JP2004031395A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment Download PDF

Info

Publication number
JP2004031395A
JP2004031395A JP2002181071A JP2002181071A JP2004031395A JP 2004031395 A JP2004031395 A JP 2004031395A JP 2002181071 A JP2002181071 A JP 2002181071A JP 2002181071 A JP2002181071 A JP 2002181071A JP 2004031395 A JP2004031395 A JP 2004031395A
Authority
JP
Japan
Prior art keywords
boat
mounting plate
substrate
support
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002181071A
Other languages
Japanese (ja)
Inventor
Tenwa Yamaguchi
山口 天和
Kazuhiro Morimitsu
盛満 和広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002181071A priority Critical patent/JP2004031395A/en
Publication of JP2004031395A publication Critical patent/JP2004031395A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the uniformity of a film thickness in a substrate surface by eliminating ununiform part of process gas flow caused by a substrate mounting member. <P>SOLUTION: In a semiconductor manufacturing equipment, a boat on which a wafer is mounted is inserted into a reactant tube. A reactant gas is introduced into the heated reactant tube, to grow a thin film on the wafer. The boat comprises a plurality of supporting columns 21 and a lot of ring-like mounting plates 20. A plurality of wafer supporting protrusions 17 are formed on a top surface of each mounting plate 20. The plate 20 is further provided with a plurality of insertion holes 24 for the supporting column that are for inserting the supporting column 21. The insertion hole 24 is so opened as to fall within a width of the plate, so that the supporting column 21 does not protrude from the mounting plate 21. A lot of mounting plates 21 in which the insertion hole 24 is opened are laminated with proper intervals, and the insertion holes 24 are aligned to temporarily fix the plates with a fixture. The boat is assembled by inserting the supporting column into the insertion holes 24 of each mounting plate 21 to fix by welding. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は半導体製造装置に係り、特にガスの流れに影響を与える基板載置部材に関する。
【0002】
【従来の技術】
一般に、半導体製造装置は、複数枚のウェハを多段に積載する基板載置部材としてのボートと、ボートを挿入する反応管と、反応管を囲繞しボートに積載されたウェハを加熱するヒータとを有し、反応管に処理ガスを流すことでウェハ面上に成膜処理を行なうものである。
【0003】
図7に、上述した半導体製造装置で用いられる基板載置部材としての従来のボートの要部図を示す。ボートはウェハを1枚ずつ保持する複数のリング状の載置プレート16と、これを支持する複数(4本)の支柱15とを備える。載置プレート16の上面にはウェハを支持するための複数(3つ)の支持突起17が設けられる。支柱15は断面円形をしており、その一側に載置プレート保持用の溝を多段に設ける。各支柱15に設けた溝が円の中心に向くように、複数の支柱15を半円状に配列固定する。複数の支柱15に囲まれた空間に載置プレートを特定方向(支柱が配列されていない側)から挿入し、支柱15に設けた溝に各載置プレート16の外周を溶着して、複数枚のウェハを多段に積載するボートが組み立てられる。なお、支柱外周の膨らみは溶着部25を示す。
【0004】
図7に示すボートにおいて問題となるのは、半円状に配列した支柱15の内側から載置プレート16を取り付けているために、支柱15の溝部に残る厚さaの分だけ、載置プレート16の外径から突出する点である。反応管とボート(ボートの輪郭は載置プレートの外径によって決まる)との隙間は小さいほどガスの流れが均一になるが、厚さa分だけボートの外径を大きくできないため、反応管とボートとの隙間を小さくできない。したがって、反応管とボートとの隙間にダウンフローが発生し、処理ガスの流れが不均一になってしまう。
【0005】
そこで、載置プレートの外径から支柱が突出しないようにしたボートが考えられた。図8にそのようなボート例を示す。支柱には断面半円形のものを用いる。リング状の載置プレート16の外周の複数箇所(4箇所)に、支柱差込み用の複数の切欠部18を設ける。半円上に配列固定された複数(4本)の支柱15に囲まれた空間に、切欠部18を設けた載置プレート16を特定方向から挿入し、各切欠部18に支柱15を差し込んで溶着し、複数枚のウェハを多段に積載するボートが組み立てられる。
【0006】
図8に示すボートでは、支柱が載置プレート16から突出しないため、載置プレート16は最大外径を取ることができ、反応管とボートとの隙間を小さくすることは可能である。しかし、載置プレート16を特定方向から支柱空間に挿入する必要上、載置プレート16の挿入先の奥側の2箇所では支柱の差込み位置が浅いので切欠部18は小さくて済むが、手前側の2箇所では差込み位置が深くなるので、切欠部18は大きくカットせざるを得ないことになる。このため載置プレート16に設けた切欠部18が、熱的不均一、ガスの流れの不均一部分となり、成膜結果でも、この切欠部における膜厚が薄くなる傾向にある。
【0007】
【発明が解決しようとする課題】
上述したように従来の半導体製造装置を構成する基板載置部材において、支柱に設けた載置プレート保持用溝に載置プレートを保持させるタイプのものでは、支柱が載置プレートの外径より突出するため、反応管と載置プレートとの隙間を小さくすることができず、処理ガスの流れを均一にすることができない。
【0008】
また、載置プレートに設けた支柱差込み用の切欠部に支柱を差し込むタイプのものでは、載置プレートの最大外径を取ることは可能であるが、支柱差込み用の切欠部が、熱的不均一、ガスの流れの不均一部分となるという問題があった。
【0009】
本発明の課題は、基板載置部材に起因したガスの流れの不均一部分を無くすことによって、上述した従来技術の問題点を解消して、基板面内の膜厚均一性を向上することが可能な半導体製造装置を提供することにある。
【0010】
【課題を解決するための手段】
第1の発明は、複数枚の基板を多段に積載した基板載置部材を反応管内に挿入し、反応管内に処理ガスを流しながら反応管内の基板を加熱して成膜処理する半導体製造装置において、前記基板載置部材は基板を1枚ずつ載置する複数のリング状の載置プレートを有し、各載置プレートにプレート幅内に納まる複数の支柱用挿入孔を開け、前記支柱用挿入孔を合致させて複数の載置プレートを積層し、各支柱用挿入孔に支柱を挿入し、前記支柱に各載置プレートを所望する間隔で水平姿勢に固定したことを特徴とする。
【0011】
基板載置部材の各載置プレートに複数枚の基板を積載する。基板を積載した基板載置部材を反応管に挿入する。加熱手段により基板載置部材に積載された基板を加熱する。反応管に処理ガスを流しつつ排気する。これにより前記基板面上に成膜される。載置プレートに、プレート幅内に納まる支柱用挿入孔を開けて支柱を挿入するようにしたから、支柱に設けた溝部に載置プレートの外周を保持させるものと異なり、支柱は載置プレートの幅内に納まり、載置プレートの外周部から突出しない。したがって、反応管と基板載置部材との隙間を最小にすることができ、成膜膜厚均一に有害なダウンフローの形成を防止できる。また、支柱を取り付けるために載置プレートの外周部を成形する必要がないので、載置プレートの外周部に支柱差込み用の切欠部を設けるものと異なり、載置プレートの外周は円形を保ったままである。したがって、載置プレートの形状に起因するガス流れの不均一部分が生じない。
【0012】
なお、第1の発明において、載置プレートの形状のみならず、支柱断面も流線形とし、支柱によってもガス流れが乱されないようにがするのが好ましい。流線形として例えば紡錘形がある。また、基板載置部材の載置プレートには、載置プレートから基板を浮かして支持するための支持突起が少な<とも3つ設けられていることが好ましい。基板搬送機による基板載置部材に対する基板の出し入れを簡単にするためである。
【0013】
また、第1の発明において、反応管は、外管と外管内に同軸的に配設された内管との二重管で構成され、内管内の一側に配設され、内管に挿入される基板載置部材に載置された各基板にガスを供給するための複数の噴出孔を有するノズルと、ノズルと対向する他側の内管壁に開けられノズルを介して内管に導入されたガスを内管から導出させるスリット状の開口と、前記スリット状開口を介して内管から導出されたガスを内管と反応管との間の空間を介して反応管から排出する排気路とを備えて構成することが好ましい。
