【0001】
【発明の属する技術分野】
本発明は、水と光触媒とを用いて光化学反応により水素を発生させる装置及び水素を発生させる方法に関する。
【0002】
【従来の技術】
従来から光触媒として光化学反応により水を水素と酸素に分解して水素を回収する技術は良く知られており、最近では水素の回収効率を向上させるために精力的に研究開発が行われている。
【0003】
従来は水を収納した容器に例えば二酸化チタン等の光触媒の粉末を投入し、水を撹拌しながらその容器に光を照射して光化学反応により水を水素と酸素に分解して水素を回収していた。
【0004】
【発明が解決しようとする課題】
ところで、上記のような従来の技術には、次のような解決すべき課題があった。
即ち、従来の水素発生方法では、二酸化チタン等の光触媒表面での反応であったため、光触媒に接触している部分から水への拡散速度が律速となり、水素の発生効率が悪いという課題があった。
【0005】
また、分解した水素と酸素は同一容器内で発生するためにそれぞれの分離に工夫を要し、簡便な装置を構成することが困難であるという課題もあった。
【0006】
本発明は、水素の発生効率を高め、簡便に水素と酸素を分離回収できる水素発生装置及び水素発生方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明は以上の点を解決するため次の構成を採用する。
〈構成1〉
水と光触媒とを接触させて光化学反応により水素を発生させる装置であって、ガラス基板表面に上記光触媒を内面に塗布した複数の凹部を設け、上記複数の凹部を設けたガラス基板表面を水素透過膜で覆ったことを特徴とする水素発生装置。
【0008】
〈構成2〉
上記光触媒は二酸化チタンであることを特徴とする構成1記載の水素発生装置。
【0009】
〈構成3〉
上記凹部は水を流す方向に設けられていることを特徴とする構成1または構成2記載の水素発生装置。
【0010】
〈構成4〉
上記凹部は半径5〜50μmの半円溝であることを特徴とする構成1から構成3までのいずれかの構成に記載の水素発生装置。
【0011】
〈構成5〉
上記水素発生装置には上記凹部を設けたガラス基板表面と反対側のガラス面側に光照射装置が配置されている特徴とする構成1から構成4までのいずれかの構成に記載の水素発生装置。
【0012】
〈構成6〉
上記水素発生装置は一定の大きさの複数の上記ガラス基板を直列若しくは/及び並列に配置したことを特徴とする構成1から構成5までのいずれかの構成に記載の水素発生装置。
【0013】
〈構成7〉
水と光触媒とを接触させて光化学反応により水素を発生させる方法であって、ガラス基板表面に設けた内面に光触媒を塗布した水流方向に設けられた複数の凹部に一端部側から水を流し、上記凹部を設けたガラス基板表面と反対側のガラス面から光を照射して上記凹部内で上記水と光触媒により光化学反応を生じさせ、上記水を水素と酸素に分解させた後、上記複数の凹部を設けたガラス基板表面を覆った水素透過膜を介して上記水素を回収することを特徴とする水素発生方法。
【0014】
〈構成8〉
上記光触媒は二酸化チタンであることを特徴とする構成7記載の水素発生方法。
【0015】
〈構成9〉
上記凹部は半径5〜50μmの半円溝であることを特徴とする構成8記載の水素発生方法。
【0016】
〈構成10〉
上記水が分解されて生じた酸素は上記凹部の他端部から排出されることを特徴とする構成7から構成9までのいずれかの構成に記載の水素発生方法。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
図1は本発明の一実施例を説明する断面図である。
図1において、本発明の水素発生装置1はガラス基板2の表面に微少な径の複数の凹部、ここでは半円溝3が設けられており、この半円溝3には例えば二酸化チタン(TiO2)のような光触媒4が半円溝内面を覆うように塗布されている。そして、このガラス基板2の表面は水素透過膜5により覆われている。また、ガラス基板2の凹部を設けた表面側と反対のガラス面側に光照射装置6が配置されている。
【0018】
図2は前記図1に示す本発明の水素発生装置の斜視図である。図2に示すように、ガラス基板2の表面に設けた複数の半円溝3は水(H2O)を流す方向に設けられている。このように水は半円溝の一端側から流され、光照射装置6により光が照射されると、半円溝3内において二酸化チタンの光触媒作用により光化学反応が生じ、流された水が水素と酸素に分解される。分解された水素は水素透過膜5を介して図示しない回収装置に回収される。この時、水素透過膜5の上部に設けた回収装置を密閉容器とすることにより回収効率を高めることができる。
【0019】
半円溝3内にはまだ分解していない水と分解後発生した酸素が共存しているが、未分解の水は順次分解して減少して行き、分解後発生した酸素は半円溝3の他端部より排出されるようになっている。
【0020】
ここで、本発明において微少な径の凹部を設けた理由は、微少寸法の空間では拡散が速やかに行われるため、凹部内における水素と酸素の濃度分布が一様になり、水素の発生効率が向上するからである。
【0021】
凹部、即ち半円溝3の半径は5〜50μmの大きさが好ましく、5μmより小さくなると水を流す効率が悪くなり、50μmより大きくなると半円溝内の水中に水素と酸素の濃度分布ができ好ましくない。径が大きい場合、半円溝内では水素と酸素の濃度が高くなり、半円溝内面に気泡ができるなどして反応を阻害してしまう虞がある。
【0022】
半円溝3に塗布する光触媒4の種類としては二酸化チタンが古くから光触媒として用いられ、安定した光化学反応を生じさせるので好ましい。その他チタン酸ストロンチウム(SrTiO3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)やタンタル系酸化物(LiTaO3、NaTaO3、KTaO3、CaTa2O6、SrTa2O6、Sr2Ta2O7、BaTa2O6等)なども用いることができ、本発明の目的に適うものならば特に限定されるものではない。
【0023】
ガラス基板2の表面を覆う水素透過膜5は通常用いられているもので差し支えなく、例えばパラジウムあるいはパラジウム合金水素透過膜、アモルファスZr36Ni64水素透過膜などが挙げられ、やはり本発明の目的に適うものならば特に限定されるものではない。
【0024】
本発明の水素発生装置に照射する光は紫外線、可視光線等特に限定されるものではなく、本発明の目的に用いられる光触媒に対して最も適した種類の光を選択すればよい。例えば太陽光を用いれば反応に必要なエネルギーが少なくてすむので全体コストを低減することができる。
【0025】
また本発明は図3に示すように、一定の大きさのガラス基板を一単位としてこのガラス基板を複数個、例えばAとB、CとDのように直列に若しくはAとC、BとDのように並列に配置したり、あるいはA、B、C、Dのように直列及び並列に組み合わせて配置して水素発生装置を構成することもできる。このようにするとより大量の水素を効率よく発生させることができる。なお、本図においては光照射装置の図示を省略している。
【0026】
【発明の効果】
以上のように本発明によれば、ガラス基板表面に内面に光触媒を塗布した複数の微少な凹部を設け、その凹部に水を流しながらガラス基板に光を照射して光化学反応を生じさせて水を水素と酸素に分解してガラス基板表面を覆った水素透過膜を介して水素を回収するようにしたので、従来に比較して効率よくかつ簡便に水素を発生させることができる水素発生装置及び水素発生方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明する断面図である。
【図2】本発明の一実施例の斜視図である。
【図3】本発明の他の実施例を説明する斜視図である。
【符号の説明】
1 水素発生装置
2 ガラス基板
3 半円溝
4 光触媒
5 水素透過膜
6 光照射装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for generating hydrogen by a photochemical reaction using water and a photocatalyst, and a method for generating hydrogen.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a technique of recovering hydrogen by decomposing water into hydrogen and oxygen by a photochemical reaction as a photocatalyst is well known, and recently, research and development have been energetically conducted to improve the efficiency of hydrogen recovery.
[0003]
Conventionally, a photocatalyst powder such as titanium dioxide is charged into a container containing water, and the container is irradiated with light while stirring the water, and water is decomposed into hydrogen and oxygen by a photochemical reaction to recover hydrogen. Was.
[0004]
[Problems to be solved by the invention]
By the way, the conventional techniques as described above have the following problems to be solved.
That is, in the conventional hydrogen generation method, since the reaction was performed on the surface of the photocatalyst such as titanium dioxide, the rate of diffusion from the portion in contact with the photocatalyst to water was limited, and there was a problem that the generation efficiency of hydrogen was poor. .
[0005]
In addition, since the decomposed hydrogen and oxygen are generated in the same container, it is necessary to devise their separation, and there is a problem that it is difficult to construct a simple device.
[0006]
An object of the present invention is to provide a hydrogen generating apparatus and a hydrogen generating method capable of increasing the generation efficiency of hydrogen and easily separating and recovering hydrogen and oxygen.
[0007]
[Means for Solving the Problems]
The present invention employs the following configuration to solve the above points.
<Configuration 1>
An apparatus for generating hydrogen by a photochemical reaction by contacting water and a photocatalyst, wherein a plurality of recesses having the photocatalyst applied to the inner surface are provided on the surface of a glass substrate, and hydrogen is transmitted through the surface of the glass substrate provided with the plurality of recesses. A hydrogen generator characterized by being covered with a membrane.
[0008]
<Configuration 2>
The hydrogen generator according to claim 1, wherein the photocatalyst is titanium dioxide.
[0009]
<Configuration 3>
3. The hydrogen generator according to Configuration 1 or 2, wherein the recess is provided in a direction in which water flows.
[0010]
<Configuration 4>
The hydrogen generator according to any one of Configurations 1 to 3, wherein the concave portion is a semicircular groove having a radius of 5 to 50 μm.
[0011]
<Configuration 5>
The hydrogen generator according to any one of Configurations 1 to 4, wherein the hydrogen generator is provided with a light irradiation device on a glass surface side opposite to a glass substrate surface provided with the concave portion. .
[0012]
<Configuration 6>
The hydrogen generator according to any one of Configurations 1 to 5, wherein the hydrogen generator has a plurality of the glass substrates having a predetermined size arranged in series or / and in parallel.
[0013]
<Configuration 7>
A method of generating hydrogen by a photochemical reaction by contacting water and a photocatalyst, wherein water is flowed from one end side to a plurality of recesses provided in a water flow direction in which a photocatalyst is applied to an inner surface provided on a glass substrate surface, After irradiating light from the glass surface opposite to the surface of the glass substrate provided with the concave portion to cause a photochemical reaction by the water and the photocatalyst in the concave portion, and decomposing the water into hydrogen and oxygen, A method for generating hydrogen, comprising recovering the hydrogen via a hydrogen permeable film covering a surface of a glass substrate provided with a concave portion.
[0014]
<Configuration 8>
The method according to claim 7, wherein the photocatalyst is titanium dioxide.
[0015]
<Configuration 9>
9. The hydrogen generating method according to Configuration 8, wherein the recess is a semicircular groove having a radius of 5 to 50 μm.
[0016]
<Configuration 10>
The hydrogen generation method according to any one of Configurations 7 to 9, wherein oxygen generated by decomposing the water is discharged from the other end of the recess.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view illustrating an embodiment of the present invention.
In FIG. 1, a hydrogen generator 1 of the present invention is provided with a plurality of concave portions having minute diameters, here semi-circular grooves 3, on a surface of a glass substrate 2, and the semi-circular grooves 3 are formed, for example, of titanium dioxide (TiO2). ) Is applied so as to cover the inner surface of the semicircular groove. The surface of the glass substrate 2 is covered with a hydrogen permeable film 5. Further, a light irradiation device 6 is arranged on the glass surface side opposite to the surface side of the glass substrate 2 on which the concave portion is provided.
