JP2004035995A - Method for manufacturing ferroalloy from spent catalyst - Google Patents

Method for manufacturing ferroalloy from spent catalyst Download PDF

Info

Publication number
JP2004035995A
JP2004035995A JP2002229278A JP2002229278A JP2004035995A JP 2004035995 A JP2004035995 A JP 2004035995A JP 2002229278 A JP2002229278 A JP 2002229278A JP 2002229278 A JP2002229278 A JP 2002229278A JP 2004035995 A JP2004035995 A JP 2004035995A
Authority
JP
Japan
Prior art keywords
spent
catalyst
ferroalloy
producing
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002229278A
Other languages
Japanese (ja)
Inventor
Katsumi Numa
沼 勝己
Hiroshi Fukuoka
福岡 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METTSU CORP KK
Kashima Kita Electric Power Corp
Metz Corp
Original Assignee
METTSU CORP KK
Kashima Kita Electric Power Corp
Metz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METTSU CORP KK, Kashima Kita Electric Power Corp, Metz Corp filed Critical METTSU CORP KK
Priority to JP2002229278A priority Critical patent/JP2004035995A/en
Publication of JP2004035995A publication Critical patent/JP2004035995A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively manufacturing useful metals such as vanadium, nickel and molybdenum indispensable for manufacturing a special steel and calcium aluminate being a refining agent from a spent catalyst such as spent desulfurization catalyst without generating secondary pollution by a simple process. <P>SOLUTION: A spent petroleum desulfurization catalyst is charged into a washing vessel 11 and an adhered heavy oil is washed with light oil, and after separating washing oil by a centrifugal separator 12, the treated catalyst is mixed with other spent catalysts by a mixer 13. If necessary, the mixture is molded to a briquette, etc., by using a molding machine 14, then the molded product is melted by a hearth-tapping type electric furnace 15 and Ni-Mo ferroalloy is taken out by preferentially reducing Ni and Mo. Further, ferrovanadium and calcium aluminate are obtained by adding FeSi and/or Al to a slag left in the furnace and containing the concentrated vanadium. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、使用済石油脱硫触媒等の各種廃棄物からV、Mo、Niなどの有用金属を回収する方法に関する。かかるV、Mo、Niなどは、製鋼用添加材として有効に活用することができるものである。
【0002】
【従来の技術】
バナジウムは、鉄鋼の耐熱性を向上させる有用な成分であり、これまで耐熱鋼や工具鋼などに添加されてきた。また、バナジウムは微量の添加で鋼の強度を効果的に向上させる効果があり、省エネルギー、地球環境保全の気運が高まっている近年では、車体の軽量化のために自動車の高強度化を図るべく、自動車用鋼としての低合金鋼、構造用鋼、パイプ用鋼などにバナジウムが微量添加されるようになってきている。このため、近年の鉄鋼用バナジウムの需要は年々増加の一途をたどってきており、直近の10年間のバナジウム使用量は、粗鋼トン当たりで0.03kg/tから0.05kg/tと、60%以上の伸びを示している。
【0003】
製鋼時にバナジウム添加のために用いられるフェロバナジウムは、含チタンバナジウム磁鉄鉱などの鉱石を原料に五酸化バナジウムを抽出し、この五酸化バナジウムをテルミット法によりアルミニウム還元して得られるものが主流である。
かかるテルミッド法により得られるフェロバナジウムは、不純物が少なく、バナジウム含有率の高いものであるが、反面、製造コストが嵩み、高価である。
【0004】
そこで、近年では重油焚きボイラーからの廃棄物、あるいは石油精製業界等から廃棄処分される使用済み脱硫触媒からバナジウムを抽出しようとする気運が高まりつつある。
すなわち、発電業界においては、火力発電の燃料コストを低減するために、S量の多い重油、更には減圧残査油(VRO)、あるいはオリマルジョン(ORM)といった重質で低価格の燃料が使用されるようになってきている。これらの減圧残査油、オリマルジョンには、多量のバナジウムが含有されるため、燃焼させると重油焚きボイラーの底に沈着するスラグや電気集塵装置にて集塵される煙灰中に多量のバナジウムが凝縮されることになり、これらのスラグや煙灰が新たなバナジウム資源として脚光を浴びつつある。
【0005】
また、石油精製業界においては、その石油精製過程で触媒による脱硫装置が設けられている。かかる脱硫装置に用いられた使用済触媒にもバナジウムが凝縮しているので、この使用済脱硫触媒をバナジウム資源として活用することが考えられるようになってきた。
【0006】
これらの重油焚きボイラの底に沈着するスラグや電気集塵装置にて集塵される煙灰、使用済脱硫触媒からV、Ni、Mo等の有用金属を回収することは、一部において、産業廃棄物として無駄に廃棄処理されていたものから有限な資源を回収するという点でも好ましい。
【0007】
このような重油焚きボイラの底に沈着するスラグや電気集塵装置にて集塵される煙灰、使用済み脱硫触媒といったバナジウム含有廃棄物からバナジウム等の有用金属を治金的手法により回収することは、湿式法と同様従来から試みられてきた。
【0008】
従来の治金的手法による回収方法については特開2000−204420、特開2001−13851に詳しい。この方法を図2に示す工程図を用いつつ説明すると、重油焚きボイラーのスラグ、燃焼灰、使用済脱硫触媒といったバナジウム含有原料をNo.1混合機21で混合し、次いでロータリーキルン22で450〜950℃に加熱して該原料中のS分、及びC分を分解し、SOx、及びCOとして除去する。
次いで、この原料に鉄源及びカーボンを加えNo.2混合機23で混合してから、No.1電気炉24に装入し、溶融、還元してFe、Ni、Moを主成分とするメタルとVリッチなスラグとを生成させる。Ni、Mo合金鉄を得る一方、このVリッチなスラグは、No.2電気炉25にて還元材を投入してスラグ中のVを還元しフェロバナジウムを得る。
【0009】
【発明が解決しようとする課題】
しかし上述した従来の方法では、設備費が嵩み、更に熱ロス、メタルロスも多くコストが上昇するという難点があった。
【0010】
即ち、従来の治金的手法を用いた方法では、使用済脱硫触媒のC分、S分を酸化除去する為にロータリーキルン等のばい焼炉を必要とし、そこで生成されたSOxガスを大気に放散させぬよう大規模な排ガス脱硫装置の設置を余儀なくされていた。
一方、溶融・還元作業においてもまずNo.1電気炉にてばい焼済触媒中のNi,Mo分を優先還元した後、V分が濃縮されたスラグ部分をNo.2電気炉に移注し、FeSiおよび/またはAlを添加してフェロバナジムとカルシウムアルミネートを得る方法であるため電気炉が2基必要となる。
これは設備投資額が嵩むのみならず、作業要員も多数必要になると言う問題があった。又、V濃縮スラグの移注時の温度低下、あるいはスラグのロスも避けられず無駄も多かった。
【0011】
また、使用済触媒中のNi、Mo分を優先還元するためにコークス、石炭等のカーボンを使用していたが、反応性を向上させるため粉砕機を用いて微細な粉状に粉砕後使用しておりコストアップの一つの要因となっていた。
【0012】
【課題を解決するための手段】
そこで前述した問題点を有利に解決し、使用済触媒から有用金属を安定して歩留まり良く、かつ安価に回収して製鋼用添加原料および製鋼用製錬剤として提供する方法を提案するものである。
【0013】
この発明は、使用済石油脱硫触媒を簡単な容器内にて灯油等の軽質油を用いて付着する重油を洗浄した後、遠心分離機を用いて洗浄済触媒と油分を分離する。分離された油分にはS分がかなり含まれているものの、セメント等の燃焼油として有効に使用できるものである。
言うまでもなく、洗浄に使用される容器も又、遠心分離機もシンプルでしかも特殊な部品は必要ないため設備投資が嵩まないと言う大きなメリットがある。勿論、排ガス、排水など発生せず環境の二次汚染もない。
油分を分離した後、洗浄済触媒はその他使用済の触媒、すなわち硫酸製造触媒、無水マレイン酸製造触媒およびフタル酸製造触媒と重油あるいはペトコーク焚きボイラーより発生する燃焼灰を混合して、必要に応じてブリケット等に成形する。
混合物もしくは成形物は炉底出鋼型電気炉に装入され、通電・溶融される。使用済触媒中あるいは燃焼灰中のNi、Mo分は燃焼灰中のカーボンおよび別途装入されたスクラップ等の鉄源により優先還元され、Ni−Mo合金鉄となって炉底に滞留する。温度調整がなされた後、当該Ni−Mo合金鉄はスラグを排出しないよう注意しながら炉底より出湯されNi−Mo合金鉄を得る。
一方、炉内に残されたスラグにはカーボンおよび鉄により還元されなかったV分が酸化物の形で濃縮されているため、CaOと共にFeSiおよび/あるいはAlを投入してV分を還元する。
還元されたV分はフェロバナジウムとなり炉底に滞留し、CaO分はスラグ中に溶け込みアルミナ分と反応してカルシウムアルミネートが生成される。
【0014】
この発明は使用済石油脱硫触媒を大規模なロータリーキルン等のばい焼炉でばい焼し含まれるCおよびS分を酸化除去するのではなく、簡単な容器内で灯油等の軽質油で洗浄・分離するため投資額を大きく削減できると言うメリットがある。
更には、ばい焼方法では大量のSOxガスが生成されるための多量のアルカリ、例えば生石灰もしくは石灰石粉が吹き込まれSOxを固定するが、この生成物である石膏の量も膨大となりこれの処理も大きな問題となっている。
一方、当発明の場合、洗浄された重油は軽質油との混合油となって回収されセメント製造用燃料などに再利用することが可能である。
【0015】
また、この発明では溶融・還元作業に炉底出鋼型電気炉を用いるため従来法のごとく電気炉を2基必要としない。
従って、設備投資を抑えることが出来ると同時に操業要員も少なくて済むというメリットがある。また、No.1電気炉からNo.2電気炉へのスラグの移注が不要となるため、移注時の熱ロスおよびスラグのロスもなくコストを大幅に下げることが出来る。
このようにして特殊鋼の生産に不可欠なNi、MoおよびVを合金鉄の形態で取り出し、一方で同じく特殊鋼の精錬に有効なカルシウムアルミネートを安価に効率よく製造する方法である。
【0016】
【発明の実施の形態】
この発明は、シンプルかつ安価な装置を使用して各種使用済触媒および燃焼灰より特殊鋼の生産に欠かせないNi、MoおよびVを合金鉄の形態で製造し、同時におなじく特殊鋼の精錬に不可欠なフラックスカルシウムアルミネートを効率よく、しかも二次廃棄物を発生させることなく製造する方法である。
従って、当発明はゼロエミッションプロセスと言うことが出来、地球環境上特に優れた方法と云える。
以下、この発明を図1の説明図を用いながら、より詳しく説明する。
石油精製の脱硫工程より排出される使用済脱硫触媒は、ほぼ同量の灯油等の軽質油と共に洗浄機11.に装入し、攪拌しながら廃触媒に付着する重油を洗浄する。洗浄が完了すると、遠心分離機12.に移され洗浄済みの触媒と混合油に分離される。なお、混合油はセメント燃料等として販売される。
洗浄済触媒は硫酸製造触媒等のその他使用済触媒および炭材と共に混合機13.に入れられ良く混ぜられる。その後必要あらば、成形機14.を用いてブリケット等に成形される。
混合物もしくは成形物はスクラップ等の鉄源と共に炉底出鋼型電気炉15.に装入され、通電され溶融後Ni、Mo分が優先還元される。
還元されたNi、Moは合金鉄を形成し、炉底に滞留するが温度調整がなされたあと、炉底に設けられたノズルよりスラグを排出せぬように注意しながらNi−Mo合金鉄を取り出す。
一方、炉内に残されたスラグは未還元のV分が濃縮されているため、FeSiおよび/またはAlが添加されV分が還元される。還元されたV分はフェロバナジウムとなって炉底のノズルより排出される。
また、FeSiおよび/またはAlと共に添加されたCaOはスラグ中のアルミナ分と反応してカルシウムアルミネートとなりフェロバナジウムを取り出した後、炉外に排出され、冷却・凝固される。
【0017】
【実施例】
原料は石油精製工場から排出された使用済直接脱硫触媒のみを使用してテストを行ったが、その組成は表−1の如くであった。
【表−1】

Figure 2004035995
【0018】
上記使用済脱硫触媒約500kgを容器に入れ、ほぼ同量の灯油を注入した後よく攪拌しながら洗浄を行った。触媒に付着していた重油が大体除去されたのを見計らって遠心分離機に移した。
遠心分離機を作動し、重油と灯油の混合油を除去した後、洗浄済みの触媒約350kgを回収した。
当触媒および回収した混合油中の金属を分析したところ、各々表−2、表−3の如くであった。
【表−2】
Figure 2004035995
【表−3】
Figure 2004035995
【0019】
回収した約350kgの触媒を100kgずつに3回に分けて溶融・還元テストを行った。1チャージあたりの原料配合は以下のとおりであった。
・洗浄済触媒 100kg
・鉄スクラップ 20kg
・コークス    7kg
・生石灰    35kg
・蛍石      5kg
溶融炉は高周波誘導炉を使用し、まず鉄スクラップを装入し溶融した。その後他の原料を少量ずつ投入しすべての原料が溶融した後、溶融温度を1,550℃に保ちながら十分攪拌を行った。
反応が終わるのを待って、高周波誘導炉よりメタルとスラグは同時に取鍋に移注され、メタルは鋳型に鋳込まれた。一方スラグは溶融状態のまま別の高周波誘導炉に移された。
得られたメタル重量および成分を表−4に示す。
【表−4】
Figure 2004035995
【0020】
別の高周波誘導炉では、鉄スクラップ5kがすでに溶融されており移注されたスラグが加熱され、温度が1,530℃になった時点で、Alショット10kgを添加してスラグ中のVの還元を行った。反応が完了するのを待って炉をを傾け、炉内のメタルとスラグを同時に排出した。
得られたメタルとスラグの組成は以下のとおりであった。
【表−5】
Figure 2004035995
【表−6】
Figure 2004035995
【0021】
【発明の効果】
かくしてこの発明によれば、各種使用済触媒から特殊鋼の主要添加元素であるV、Ni、Moを最も使用しやすい形態で、しかも極めてシンプルな工程でかつ安価に製造することが出来る。
また、同時に特殊鋼の精錬に不可欠なカルシウムアルミネートも造ることが出来るため、二次生成物が発生しないことも大きなメリットと言える。
更には、従来法においては使用済脱硫触媒に付着する重油を燃焼除去するため大量のSOxガスが発生するのに対し、当発明では発生する洗浄油は混合油として再利用することが出来、二次公害が発生しないというメリットもある。
従って、工業上の効果は絶大といえる。
【図面の簡単な説明】
【図1】この発明に従う工程を説明する図である。
【図2】従来の工程を説明する図である。
【符号の説明】
11.洗浄機
12.遠心分離機
13.混合機
14.成形機
15.炉底出鋼型電気炉
21.No.1混合機
22.ロータリーキルン
23.No.2混合機
24.No.1電気炉
25.No.2電気炉[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recovering useful metals such as V, Mo, and Ni from various wastes such as used petroleum desulfurization catalysts. Such V, Mo, Ni and the like can be effectively utilized as additives for steelmaking.
[0002]
[Prior art]
Vanadium is a useful component for improving the heat resistance of steel and has been added to heat-resistant steel and tool steel. In addition, vanadium has the effect of effectively improving the strength of steel with a small amount of addition, and in recent years, energy saving and energy conservation of the global environment are increasing. In addition, a small amount of vanadium has been added to low alloy steels, structural steels, pipe steels and the like as automotive steels. For this reason, the demand for vanadium for steel in recent years has been steadily increasing year by year, and the amount of vanadium used in the last ten years has been reduced from 60% to 0.03 kg / t to 0.05 kg / t per ton of crude steel. The above growth is shown.
[0003]
Ferrovanadium used for adding vanadium during steelmaking is mainly obtained by extracting vanadium pentoxide from ore such as titanium-containing vanadium magnetite as a raw material and reducing the vanadium pentoxide to aluminum by a thermite method.
Ferro-vanadium obtained by such a termid method has few impurities and a high vanadium content, but on the other hand, has a high production cost and is expensive.
[0004]
Therefore, in recent years, there has been an increasing trend to extract vanadium from wastes from heavy oil-fired boilers or used desulfurization catalysts discarded from the petroleum refining industry and the like.
That is, in the power generation industry, in order to reduce the fuel cost of thermal power generation, heavy and low-priced fuels such as heavy oil with a large amount of S, and vacuum residue oil (VRO) or orimulsion (ORM) are used. It is becoming. Since a large amount of vanadium is contained in these decompression residual oil and orimulsion, a large amount of vanadium is contained in slag deposited on the bottom of a heavy oil-fired boiler and smoke ash collected by an electric dust collector when burned. Condensed, these slags and smoke ash are attracting attention as new vanadium resources.
[0005]
Further, in the petroleum refining industry, a desulfurization device using a catalyst is provided in the petroleum refining process. Since vanadium is also condensed on the spent catalyst used in such a desulfurization apparatus, it has been considered to utilize this spent desulfurization catalyst as a vanadium resource.
[0006]
Recovery of useful metals such as V, Ni and Mo from slag deposited on the bottom of these heavy oil fired boilers, smoke ash collected by an electric dust collector, and used desulfurization catalyst is partly industrial waste. It is also preferable in that limited resources are recovered from those that have been discarded as waste.
[0007]
It is not possible to recover useful metals such as vanadium by vanadium-containing waste from vanadium-containing waste such as slag deposited on the bottom of such heavy oil fired boiler, smoke ash collected by an electric dust collector, and used desulfurization catalyst. As with the wet method, attempts have conventionally been made.
[0008]
The collection method using a conventional metallurgical method is described in detail in JP-A-2000-204420 and JP-A-2001-13851. This method will be described with reference to the process diagram shown in FIG. 2. A vanadium-containing raw material such as slag, combustion ash, and used desulfurization catalyst of a heavy oil-fired boiler is used. The mixture is heated by a mixer 21 and then heated to 450 to 950 ° C. by a rotary kiln 22 to decompose the S and C components in the raw material and remove them as SOx and CO 2 .
Next, an iron source and carbon were added to this raw material, and No. 2 after mixing by the mixer 23. 1 Charged into an electric furnace 24, melted and reduced to produce a metal mainly composed of Fe, Ni, and Mo and a V-rich slag. While obtaining Ni and Mo alloy irons, this V-rich slag is no. (2) A reducing agent is charged in the electric furnace 25 to reduce V in the slag to obtain ferrovanadium.
[0009]
[Problems to be solved by the invention]
However, the above-described conventional method has a problem that the equipment cost is increased, and further, heat loss and metal loss are increased and the cost is increased.
[0010]
That is, in the method using the conventional metallurgical method, a roasting furnace such as a rotary kiln is required to oxidize and remove the C and S components of the used desulfurization catalyst, and the SOx gas generated there is released to the atmosphere. Large-scale exhaust gas desulfurization equipment had to be installed to prevent this.
On the other hand, in the melting / reducing work, the No. After the Ni and Mo components in the roasted and burned catalyst were preferentially reduced in an electric furnace, the slag portion in which the V component was concentrated was No. 1. (2) Transferring to an electric furnace and adding FeSi and / or Al to obtain ferrovanadium and calcium aluminate requires two electric furnaces.
This has a problem that not only does the capital investment amount increase but also a large number of working personnel are required. In addition, a drop in the temperature at the time of transfer of the V-concentrated slag or a loss of the slag was unavoidable and wasteful.
[0011]
In addition, carbon such as coke and coal was used to preferentially reduce the Ni and Mo components in the spent catalyst. However, in order to improve the reactivity, it was used after being pulverized into fine powder using a pulverizer. As a result, it was one of the causes of cost increase.
[0012]
[Means for Solving the Problems]
Accordingly, the present invention proposes a method for solving the above-mentioned problems advantageously and recovering useful metals from spent catalysts stably with good yield and at low cost, and providing them as additional materials for steelmaking and smelting agents for steelmaking. .
[0013]
According to the present invention, heavy oil adhering to a used petroleum desulfurization catalyst is washed in a simple vessel using light oil such as kerosene, and then the washed catalyst and oil are separated using a centrifuge. Although the separated oil contains a considerable amount of S, it can be effectively used as combustion oil such as cement.
Needless to say, the container used for washing and the centrifuge are simple and do not require special parts, so that there is a great merit that capital investment is not increased. Of course, there is no generation of exhaust gas and wastewater, and there is no secondary pollution of the environment.
After separating the oil, the washed catalyst is mixed with other used catalysts, that is, sulfuric acid production catalyst, maleic anhydride production catalyst and phthalic acid production catalyst, and the combustion ash generated from heavy oil or pet coke-fired boiler. To form briquettes.
The mixture or the molded product is charged into a steel bottom type electric furnace, and is energized and melted. Ni and Mo in the spent catalyst or in the combustion ash are preferentially reduced by the carbon in the combustion ash and an iron source such as scrap separately charged, and become Ni-Mo alloy iron and stay at the furnace bottom. After the temperature is adjusted, the Ni-Mo alloy iron is discharged from the furnace bottom while taking care not to discharge the slag to obtain Ni-Mo alloy iron.
