) 1994-07-22 1994-07-22 Freezing prevention device

Country Status (1)

Country Link
JP (1) JP3636377B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481522C2 (en) * 2008-12-10 2013-05-10 Судо Премиум Инжиниринг Ко., Лтд. Device to control heat-sensitive fluid flow
CN108266554B (en) * 2016-12-30 2019-07-02 水伯格五金(深圳)有限公司 A kind of device that can prevent water supply pipe from freezing
CN108894283B (en) * 2017-06-26 2020-06-30 长乐市丽智产品设计有限公司 Anti-burst device
JP7121973B2 (en) * 2018-04-06 2022-08-19 株式会社カクダイ Anti-freezing mechanism for water supply pipes

Also Published As

Publication number Publication date
JPH0828732A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
US6363566B1 (en) Drain valve and pipe blockage clearing device
NO325875B1 (en) Valve with self-cleaning plug / seat unit.
SE460073B (en) DEVICE Causes Fluid Conduction by Occasional Blocking
US4638828A (en) Water temperature actuated drip valve
US6779554B2 (en) Return check valve
JP3636377B2 (en) Freezing prevention device
US4555820A (en) Drain pipe system
MXPA04001971A (en) Temperature actuated valve.
US3480027A (en) Nonfreezable hydrant
JP3983118B2 (en) Freezing prevention device
US5687951A (en) Drain valve
JP4919018B2 (en) Pipe drain plug
JPH09242904A (en) Reverse flow preventing device
US4078764A (en) Plumbing valve
US4427057A (en) Device for the control of the liquid supply of a heat exchanger
EP3552733B1 (en) Valve with integral insert-cast seat and related method
JPH02256726A (en) Freeze preventer for water supply stopper
JPH0444535A (en) Antifreezing device for faucet
KR20200005138A (en) Apparatus for controlling fluid flow
JPH0313014Y2 (en)
JPS5926219B2 (en) water heater
JPH059573Y2 (en)
JP3726554B2 (en) Sanitary washing device
JP3310585B2 (en) Hot water mixer tap
JPH0248520Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees