JP2004035291A - Method and device for manufacturing fluorite crystal - Google Patents

Method and device for manufacturing fluorite crystal Download PDF

Info

Publication number
JP2004035291A
JP2004035291A JP2002191769A JP2002191769A JP2004035291A JP 2004035291 A JP2004035291 A JP 2004035291A JP 2002191769 A JP2002191769 A JP 2002191769A JP 2002191769 A JP2002191769 A JP 2002191769A JP 2004035291 A JP2004035291 A JP 2004035291A
Authority
JP
Japan
Prior art keywords
fluorite
degassing
vacuum
crystal
fluorite crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002191769A
Other languages
Japanese (ja)
Inventor
Hideo Takakura
高倉 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002191769A priority Critical patent/JP2004035291A/en
Publication of JP2004035291A publication Critical patent/JP2004035291A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide method for manufacturing a fluorite crystal by which the crystal having a small quantity of impurity and a uniform refractive index can be manufactured. <P>SOLUTION: The method for manufacturing the fluorite crystal wherein the fluorite crystal is manufactured in a vacuum vessel is characterized in that a degassing from a constituent member of the vacuum vessel is performed by providing a means for degassing the gas from the outside of an insulating member. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、レンズ等の光学部材に用いられる蛍石の結晶材料を製造するための結晶製造装置及び結晶製造方法に関する。
【0002】
【従来の技術】
光学部材は、望遠鏡、カメラ、あるいは半導体集積回路製造用の露光装置等に用いられている。とりわけ、露光装置では高品質の光学部材が望まれている。
【0003】
近年、半導体集積回路の高集積化にともない、超微細パターン形成への要求が益々高まっている。微細パターンをウェハー上に転写する装置としては、ステップアンドリピート方式の縮小投影小型露光装置(ステッパー)が多用されている。高集積化するためには、ステッパー投影レンズの解像度を上げる必要がある。そして、投影レンズの解像度を上げるには短波長の露光光を用い、投影レンズの開口数大きく(大口径化)する必要がある。
【0004】
また、露光光の短波長は、I線(波長365nm)、Kr−Fエキシマレーザー光(波長248nm)、と進んできており、Ar−Fエキシマレーザー光(波長193nm)が使われつつある。今後は、F2エーザーが有望視されている。I線までの波長域では、光学系に従来の光学レンズを使用することが可能であったが、Kr−Fエキシマレーザー光、Ar−Fエキシマレーザー光の波長域では、透過率が低く従来の光学ガラスを使用することは不可能である。
【0005】
このため、エキシマレーザー露光装置の光学系には、短波長光の透過率の高い石英ガラスまたは蛍石を使用するのが一般的になっている。とりわけF2エキシマレーザー波長では、蛍石の使用が必須である。
【0006】
また、ステッパー投影レンズを構成する各レンズは、極限の面精度で研磨されるが、多結晶になっていると結晶方位によって研磨速度が異なるため、レンズの面精度を確保することが困難になる。
【0007】
更に、多結晶の場合には、結晶界面に不純物が析出しやすく、屈折率の均一性を損ねたり、レーザー照射により蛍光を発したりする。
【0008】
このような理由でエキシマレーザー露光装置の投影レンズでは大口径の単結晶蛍石が望まれている。
【0009】
一般的な化合物結晶製造装置は、特開平09−002890、特開平08−333187,特開平09−002890、ヒーター外部に断熱部材を配置し、断熱部材近傍に真空容器が配置されている。
【0010】
蛍石の結晶製造装置に関しても特開平11−92269、特開平11−92270、特開平11−92268のようにヒーター外部に断熱部材を配置し、断熱部材近傍に真空容器が配置されている。
【0011】
真空容器は、高温炉の場合は一般的に水冷されている。
【0012】
溶融材料をヒーターで加熱してゆくと、外部の放熱し断熱材が昇温する。断熱部材の外部温度は真空容器が水冷していることもあり、断熱部材内部より遅れて昇温されることとなる。
【0013】
【発明が解決しようとする課題】
本発明の目的は、不純物の少ない屈折率の均一な結晶を製造することが目的である。
【0014】
蛍石の不純物の主なものは水分であることが知られている。
【0015】
このように従来の断熱部材内部温度がスカベンジャーの反応する温度に達するが、断熱部材外部は真空容器が水冷されていることと、断熱部材であるがために、内部と外部の温度差が大きく、断熱部材外部が水分の脱離温度まで昇温しない状態が発生することが問題となる。
【0016】
前記の状態が発生すると蛍石結晶に主不純物である水分が検出され、屈折率が不均一な部分ができてしまうことが判明した。
【0017】
【課題を解決するための手段】
本発明の結晶製造方法は、断熱部材の外部に脱ガス手段を備え、構成部材の脱ガスを行う工程を行い、蛍石結晶内の不純物を低減することを特徴とする。
【0018】
本発明の結晶製造方法は、断熱部材の外部に脱ガス手段を備え、構成部材の脱ガスを行う工程をスカベンジャーが反応する温度以下で行い、スカベンジャー反応時の蛍石への不純物汚染を低減することを特徴する。
【0019】
本発明の結晶製造方法は、脱ガス手段が、赤外線ランプやヒーターなどの加熱手段を使用し、結晶製造時の蛍石への不純物汚染を低減することを特徴する。
【0020】
本発明の結晶製造装置は、真空を保持する真空容器、真空容器内を排気するための真空ポンプを含む排気系、真空容器内に蛍石を加熱するためのヒーター、放熱を防ぐための断熱材から構成される結晶製造装置において、真空容器と断熱部材の間に断熱部材を脱ガスするための赤外線ランプやヒーターなどの加熱機構を備えたことを特徴とする。
【0021】
本発明の結晶製造装置は、前記、結晶製造装置において、赤外線ランプの設置位置が、加熱時の放出ガスの主排気経路に設置されていないことを特徴とした。
【0022】
本発明によれば、スカベンジャー反応温度前に、炉内構成部材(主に、断熱部材、真空容器)の不純物除去を行うことができ、蛍石への炉内構成部材から脱離する不純物汚染の影響を低減することができた。
【0023】
【発明の実施の形態】
以下に封着の実施例を挙げて本発明を具体的に説明する。
【0024】
【実施例1】
図1は本発明の実施形態に係る蛍石結晶製造装置の断面図である。第一の実施形態は、炉内構成部材の脱ガス手段として赤外線ランプを用い、炉内ヒーターで昇温する前に赤外線ランプにより炉内構成部品の脱ガスを行った形態である。
【0025】
図1における結晶製造装置は、1の真空を保持するための真空容器、2の真空容器内を真空排気するための真空排気系、3の結晶材料を加熱するためのヒーター(今回はグラファイトヒーターを使用した)、4の炉内の放熱を防ぐための断熱部材(今回は、カーボンファイバーを使用した)、断熱部材と真空容器の間に、炉内構成部材の脱ガス手段である赤外線ランプを配置している。断熱部材の構成は、蛍石加熱時に反応物として発生するフッ酸に赤外線ランプのガラスが侵食されにくいような真空排気経路になるように構成した。
【0026】
実験は、以下の手順で行った。
【0027】
1の真空容器を、大気開放し蛍石を入れた坩堝をセットする。
【0028】
1の真空容器を2の真空排気系で真空に排気する。所定の圧力以下(今回は1Pa以下に排気した)になってから、赤外線ランプで炉内構成部材を加熱脱ガスした。脱ガス時の温度は、蛍石がスカベンジャーと反応する温度以下とした。今回は200℃設定で5時間脱ガスを行ったが、主不純物である水分が脱離しやすい温度であれば問題はない。
【0029】
炉内構成部材の脱ガス後、3のヒーターを昇温させ(今回は1380℃まで昇温)蛍石の溶融をした。ルツボを回転させゆっくりと引下げ(今回は5mm/Hr)結晶成長させた。
【0030】
【実施例2】
第二の実施形態は、第一の実施形態と同じ装置を用いた。第二の実施形態は、炉内構成部材の脱ガス手段として赤外線ランプを用い、炉内ヒーターで昇温開始と同時に赤外線ランプにより炉内構成部品の脱ガスを開始した形態である。
【0031】
図1における結晶製造装置は、1の真空を保持するための真空容器、2の真空容器内を真空排気するための真空排気系、3の結晶材料を加熱するためのヒーター(今回はグラファイトヒーターを使用した)、4の炉内の放熱を防ぐための断熱部材(今回は、カーボンファイバーを使用した)、断熱部材と真空容器の間に、炉内構成部材の脱ガス手段である赤外線ランプを配置している。断熱部材の構成は、蛍石加熱時に反応物として発生するフッ酸に赤外線ランプのガラスが侵食されにくいような真空排気経路になるように構成した。
【0032】
実験は、以下の手順で行った。
【0033】
1の真空容器を、大気開放し蛍石を入れた坩堝をセットする。
【0034】
1の真空容器を2の真空排気系で真空に排気する。所定の圧力以下(今回は1Pa以下に排気した)になってから、赤外線ランプで炉内構成部材を加熱脱ガスした。脱ガス時の温度は、蛍石がスカベンジャーと反応する温度以下とした。今回は200℃設定で5時間脱ガスを行ったが、主不純物である水分が脱離しやすい温度であれば問題はない。
【0035】
炉内構成部材の脱ガス後、3のヒーターを昇温させ(今回は1380℃まで昇温)蛍石の溶融をした。ルツボを回転させゆっくりと引下げ(今回は5mm/Hr)結晶成長させた。
【0036】
【実施例3】
図3は本発明の第三の実施形態に係る蛍石結晶製造装置の断面図である。第三の実施形態は、炉内構成部材の脱ガス手段としてシースヒーターを用い、炉内ヒーターで昇温開始と同時にシースヒーターにより炉内構成部品の脱ガスを開始した形態である。
【0037】
図1における結晶製造装置は、1の真空を保持するための真空容器、2の真空容器内を真空排気するための真空排気系、3の結晶材料を加熱するためのヒーター(今回はグラファイトヒーターを使用した)、4の炉内の放熱を防ぐための断熱部材(今回は、カーボンファイバーを使用した)、断熱部材と真空容器の間に、炉内構成部材の脱ガス手段であるシースヒーターを配置している。
【0038】
実験は、以下の手順で行った。
【0039】
1の真空容器を、大気開放し蛍石を入れた坩堝をセットする。
【0040】
1の真空容器を2の真空排気系で真空に排気する。所定の圧力以下(今回は0.8Pa以下に排気した)になってから、赤外線ランプで炉内構成部材を加熱脱ガスした。脱ガス時の温度は、蛍石がスカベンジャーと反応する温度以下とした。今回は180℃設定で10時間脱ガスを行ったが、主不純物である水分が脱離しやすい温度であれば問題はない。
【0041】
炉内構成部材の脱ガス後、3のヒーターを昇温させ(今回は1380℃まで昇温)蛍石の溶融をした。ルツボを回転させゆっくりと引下げ(今回は5mm/Hr)結晶成長させた。
【0042】
【発明の効果】
本発明により、温度の上昇が遅い断熱部材外部をスカベンジャー反応以前に脱ガスしておくことで、蛍石内部に混在する不純物が減少した。不純物が減少したことにより、屈折率の均一な透過率の高い良質な蛍石結晶を製造することができた。
【図面の簡単な説明】
【図1】本発明の蛍石結晶製造方法の赤外線ランプにより脱ガスを行う実施形態を示す概略図である。
【図2】従来の蛍石結晶製造方法の実施形態を示す概略図である。
【図3】本発明の蛍石結晶製造方法のシースヒーターにより脱ガスを行う実施形態を示す概略図である。
【符号の説明】
1   真空容器
2   真空排気系
3   ヒーター
4   断熱部材
5   赤外線ランプ
6   シースヒーター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a crystal manufacturing apparatus and a crystal manufacturing method for manufacturing a fluorite crystal material used for an optical member such as a lens.
[0002]
[Prior art]
The optical member is used for a telescope, a camera, an exposure apparatus for manufacturing a semiconductor integrated circuit, and the like. In particular, a high quality optical member is desired for an exposure apparatus.
[0003]
2. Description of the Related Art In recent years, with the increasing integration of semiconductor integrated circuits, demands for forming ultrafine patterns have been increasing. As an apparatus for transferring a fine pattern onto a wafer, a step-and-repeat type reduced projection small exposure apparatus (stepper) is frequently used. In order to achieve high integration, it is necessary to increase the resolution of the stepper projection lens. In order to increase the resolution of the projection lens, it is necessary to use exposure light having a short wavelength and increase the numerical aperture (increase the diameter) of the projection lens.
[0004]
In addition, the short wavelength of the exposure light has progressed to I-ray (365 nm wavelength) and Kr-F excimer laser light (248 nm wavelength), and Ar-F excimer laser light (193 nm wavelength) is being used. In the future, F2 Ezer is promising. In the wavelength range up to I-line, it was possible to use a conventional optical lens in the optical system, but in the wavelength range of Kr-F excimer laser light and Ar-F excimer laser light, the transmittance was low and the conventional It is not possible to use optical glass.
[0005]
For this reason, it is common to use quartz glass or fluorite having high transmittance for short-wavelength light in the optical system of the excimer laser exposure apparatus. Particularly at the F2 excimer laser wavelength, the use of fluorite is essential.
[0006]
In addition, each lens constituting the stepper projection lens is polished with the ultimate surface precision, but when the crystal is polycrystalline, the polishing rate differs depending on the crystal orientation, so it becomes difficult to ensure the lens surface precision. .
[0007]
Further, in the case of polycrystal, impurities are easily precipitated at the crystal interface, and the uniformity of the refractive index is impaired, and fluorescence is emitted by laser irradiation.
[0008]
For these reasons, large-diameter single-crystal fluorite is desired for a projection lens of an excimer laser exposure apparatus.
[0009]
In a general compound crystal manufacturing apparatus, JP-A-09-002890, JP-A-08-333187, and JP-A-09-002890 dispose a heat insulating member outside the heater, and a vacuum vessel near the heat insulating member.
[0010]
As for the fluorite crystal production apparatus, as in JP-A-11-92269, JP-A-11-92270, and JP-A-11-92268, a heat insulating member is arranged outside the heater, and a vacuum vessel is arranged near the heat insulating member.
[0011]
The vacuum vessel is generally water-cooled in the case of a high-temperature furnace.
[0012]
As the molten material is heated by the heater, heat is radiated to the outside and the temperature of the heat insulating material rises. The outside temperature of the heat insulating member is raised later than the inside of the heat insulating member because the vacuum vessel may be water-cooled.
[0013]
[Problems to be solved by the invention]
An object of the present invention is to produce a uniform crystal having a small refractive index and a low refractive index.
[0014]
It is known that the main impurity of fluorite is water.
[0015]
As described above, the temperature inside the conventional heat insulating member reaches the temperature at which the scavenger reacts, but since the outside of the heat insulating member is a water-cooled vacuum vessel and a heat insulating member, the temperature difference between the inside and the outside is large, There is a problem that a state in which the temperature outside the heat insulating member does not rise to the desorption temperature of moisture occurs.
[0016]
When the above-mentioned condition occurs, water as a main impurity is detected in the fluorite crystal, and it has been found that a portion having a non-uniform refractive index is formed.
[0017]
[Means for Solving the Problems]
The crystal manufacturing method of the present invention is characterized in that a degassing means is provided outside the heat insulating member, a step of degassing the constituent members is performed, and impurities in the fluorite crystal are reduced.
[0018]
The crystal production method of the present invention includes a degassing means outside the heat insulating member, performs the step of degassing the constituent members at a temperature lower than the temperature at which the scavenger reacts, and reduces impurity contamination to fluorite during the scavenger reaction. It is characterized.
[0019]
The crystal production method of the present invention is characterized in that the degassing means uses a heating means such as an infrared lamp or a heater to reduce impurity contamination to fluorite during crystal production.
[0020]
The crystal manufacturing apparatus of the present invention includes a vacuum container for holding a vacuum, an exhaust system including a vacuum pump for exhausting the inside of the vacuum container, a heater for heating fluorite in the vacuum container, and a heat insulating material for preventing heat radiation. And a heating mechanism such as an infrared lamp or a heater for degassing the heat insulating member between the vacuum vessel and the heat insulating member.
[0021]