【0014】
内管内の一側に配設されたノズルと対向する他側の内管壁にスリット状の開口を設けると、ノズルから内管へ導入されたガスは、基板載置部材に載置された各基板上を基板面と平行に通過して内管から導出される。このとき、基板載置部材を最大外径として反応管と基板載置部材との隙間を小さくしてあると、この隙間にダウンフローが生じることはなく、スリット状開口から内管と外管との間に形成された空間を介して反応管からそのまま排気される。したがって、基板面上のガスフローに乱れがなく、ガスは円滑に排気される。
【0015】
第2の発明は、複数枚の基板を多段に積載した基板載置部材を反応管内に挿入し、反応管内にガスを流しながら反応管内の基板を加熱して成膜処理する半導体製造装置を作製する方法において、前記基板載置部材を作製する際、基板を1枚ずつ載置する複数の載置プレートを用意し、各載置プレートに支柱用挿入孔を形成し、支柱用挿入孔を形成した複数の載置プレートを、支柱用挿入孔を揃えて積層させた状態で治具を用いて仮固定し、仮固定した複数の載置プレートの支柱用挿入孔に支柱を挿入し、挿入した支柱を載置プレートに固定し、固定後治具を取り外すようにしたことを特徴とする。
【0016】
治具を用いて仮固定している複数の載置プレートを串刺しにするように、支柱を各載置プレートの支柱用挿入孔に挿入するので、基板載置部材を簡単に組み立てることができる。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
【0018】
図4に半導体製造装置の全体構成図を示す。半導体製造装置は、ウェハカセット30を搭載するカセットストッカ1と、カセットストッカ1とボート3との間でウェハの移載を行うウェハ移載手段2と、複数枚のウェハを多段に積載する基板載置部材としてのボート3と、ボート3を反応管に挿入及び引き出すボート昇降手段4と、反応管とこれを加熱するヒータを備えた熱処理装置5とから構成されている。
【0019】
熱処理装置は例えば縦型CVD装置で構成される。図5は、そのような縦型CVD装置の内部構成を示す。筒状ヒータ12の内側に石英製の反応管31が設けられる。反応管31は、上端が閉じた外管7と、外管7の内部に同心状に配設された上端が閉じた内管6とから構成される。ウェハ11を処理する反応室32は内管6によって形成される。反応管31は金属製の炉口フランジ10上に立設される。炉口フランジ10の下端はシールキャップ33により気密に閉塞され、シールキャップ33上にボート9が立設されて内管6内に挿入される。ボート9には処理されるウェハ7が水平姿勢で多段に積載される。
【0020】
炉口フランジ10にはガス導入ノズル8が取り付けられ、炉口フランジ内部で立ち上がって内管6内に挿入され、ボート9の上方にまで延在している。ガス導入ノズル8には、多段に積層されたウェハの配列に合わせて多数のノズル孔35が設けられる。ノズル孔35が設けられたガス導入ノズル8と対向する内管6の管壁には、ガス導入ノズル8より内管6内に導入されたガスを導出するスリット状の開口14が設けられる。スリット状の開口14は、ノズル孔35と同様に多段に設けられる。導出されたガスは外管7と内管6との間に形成される円筒状の空間23に流れ込み、炉口フランジ10に設けられた排気ポート13より排出される。前記空間23と排気ポート13とから排気路が構成される。
【0021】
ボート昇降手段4によりボート9を下降させ、ボート9にウェハ7を多段に装填し、ボート昇降手段4によりボート9を内管6内に挿入する。シールキャップ33が炉口フランジ10下端を完全に密閉した後、反応室32内を排気して減圧する。
【0022】
ヒータ12により内管6内を所定の成膜温度に加熱する。回転駆動部26によりボート9を回転させる。ガス導入ノズル8から処理ガスを反応管6内に導入する。処理ガスはノズル孔8から噴出して多段に積載された各ウェハ上をウェハ面と平行に通過し、スリット状の開口14を経由して反応管6から導出され、空間23を経てガス排気ポート13より排出される。処理ガスがウェハ上を通過する際、各ウェハ7の表面に成膜される。成膜後、ガス導入ノズル8から不活性ガスを導入し、反応管31内を不活性ガスに置換して常圧に復帰させる。ボート9を下降させ、ボート9から成膜後のウェハ7を払い出す。
【0023】
ここで、図6を用いて内管6内におけるガスの流れを説明する。図6(a)は内管6とボート9の外径との隙間tが小さい場合、図6(b)は隙間が大きい場合を示す。
【0024】
第6(a)に示すように、ウェハ11面と平行な方向から処理ガスを噴射する場合、処理ガスの流れを均一にするために、内管6とボート9の外径との隙間tを可能なかぎり小さくする必要がある。これはノズル8から出た処理ガスが、リング状の載置プレート16に沿って導入されウェハ11の表面を通過した後、そのままガス流が乱されることなく、内管6に設けられたスリット状の開口14から導出されて、空間23から排気されるためである。これに対して図6(b)に示すように、隙間tが大きいと、内管6とボート9の外径との空間34で矢印で示すようなダウンフロー19が発生し、反応室32内の上下方向で排気が不均一となり、ウェハ11の膜厚均一性に影響を及ぼす。
【0025】
上記隙間tを可能な限り小さくするためには、前述したように、ボート9を構成する支柱がリング状の載置プレート16からはみ出さないようにする必要がある。また、支柱がはみ出していなくてもリング状の載置プレート16の外形が変形していないことが要請される。
【0026】
そこで、実施の形態では、ボート9を構成するボートを図1及び図2に示すように構成している。図1はボートを構成する載置プレートの説明図で、(a)は側面図、(b)は平面図である。図2はボートの全体構成図である。
【0027】
ボート9は石英製であり、図1、図2に示すように、底円板41と、4本の支柱21と、天円板42とを有する。4本の支柱21は、底円板41に半円状に配列固定されている。天円板42は、4本の支柱21の上端部に固定されている。底円板41及び天円板42の中央部には、ボート9の内部に処理ガスが入りやすくなるための円形穴43、44がそれぞれ形成されている。底円板41と天円板42との間には、所望する間隔で多段に水平姿勢で積載された複数のリング状の載置プレート20が支柱21によって固定されている。リング状の載置プレート20 は、中央が開口した略円形に形成され、上面には載置プレートからウェハを浮かせて支持するための複数(例えば3個)のウェハ支持突起17が形成されている。また、載置プレート20には、4本の支柱21を挿入するための4つの支柱用挿入孔24が形成される。4つの支柱用挿入孔24は、載置プレート20の片側半分の半円上に適宜間隔を開けて形成される。支柱用挿入孔24は載置プレート20のプレート幅内に納まるように開けられており、外側にも内側にも開いていない。外側に開いて支柱が載置プレート20から外方に突き出すとガス流を乱し、また、内側に開いて支柱が載置プレート20から内方に突き出すとウェハをボート内に挿入できなくなるからである。 この4つの支柱用挿入孔24にそれぞれ支柱21が挿入されて、各載置プレート20を所望する間隔で水平姿勢に溶着固定する。
【0028】
ボート9を製作するには、ここでは、図示しない治具を用いて水平に多段に仮固定した載置プレート20を支柱21の上部から差し込み、溶着するという方法をとっている。すなわち、支柱用挿入孔24を形成した複数のリング状載置プレート20を用意する。複数の載置プレート20を、各支柱用挿入孔24が合致するように揃えて積層させた状態で、治具で仮固定する。底円板43に4本の支柱2を半円状に配列して固定する。支柱21を、仮固定した複数の載置プレート20の支柱用挿入孔24に挿入し、挿入した支柱21を支柱用挿入孔部分で載置プレート20に固定する。支柱21に天円板42を固定する。治具を取り外すと、多数枚のウェハを多段に積載するボートが完成する。なお、載置プレート20の固定を含めたボート部材間の固定は、石英ガラス同士の溶着で行なう。なお、載置プレート20を支柱21の上部から差込んだが、下部から差込んでもよい。また、載置プレート材は、耐熱性であれば特に限定されないが、石英の他に、炭化ケイソ(SiC )、アルミナ(Al )、セラミック等の耐熱性材料が好ましい。
【0029】
実施例による図1、図2のボートでは、柱部分の突出部分が無いので、内管と載置プレート部分の隙間tを最小にすることが可能であり、最小にしたときには、ノズル孔より処理ガスが噴射されると、ウェハ面と平行に通過し、ダウンフローを生じることなく、そのままスリット状開口から空間23を介して排気ポート13から排出される。したがって、反応室32内の上下方向において処理ガスの流れが不均一になることがない。また、載置プレートの外周に切欠部もなく、載置プレートの外周は円形を保つので、熱的均一性やガスの流れにおける均一性を損なうこともない。したがって、ウェハに与える熱的影響の均一化及び処理ガス流れの均一化ができ、処理ウェハ面内の膜厚の均一性を向上させることができる。その結果、半導体素子の製造における品質の向上を図ることができる。
【0030】
なお、実施の形態では、支柱用挿入孔24が載置プレート20のプレート幅内に納まるように開けられており、外部には開いていない場合について説明した。しかし、支柱用挿入孔24の一部がプレート外部に開口しても、そこに挿入された支柱によって挿入孔の開口が塞がれ、その結果、載置プレートの外周が円形に保持されるのであればよい。
【0031】
また、支柱用挿入孔及びこれに挿入される支柱は、円形及び断面円形の場合を示したが、水平方向のガス流れに対し、ガス流れを乱さないように支柱断面を流線形状とすることが好ましい。図3に示すように、例えば断面紡錘形とし、ガス流の上流側と下流側とに支柱の突出部を向けて、水平方向のガス流れを乱し難くする。ボートを停止させたまま成膜処理を行なう場合は、図示するように、支柱の向きは全てガス流を平行にするとよい。これにより支柱21によってもガス流れが乱れることがなくなり、処理ウェハ面内の膜厚の均一性を一層向上させることができる。
【0032】
なお、図3に示すものは、ボートを停止させたまま成膜処理を行なう場合に特に有効な例であるが、ボートを回転させて処理を行なう場合は、支柱の向きを図9(a)に示すようにしてもよい。図9(a)の場合には、ボート回転(太矢印方向)によって支柱21がガス導入ノズル8に一番近接した時(図9(b))に、その近接した支柱21によってノズル孔35から噴出直後の勢いのある処理ガスの流れ(矢印)が乱れないように、全ての支柱21の突出部の一端を回転中心に向けた例である。これにより、ガス導入ノズル8に支柱21が近接しても乱れが少なくなり、ウェハ面内の均一性を向上できる。
【0033】
【発明の効果】
本発明によれば、基板載置部材に起因したガスの流れの不均一部分を無くすことができるので、基板面内の膜厚均一性を向上することができる。したがって、半導体素子の製造における品質の向上を図れる。
【図面の簡単な説明】
【図1】実施の形態による半導体製造装置で用いられるボートを構成する載置プレートの説明図で、(a)は側面図、(b)は平面図である。
【図2】実施の形態によるボートの全体構成図である。
【図3】実施の形態による載置プレートを支持する支柱の変形例を示す説明図である。
【図4】実施の形態による半導体製造装置の全体構成図である。
【図5】実施の形態による熱処理装置の構成図である。
【図6】実施の形態による内管と載置プレートの距離とガス流れの関係を示す説明図で、(a)は内管とボートの外径との隙間tが小さい場合、(b)は隙間が大きい場合を示す。
【図7】従来例によるボートを構成する載置プレートの構成図である。
【図8】他の従来例によるボートを構成する載置プレート構成図である。
【図9】実施の形態による載置プレートを支持する支柱の変形例を示す説明図で、(a)は全体図、(b)は部分拡大図ある。
【符号の説明】
9  ボート(基板載置部材)
11  ウェハ(基板)
12  ヒータ(加熱手段)
21  支柱
20  載置プレート
24  支柱用挿入孔
31  反応管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor manufacturing apparatus, and more particularly to a substrate mounting member that affects a gas flow.
[0002]
[Prior art]
Generally, a semiconductor manufacturing apparatus includes a boat as a substrate mounting member for loading a plurality of wafers in multiple stages, a reaction tube for inserting the boat, and a heater for surrounding the reaction tube and heating the wafer loaded on the boat. And a film forming process is performed on the wafer surface by flowing a processing gas through the reaction tube.
[0003]
FIG. 7 shows a main part view of a conventional boat as a substrate mounting member used in the above-described semiconductor manufacturing apparatus. The boat includes a plurality of ring-shaped mounting plates 16 for holding wafers one by one, and a plurality of (four) columns 15 for supporting them. A plurality (three) of support protrusions 17 for supporting a wafer are provided on the upper surface of the mounting plate 16. The column 15 has a circular cross section, and has grooves for holding a mounting plate provided in multiple stages on one side. A plurality of pillars 15 are arranged and fixed in a semicircular shape such that the groove provided in each pillar 15 faces the center of the circle. A mounting plate is inserted into a space surrounded by the plurality of columns 15 from a specific direction (the side where the columns are not arranged), and the outer periphery of each mounting plate 16 is welded to a groove provided in the column 15 to form a plurality of plates. A boat for loading the wafers in multiple stages is assembled. The bulge on the outer periphery of the column indicates the welded portion 25.
[0004]
The problem in the boat shown in FIG. 7 is that the mounting plate 16 is attached from the inside of the columns 15 arranged in a semicircular shape, so that the mounting plate is limited by the thickness a remaining in the groove of the column 15. This is a point protruding from the outer diameter of No. 16. The smaller the gap between the reaction tube and the boat (the contour of the boat is determined by the outer diameter of the mounting plate), the more uniform the gas flow becomes. However, the outer diameter of the boat cannot be increased by the thickness a. The gap with the boat cannot be reduced. Therefore, a downflow occurs in the gap between the reaction tube and the boat, and the flow of the processing gas becomes uneven.
[0005]
Therefore, a boat was considered in which the columns did not protrude from the outer diameter of the mounting plate. FIG. 8 shows an example of such a boat. The pillars are semicircular in cross section. A plurality of notches 18 for supporting column insertion are provided at a plurality of places (four places) on the outer periphery of the ring-shaped mounting plate 16. A mounting plate 16 provided with a notch 18 is inserted into a space surrounded by a plurality of (four) columns 15 fixedly arranged on a semicircle from a specific direction, and the column 15 is inserted into each notch 18. A boat is assembled by welding and stacking a plurality of wafers in multiple stages.
[0006]
In the boat shown in FIG. 8, since the columns do not protrude from the mounting plate 16, the mounting plate 16 can have a maximum outer diameter, and the gap between the reaction tube and the boat can be reduced. However, since the mounting plate 16 needs to be inserted into the support space from a specific direction, the insertion position of the support is shallow at the two deep positions where the mounting plate 16 is inserted. Since the insertion position becomes deeper at the two positions, the cutout portion 18 must be largely cut. For this reason, the notch 18 provided on the mounting plate 16 becomes a portion where the thermal flow is uneven and the gas flow is uneven, and the film thickness at the notch tends to be thin even in the film formation result.
[0007]
[Problems to be solved by the invention]
As described above, in the substrate mounting member constituting the conventional semiconductor manufacturing apparatus, in the type in which the mounting plate is held in the mounting plate holding groove provided in the support, the support protrudes from the outer diameter of the mounting plate. Therefore, the gap between the reaction tube and the mounting plate cannot be reduced, and the flow of the processing gas cannot be uniform.
[0008]
In the case of a type in which the support is inserted into the notch for inserting the support provided on the mounting plate, it is possible to take the maximum outer diameter of the mounting plate, but the notch for inserting the support is not thermally insulated. There has been a problem that the gas flow becomes uniform and uneven.
[0009]
An object of the present invention is to eliminate the above-mentioned problems of the prior art and to improve the uniformity of the film thickness in the plane of the substrate by eliminating the uneven portion of the gas flow caused by the substrate mounting member. An object of the present invention is to provide a possible semiconductor manufacturing apparatus.
[0010]
[Means for Solving the Problems]
A first invention relates to a semiconductor manufacturing apparatus that inserts a substrate mounting member in which a plurality of substrates are stacked in multiple stages into a reaction tube and heats the substrate in the reaction tube while flowing a processing gas into the reaction tube to form a film. The substrate mounting member has a plurality of ring-shaped mounting plates on which the substrates are mounted one by one, and a plurality of support insertion holes that fit within the plate width are opened in each mounting plate, and the support support insertion is performed. A plurality of mounting plates are stacked so that the holes are aligned with each other, a support is inserted into each support insertion hole, and the mounting plates are fixed to the support in a horizontal posture at desired intervals.
[0011]
A plurality of substrates are stacked on each mounting plate of the substrate mounting member. The substrate placing member on which the substrate is loaded is inserted into the reaction tube. The substrate loaded on the substrate placing member is heated by the heating means. The processing gas is exhausted while flowing the processing gas through the reaction tube. Thereby, a film is formed on the substrate surface. The support plate is inserted into the mounting plate by opening a support insertion hole that fits within the width of the plate, and unlike the case where the outer periphery of the mounting plate is held in the groove provided in the support, the support is It fits within the width and does not protrude from the outer periphery of the mounting plate. Therefore, the gap between the reaction tube and the substrate mounting member can be minimized, and the formation of a harmful downflow with a uniform film thickness can be prevented. Also, since it is not necessary to form the outer periphery of the mounting plate to mount the support, unlike the case where a notch for inserting the support is provided in the outer periphery of the mounting plate, the outer circumference of the mounting plate remains circular. Up to. Therefore, an uneven portion of the gas flow due to the shape of the mounting plate does not occur.