On the other hand, in the slag remaining in the furnace, since the V component not reduced by carbon and iron is concentrated in the form of an oxide, FeSi and / or Al are added together with CaO to reduce the V component.
The reduced V component becomes ferro-vanadium and stays at the furnace bottom, and the CaO component dissolves in the slag and reacts with the alumina component to produce calcium aluminate.
[0014]
The present invention does not oxidize and remove C and S components contained in a used petroleum desulfurization catalyst in a roasting furnace such as a large-scale rotary kiln, but cleans and separates it with a light oil such as kerosene in a simple container. Therefore, there is an advantage that the investment amount can be greatly reduced.
Further, in the roasting method, a large amount of alkali for generating a large amount of SOx gas, for example, quick lime or limestone powder is blown to fix SOx. It is a big problem.
On the other hand, in the case of the present invention, the washed heavy oil is recovered as a mixed oil with light oil, and can be reused as a fuel for cement production.
[0015]
Further, in the present invention, since a bottom-bottomed steel type electric furnace is used for the melting / reducing operation, two electric furnaces are not required unlike the conventional method.
Therefore, there is an advantage that the capital investment can be suppressed and the number of operating personnel can be reduced. No. No. 1 electric furnace (2) Since it is not necessary to transfer slag to the electric furnace, the cost can be significantly reduced without heat loss and slag loss at the time of transfer.
In this way, Ni, Mo and V, which are indispensable for the production of special steel, are extracted in the form of ferro-alloy, and at the same time, calcium aluminate, which is also effective for refining special steel, is produced inexpensively and efficiently.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention uses simple and inexpensive equipment to produce Ni, Mo and V, which are indispensable for the production of special steel from various spent catalysts and combustion ash, in the form of ferro-alloy, and at the same time refining of special steel. This is a method for producing the essential flux calcium aluminate efficiently and without generating secondary waste.
Therefore, the present invention can be said to be a zero emission process, and it can be said to be a particularly excellent method in the global environment.
Hereinafter, the present invention will be described in more detail with reference to the explanatory diagram of FIG.
The used desulfurization catalyst discharged from the desulfurization step of petroleum refining is cleaned together with a substantially equal amount of light oil such as kerosene. And wash the heavy oil adhering to the spent catalyst while stirring. When the washing is completed, the centrifuge 12. To separate the washed catalyst and mixed oil. The mixed oil is sold as cement fuel or the like.
12. The washed catalyst is mixed with other spent catalysts such as a sulfuric acid production catalyst and carbonaceous materials. And mix well. Thereafter, if necessary, the molding machine 14. Into briquettes and the like.
14. The mixture or the molded product together with an iron source such as scrap is a bottom-bottomed electric furnace. And then energized and melted, and Ni and Mo are preferentially reduced.
The reduced Ni and Mo form ferroalloys and stay in the furnace bottom, but after the temperature is adjusted, pay attention not to discharge the slag from the nozzles provided in the furnace bottom, and remove the Ni-Mo alloy iron. Take out.
On the other hand, since the unreduced V component is concentrated in the slag left in the furnace, FeSi and / or Al are added to reduce the V component. The reduced V component becomes ferro-vanadium and is discharged from the nozzle at the furnace bottom.
Further, CaO added together with FeSi and / or Al reacts with the alumina component in the slag to become calcium aluminate, and after taking out ferrovanadium, it is discharged out of the furnace and cooled and solidified.
[0017]
【Example】
The test was conducted using only the used direct desulfurization catalyst discharged from a petroleum refinery as a raw material, and the composition was as shown in Table 1.
[Table-1]
Figure 2004035995
[0018]
About 500 kg of the above used desulfurization catalyst was put in a container, and after pouring approximately the same amount of kerosene, washing was carried out with good stirring. When the heavy oil adhering to the catalyst was almost removed, it was transferred to a centrifuge.
After operating the centrifuge to remove the mixed oil of heavy oil and kerosene, about 350 kg of the washed catalyst was recovered.
The metals in the catalyst and the recovered mixed oil were analyzed, and the results were as shown in Tables 2 and 3, respectively.
[Table-2]
Figure 2004035995
[Table-3]
Figure 2004035995
[0019]
About 350 kg of the recovered catalyst was subjected to a melting / reduction test in three portions of 100 kg each. The raw material composition per charge was as follows.