The crystal manufacturing apparatus of the present invention is characterized in that, in the above-described crystal manufacturing apparatus, the installation position of the infrared lamp is not installed in the main exhaust path of the gas released during heating.
[0022]
ADVANTAGE OF THE INVENTION According to this invention, before scavenger reaction temperature, the impurity removal of a furnace internal member (mainly a heat insulation member and a vacuum container) can be performed, and the fluorite of the impurity contamination desorbed from the furnace internal member can be removed. The effect could be reduced.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to examples of sealing.
[0024]
Embodiment 1
FIG. 1 is a sectional view of a fluorite crystal manufacturing apparatus according to an embodiment of the present invention. The first embodiment is an embodiment in which an infrared lamp is used as a degassing means for the in-furnace components, and the in-furnace components are degassed by the infrared lamp before being heated by the in-furnace heater.
[0025]
The crystal manufacturing apparatus in FIG. 1 includes a vacuum vessel 1 for holding a vacuum, a vacuum evacuation system for evacuating the inside of a vacuum vessel 2, a heater for heating a crystal material 3 (in this case, a graphite heater is used). (4) Insulation member to prevent heat radiation in the furnace (carbon fiber was used this time), and an infrared lamp, which is a degassing means for furnace components, was placed between the insulation member and the vacuum vessel. are doing. The heat insulating member was configured so as to be a vacuum exhaust path in which the glass of the infrared lamp was hardly corroded by hydrofluoric acid generated as a reactant when fluorite was heated.
[0026]
The experiment was performed in the following procedure.
[0027]
The vacuum vessel of No. 1 is opened to the atmosphere and a crucible containing fluorite is set.
[0028]
The first vacuum vessel is evacuated to vacuum by the second vacuum evacuation system. After the pressure was reduced to a predetermined pressure or less (in this case, the pressure was reduced to 1 Pa or less), the components inside the furnace were heated and degassed by an infrared lamp. The temperature during degassing was lower than the temperature at which the fluorite reacted with the scavenger. In this case, degassing was performed at 200 ° C. for 5 hours, but there is no problem as long as the temperature is such that water as a main impurity is easily desorbed.
[0029]
After degassing of the furnace internal components, the heater 3 was heated (in this case, the temperature was raised to 1380 ° C.) to melt the fluorite. The crucible was rotated and slowly pulled down (5 mm / Hr in this case) to grow a crystal.
[0030]
Embodiment 2
The second embodiment uses the same device as the first embodiment. The second embodiment is an embodiment in which an infrared lamp is used as a degassing means for the in-furnace components, and degassing of the in-furnace components is started by the infrared lamp simultaneously with the start of heating by the in-furnace heater.
[0031]
The crystal manufacturing apparatus in FIG. 1 includes a vacuum vessel 1 for holding a vacuum, a vacuum evacuation system for evacuating the inside of a vacuum vessel 2, a heater for heating a crystal material 3 (a graphite heater is used in this case). (4) Insulation member to prevent heat radiation in the furnace (carbon fiber was used this time), and an infrared lamp, which is a degassing means for furnace components, was placed between the insulation member and the vacuum vessel. are doing. The heat insulating member was configured so as to be a vacuum exhaust path in which the glass of the infrared lamp was hardly corroded by hydrofluoric acid generated as a reactant when fluorite was heated.
[0032]