[0018]
FIG. 2 is a perspective view of the hydrogen generator of the present invention shown in FIG. As shown in FIG. 2, the plurality of semicircular grooves 3 provided on the surface of the glass substrate 2 are provided in a direction in which water (H2O) flows. As described above, water flows from one end side of the semicircular groove, and when light is irradiated by the light irradiation device 6, a photochemical reaction occurs in the semicircular groove 3 due to the photocatalytic action of titanium dioxide, and the flowed water is converted into hydrogen. And is decomposed into oxygen. The decomposed hydrogen is recovered by a recovery device (not shown) via the hydrogen permeable membrane 5. At this time, the recovery efficiency can be improved by using a closed container as the recovery device provided above the hydrogen permeable membrane 5.
[0019]
The undecomposed water and the oxygen generated after the decomposition coexist in the semicircular groove 3. However, the undecomposed water sequentially decomposes and decreases. Is discharged from the other end.
[0020]
Here, in the present invention, the reason why the concave portion having a small diameter is provided is that diffusion is rapidly performed in a space having a small size, so that the concentration distribution of hydrogen and oxygen in the concave portion becomes uniform, and the hydrogen generation efficiency is reduced. Because it improves.
[0021]
The radius of the concave portion, that is, the radius of the semicircular groove 3 is preferably 5 to 50 μm, and if it is smaller than 5 μm, the efficiency of flowing water becomes poor, and if it is larger than 50 μm, the concentration distribution of hydrogen and oxygen in water in the semicircular groove is formed. Not preferred. When the diameter is large, the concentration of hydrogen and oxygen becomes high in the semicircular groove, and there is a possibility that bubbles may be formed on the inner surface of the semicircular groove, thereby inhibiting the reaction.
[0022]
As a type of the photocatalyst 4 applied to the semicircular groove 3, titanium dioxide has been used as a photocatalyst for a long time, and is preferable because a stable photochemical reaction occurs. Other inventions such as strontium titanate (SrTiO3), zirconium oxide (ZrO2), tantalum oxide (Ta2O5), and tantalum-based oxides (LiTaO3, NaTaO3, KTaO3, CaTa2O6, SrTa2O6, Sr2Ta2O7, BaTa2O6, etc.) can also be used. There is no particular limitation as long as it meets the purpose.
[0023]
The hydrogen permeable film 5 covering the surface of the glass substrate 2 may be a commonly used one, and examples thereof include a palladium or palladium alloy hydrogen permeable film and an amorphous Zr36Ni64 hydrogen permeable film. It is not particularly limited.
[0024]
The light applied to the hydrogen generator of the present invention is not particularly limited, such as ultraviolet light and visible light, and it is sufficient to select the most appropriate type of light for the photocatalyst used for the purpose of the present invention. For example, if sunlight is used, less energy is required for the reaction, so that the overall cost can be reduced.
[0025]
Further, as shown in FIG. 3, the present invention uses a glass substrate of a fixed size as one unit, and a plurality of the glass substrates, for example, A and B, C and D or A and C, B and D Or a combination of series and parallel arrangements such as A, B, C, and D to form a hydrogen generator. In this way, a larger amount of hydrogen can be generated efficiently. Note that illustration of the light irradiation device is omitted in this drawing.
[0026]
【The invention's effect】
As described above, according to the present invention, a plurality of minute concave portions having a photocatalyst applied to the inner surface are provided on the surface of the glass substrate, and the glass substrate is irradiated with light while flowing water to the concave portions to cause a photochemical reaction to generate water. Hydrogen is recovered through a hydrogen permeable membrane covering the surface of the glass substrate by decomposing the hydrogen into oxygen and hydrogen, so that a hydrogen generator capable of generating hydrogen more efficiently and easily than before can be provided. A method for generating hydrogen can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view illustrating an embodiment of the present invention.
FIG. 2 is a perspective view of one embodiment of the present invention.
FIG. 3 is a perspective view illustrating another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydrogen generator 2 Glass substrate 3 Semicircular groove 4 Photocatalyst 5 Hydrogen permeable film 6 Light irradiation device