・ Washed catalyst 100kg
・ Iron scrap 20kg
・ Coke 7kg
・ Fresh lime 35kg
・ Fluorite 5kg
The melting furnace used was a high-frequency induction furnace. First, iron scrap was charged and melted. Thereafter, the other raw materials were added little by little to melt all the raw materials, and then sufficiently stirred while maintaining the melting temperature at 1,550 ° C.
After the reaction was completed, the metal and slag were simultaneously transferred to the ladle from the induction furnace, and the metal was cast into a mold. On the other hand, the slag was transferred to another high-frequency induction furnace in a molten state.
Table 4 shows the obtained metal weights and components.
[Table-4]
Figure 2004035995
[0020]
In another high frequency induction furnace, iron scrap 5k is already melted and the transferred slag is heated, and when the temperature reaches 1,530 ° C, 10 kg of Al shot is added to reduce V in the slag. Was done. After the reaction was completed, the furnace was tilted, and the metal and slag in the furnace were simultaneously discharged.
The compositions of the obtained metal and slag were as follows.
[Table-5]
Figure 2004035995
[Table-6]
Figure 2004035995
[0021]
【The invention's effect】
Thus, according to the present invention, V, Ni, and Mo, which are the main additive elements of special steel, can be produced from various spent catalysts in a form that is most easy to use, with very simple steps, and at low cost.
At the same time, calcium aluminate, which is indispensable for the refining of special steel, can also be produced, so that a major advantage is that secondary products are not generated.
Further, in the conventional method, a large amount of SOx gas is generated to burn and remove heavy oil adhering to the used desulfurization catalyst, whereas in the present invention, the generated cleaning oil can be reused as a mixed oil. There is also an advantage that the next pollution does not occur.
Therefore, it can be said that the industrial effect is enormous.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a process according to the present invention.
FIG. 2 is a diagram illustrating a conventional process.
[Explanation of symbols]
11. Washing machine12. Centrifuge 13. Mixer 14. Molding machine15. Furnace bottom steel type electric furnace 21. No. 1 mixer 22. Rotary kiln 23. No. 2 mixer 24. No. 1 electric furnace 25. No. 2 electric furnace

Claims (7)

使用済石油脱硫触媒を軽質油で洗浄し他の使用済触媒と混合した後、必要あらばブリケット等に成形し、鉄源、炭素およびフラックスと共に炉底出鋼型電気炉にてまずNi、Moを優先還元しフェロアロイとして出湯し、その後炉内に残されたVリッチスラグにSiおよび/またはAlを添加し、Vを還元してフェロバナジウムを得ることを特徴とする使用済触媒からのフェロアロイ製造法。After washing the used petroleum desulfurization catalyst with light oil and mixing it with other used catalysts, it is formed into briquettes and the like, if necessary. Alloy production from spent catalyst characterized by preferentially reducing and tapping as a ferroalloy, and thereafter adding Si and / or Al to the V-rich slag left in the furnace to reduce V to obtain ferrovanadium. Law. 他の使用済触媒が使用済硫酸製造触媒、使用済無水マレイン酸製造触媒および使用済フタル酸製造触媒であることを特徴とする請求項1に記載の使用済触媒からのフェロアロイ製造法。The method for producing ferroalloy from spent catalyst according to claim 1, wherein the other spent catalyst is a spent sulfuric acid production catalyst, a spent maleic anhydride production catalyst, and a spent phthalic acid production catalyst. 軽質油が灯油もしくは軽油であることを特徴とする請求項1に記載の使用済触媒からのフェロアロイ製造法。The method for producing a ferroalloy from a spent catalyst according to claim 1, wherein the light oil is kerosene or light oil. 炭材が重油灰、もしくはペトコーク灰であることを特徴とする請求項1に記載の使用済触媒からのフェロアロイ製造法。The method for producing ferroalloy from spent catalyst according to claim 1, wherein the carbonaceous material is heavy oil ash or petcoke ash. フラックスが生石灰、もしくは石灰石であることを特徴とする請求項1に記載の使用済触媒からのフェロアロイ製造法。The method for producing a ferroalloy from a spent catalyst according to claim 1, wherein the flux is quicklime or limestone. フェロバナジウムを製造する際に生成されるスラグがカルシウムアルミネートであることを特徴とする請求項1に記載の使用済触媒からのフェロアロイ製造法。The method for producing a ferroalloy from a spent catalyst according to claim 1, wherein the slag produced when producing ferrovanadium is calcium aluminate. 石油脱硫触媒を洗滌した後、分離回収された混合油を燃料として再活用することを特徴とする請求項1に記載の使用済触媒からのフェロアロイ製造法。The method for producing ferroalloy from spent catalyst according to claim 1, wherein the mixed oil separated and recovered is reused as a fuel after washing the petroleum desulfurization catalyst.