The experiment was performed in the following procedure.
[0033]
The vacuum container of No. 1 is opened to the atmosphere and a crucible containing fluorite is set.
[0034]
The first vacuum vessel is evacuated to vacuum by the second vacuum evacuation system. After the pressure was reduced to a predetermined pressure or less (in this case, the pressure was reduced to 1 Pa or less), the components inside the furnace were heated and degassed by an infrared lamp. The temperature during degassing was lower than the temperature at which the fluorite reacted with the scavenger. In this case, degassing was performed at 200 ° C. for 5 hours, but there is no problem as long as the temperature is such that water as a main impurity is easily desorbed.
[0035]
After degassing of the furnace internal components, the heater 3 was heated (in this case, the temperature was raised to 1380 ° C.) to melt the fluorite. The crucible was rotated and slowly pulled down (5 mm / Hr in this case) to grow a crystal.
[0036]
Embodiment 3
FIG. 3 is a sectional view of a fluorite crystal manufacturing apparatus according to the third embodiment of the present invention. The third embodiment is an embodiment in which a sheath heater is used as a degassing means for the in-furnace components, and degassing of the in-furnace components is started by the sheath heater at the same time as the temperature rise is started by the in-furnace heater.
[0037]
The crystal manufacturing apparatus in FIG. 1 includes a vacuum vessel 1 for holding a vacuum, a vacuum evacuation system for evacuating the inside of a vacuum vessel 2, a heater for heating a crystal material 3 (in this case, a graphite heater is used). (4) Insulation member for preventing heat release in the furnace (carbon fiber was used this time), and a sheath heater, which is a degassing means for the components in the furnace, were placed between the insulation member and the vacuum vessel. are doing.
[0038]
The experiment was performed in the following procedure.
[0039]
The vacuum container of No. 1 is opened to the atmosphere and a crucible containing fluorite is set.
[0040]
The first vacuum vessel is evacuated to vacuum by the second vacuum evacuation system. After the pressure became equal to or less than a predetermined pressure (in this case, the gas was exhausted to 0.8 Pa or less), the components inside the furnace were degassed by heating with an infrared lamp. The temperature during degassing was lower than the temperature at which the fluorite reacted with the scavenger. In this case, degassing was performed at 180 ° C. for 10 hours, but there is no problem as long as the temperature is such that water as a main impurity is easily desorbed.
[0041]
After degassing of the furnace internal components, the heater 3 was heated (in this case, the temperature was raised to 1380 ° C.) to melt the fluorite. The crucible was rotated and slowly pulled down (5 mm / Hr in this case) to grow a crystal.
[0042]
【The invention's effect】
According to the present invention, impurities mixed in the fluorite are reduced by degassing the outside of the heat insulating member whose temperature rises slowly before the scavenger reaction. Due to the reduced impurities, a high-quality fluorite crystal having a uniform refractive index and a high transmittance could be produced.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment in which degassing is performed by an infrared lamp in the fluorite crystal production method of the present invention.
FIG. 2 is a schematic view showing an embodiment of a conventional fluorite crystal manufacturing method.
FIG. 3 is a schematic view showing an embodiment in which degassing is performed by a sheath heater in the fluorite crystal production method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Vacuum exhaust system 3 Heater 4 Insulation member 5 Infrared lamp 6 Sheath heater

Claims (8)

蛍石を真空容器内で結晶製造する方法において、真空容器内に構成部材からの脱ガスを断熱部材の外部から行う手段を備え、構成部材の脱ガス工程を行うことを特徴とする蛍石結晶製造方法。A method for producing fluorite in a crystal in a vacuum vessel, comprising: means for degassing a component from the outside of the heat insulating member in the vacuum vessel, and performing a degassing step of the component. Production method. 前記構成部材からの脱ガス工程が、蛍石内の不純物を除去する反応材料(以下スカベンジャーと称する)と反応する炉内温度以下で行われることを特徴とする請求項1記載の蛍石結晶製造方法。2. The fluorite crystal production according to claim 1, wherein the degassing step from the constituent member is performed at a furnace temperature or lower that reacts with a reaction material for removing impurities in the fluorite (hereinafter referred to as a scavenger). 3. Method. 前記脱ガス手段が輻射加熱であることを特徴とする請求項1又は2記載の蛍石結晶製造方法。The fluorite crystal production method according to claim 1 or 2, wherein the degassing means is radiant heating. 前記加熱手段が赤外線ランプであることを特徴とする請求項3記載の蛍石結晶製造方法。4. The method according to claim 3, wherein the heating means is an infrared lamp. 前記蛍石結晶製造方法は、ブリッジマン法、又は、VGF法であることを特徴とする請求項1乃至4のうちいずれか一項記載の蛍石結晶製造方法。The fluorite crystal production method according to any one of claims 1 to 4, wherein the fluorite crystal production method is a Bridgman method or a VGF method. 真空を保持する真空容器、真空容器内を排気するための真空ポンプを含む排気系装置、真空容器内に蛍石を加熱するためのヒーター、放熱を防ぐための断熱部材から構成される蛍石結晶製造装置において、真空容器と断熱部材の間に構成材料を脱ガスするための加熱機構を備えたことを特徴とする蛍石結晶製造装置。Fluorite crystal composed of a vacuum container for holding a vacuum, an exhaust system including a vacuum pump for evacuating the vacuum container, a heater for heating fluorite in the vacuum container, and a heat insulating member for preventing heat radiation A fluorite crystal manufacturing apparatus, comprising: a heating mechanism for degassing a constituent material between a vacuum vessel and a heat insulating member. 前記蛍石結晶製造装置において、脱ガスするための加熱機構が、赤外線ランプであることを特徴とした請求項6記載の蛍石結晶製造装置。7. The fluorite crystal manufacturing apparatus according to claim 6, wherein the heating mechanism for degassing is an infrared lamp. 前記蛍石結晶製造装置において、構成部材の脱ガスを行う赤外線ランプの設置位置が、加熱時の放出ガスの主排気経路に設置されていないことを特徴とする請求項6記載の蛍石結晶製造装置。7. The fluorite crystal production according to claim 6, wherein in the fluorite crystal production apparatus, an installation position of an infrared lamp for degassing a constituent member is not installed in a main exhaust path of a gas released during heating. apparatus.
JP2002191769A 2002-07-01 2002-07-01 Method and device for manufacturing fluorite crystal Pending JP2004035291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191769A JP2004035291A (en) 2002-07-01 2002-07-01 Method and device for manufacturing fluorite crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191769A JP2004035291A (en) 2002-07-01 2002-07-01 Method and device for manufacturing fluorite crystal