JP2002229278A 2002-07-04 2002-07-04 Method for manufacturing ferroalloy from spent catalyst Pending JP2004035995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229278A JP2004035995A (en) 2002-07-04 2002-07-04 Method for manufacturing ferroalloy from spent catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229278A JP2004035995A (en) 2002-07-04 2002-07-04 Method for manufacturing ferroalloy from spent catalyst

Publications (1)

Publication Number Publication Date
JP2004035995A true JP2004035995A (en) 2004-02-05

Family

ID=31711629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229278A Pending JP2004035995A (en) 2002-07-04 2002-07-04 Method for manufacturing ferroalloy from spent catalyst

Country Status (1)

Country Link
JP (1) JP2004035995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119695A1 (en) * 2007-03-30 2008-10-09 Paul Wurth S.A. Method for recovering molybdenium, nickel, cobalt or their mixtures from used or regenerated catalysts
CN111286610A (en) * 2020-03-30 2020-06-16 攀钢集团攀枝花钢铁研究院有限公司 Method for shortening ferrovanadium smelting time
CN113151730A (en) * 2021-04-25 2021-07-23 攀钢集团北海特种铁合金有限公司 External smelting method of ferrovanadium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119695A1 (en) * 2007-03-30 2008-10-09 Paul Wurth S.A. Method for recovering molybdenium, nickel, cobalt or their mixtures from used or regenerated catalysts
CN101646789A (en) * 2007-03-30 2010-02-10 保尔伍斯股份有限公司 Method for recovering molybdenium, nickel, cobalt or their mixtures from used or regenerated catalysts
US7951220B2 (en) 2007-03-30 2011-05-31 Paul Wurth S.A. Method for recovering molybdenium, nickel, cobalt or their mixtures from used or regenerated catalysts
CN111286610A (en) * 2020-03-30 2020-06-16 攀钢集团攀枝花钢铁研究院有限公司 Method for shortening ferrovanadium smelting time
CN111286610B (en) * 2020-03-30 2021-07-27 攀钢集团攀枝花钢铁研究院有限公司 Method for shortening ferrovanadium smelting time
CN113151730A (en) * 2021-04-25 2021-07-23 攀钢集团北海特种铁合金有限公司 External smelting method of ferrovanadium

Similar Documents

Publication Publication Date Title
US6438154B2 (en) Method and apparatus for recovering metal values from liquid slag an baghouse dust of an electric arc furnace
CN109022644B (en) Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process
JP4350711B2 (en) Industrial waste melting process
US5198190A (en) Method of recycling hazardous waste
CN101838718A (en) Medium frequency furnace internal dephosphorization and desulfurization smelting process
JP2015514875A (en) Ferrosilicon and magnesium production method using ferronickel slag, production apparatus and smelting reduction furnace used therefor
CN111235354B (en) Production process of LF multifunctional deoxidation submerged arc slag
CN113088607A (en) Method for smelting and recovering iron, vanadium and sodium from red mud
JPH09310126A (en) Production for obtaining metal from metallic oxide
JP5720497B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP3705472B2 (en) Method for recovering useful metals from vanadium-containing waste
JP2004035995A (en) Method for manufacturing ferroalloy from spent catalyst
KR100764259B1 (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
JP2020180322A (en) Production method of molten steel using converter
JP2004270036A (en) Recovering method of useful metal from useful metal-containing waste
JP4485987B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP3705498B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP5712747B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP2004143492A (en) Method of melting extra-low phosphorus stainless steel
JP2001316732A (en) Method for recovering valuable metal from material containing nickel and vanadium
JP2001098339A (en) Method of producing vanadium alloy iron and vanadium alloy steel
CN103667564A (en) Method for preparing metal elementary substance
Zhang et al. A new method of red mud recycling in the process of hot metal pretreatment
CN113186367A (en) Bottom-top composite blowing smelting reduction furnace for treating high-iron red mud
JP6369699B2 (en) Recovery method of refining flux from hot metal desulfurization slag and dephosphorization / desulfurization method of hot metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417