Publications (1)

Publication Number Publication Date
JP2004035291A true JP2004035291A (en) 2004-02-05

Family

ID=31701239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191769A Pending JP2004035291A (en) 2002-07-01 2002-07-01 Method and device for manufacturing fluorite crystal

Country Status (1)

Country Link
JP (1) JP2004035291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239361A (en) * 2007-03-26 2008-10-09 Tokuyama Corp Method for regenerating heat insulating material used for heating and fusing furnace for metal fluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239361A (en) * 2007-03-26 2008-10-09 Tokuyama Corp Method for regenerating heat insulating material used for heating and fusing furnace for metal fluoride

Similar Documents

Publication Publication Date Title
JP2000034193A (en) Heat treatment and production of fluoride single crystal
US20080229999A1 (en) Method Of Manufacturing A Calcium Fluoride Single Crystal
CN104860521B (en) The heat treatment method of synthetic quartz glass
JP2000081367A (en) Light transmission optical member, its manufacturing method, its evaluation method, and light lithography device
JP3466948B2 (en) Heat treatment method for fluoride crystal and method for producing optical component
JP3969865B2 (en) Method for producing fluoride crystals
US5978070A (en) Projection exposure apparatus
JP2010228924A (en) Silicon epitaxial wafer and production method of the same
WO2006104179A1 (en) Process for producing synthetic quartz glass and synthetic quartz glass for optical member
JP2004307263A (en) Method and apparatus for molding quartz glass
JP2002053330A (en) Method for molding synthetic quartz glass and synthetic quartz glass
JP5287574B2 (en) Heat treatment method for synthetic quartz glass
JP2004035291A (en) Method and device for manufacturing fluorite crystal
JP2006219361A (en) Method for manufacturing crystal
JP2000281492A (en) Heat treatment of fluoride crystal, preparation of optical part and optical device
JP2000219523A (en) Forming method of quartz glass, forming device and quartz glass produced by the method
JP2005289776A (en) Method for manufacturing crystal and crystal manufacturing apparatus
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
JP2002293685A (en) Crystal manufacturing method and apparatus
JP2020529036A (en) Simultaneous double-sided coating of multi-layer graphene pellicle by local heat treatment
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
JP4277595B2 (en) Fluoride crystal manufacturing method, calcium fluoride crystal and exposure apparatus
JP2007308349A (en) METHOD FOR HEAT-TREATING BaLiF3 CRYSTAL
JP2005022921A (en) Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JP4533188B2 (en) Crystal manufacturing apparatus and crystal manufacturing method