[0012]
In the first invention, it is preferable that not only the shape of the mounting plate but also the cross section of the column be streamlined so that the gas flow is not disturbed by the column. The streamline is, for example, a spindle type. Preferably, the mounting plate of the substrate mounting member is provided with at least three support projections for supporting the substrate by floating the mounting plate. This is for simplifying the transfer of the substrate into and out of the substrate mounting member by the substrate transfer device.
[0013]
Further, in the first invention, the reaction tube is constituted by a double tube of an outer tube and an inner tube arranged coaxially in the outer tube, arranged on one side in the inner tube, and inserted into the inner tube. A nozzle having a plurality of ejection holes for supplying gas to each substrate mounted on the substrate mounting member to be mounted, and a nozzle opened on the inner tube wall on the other side facing the nozzle and introduced into the inner tube via the nozzle A slit-shaped opening for letting out the extracted gas from the inner tube, and an exhaust passage for discharging the gas led out of the inner tube through the slit-shaped opening from the reaction tube through a space between the inner tube and the reaction tube. It is preferable to provide the following.
[0014]
When a slit-shaped opening is provided in the inner pipe wall on the other side opposite to the nozzle disposed on one side in the inner pipe, gas introduced from the nozzle to the inner pipe can be placed on each of the substrate mounting members. It passes through the substrate in parallel with the substrate surface and is led out of the inner tube. At this time, if the gap between the reaction tube and the substrate placing member is reduced by setting the substrate placing member to the maximum outer diameter, a downflow does not occur in this gap, and the inner tube and the outer tube pass through the slit-shaped opening. The gas is exhausted from the reaction tube through the space formed between the reaction tubes. Therefore, the gas flow on the substrate surface is not disturbed, and the gas is smoothly exhausted.
[0015]
According to a second aspect of the present invention, there is provided a semiconductor manufacturing apparatus in which a substrate mounting member in which a plurality of substrates are stacked in multiple stages is inserted into a reaction tube, and a substrate in the reaction tube is heated while a gas is flowing through the reaction tube to form a film. In the method, when the substrate mounting member is manufactured, a plurality of mounting plates for mounting the substrates one by one are prepared, and a support hole is formed in each mounting plate, and a support hole is formed. A plurality of the mounting plates were temporarily fixed using a jig in a state where the insertion holes for the columns were aligned and stacked, and the columns were inserted into the insertion holes for the columns of the temporarily fixed mounting plates and inserted. The supporting column is fixed to the mounting plate, and the jig is removed after the fixing.
[0016]
Since the columns are inserted into the column insertion holes of the respective mounting plates so that the plurality of mounting plates temporarily fixed by using the jig are skewered, the substrate mounting member can be easily assembled.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0018]
FIG. 4 shows an overall configuration diagram of the semiconductor manufacturing apparatus. The semiconductor manufacturing apparatus includes a cassette stocker 1 on which a wafer cassette 30 is mounted, a wafer transfer means 2 for transferring wafers between the cassette stocker 1 and the boat 3, and a substrate mounting means for stacking a plurality of wafers in multiple stages. It comprises a boat 3 as an installation member, a boat elevating means 4 for inserting and pulling the boat 3 into and out of the reaction tube, and a heat treatment apparatus 5 having a reaction tube and a heater for heating the reaction tube.
[0019]
The heat treatment apparatus is, for example, a vertical CVD apparatus. FIG. 5 shows the internal configuration of such a vertical CVD apparatus. A reaction tube 31 made of quartz is provided inside the cylindrical heater 12. The reaction tube 31 includes an outer tube 7 having a closed upper end, and an inner tube 6 having a closed upper end and disposed concentrically inside the outer tube 7. A reaction chamber 32 for processing the wafer 11 is formed by the inner tube 6. The reaction tube 31 is erected on the metal furnace flange 10. The lower end of the furnace port flange 10 is hermetically closed by a seal cap 33, and the boat 9 is erected on the seal cap 33 and inserted into the inner pipe 6. The wafers 7 to be processed are stacked on the boat 9 in multiple stages in a horizontal posture.
[0020]
The gas inlet nozzle 8 is attached to the furnace opening flange 10, rises inside the furnace opening flange, is inserted into the inner pipe 6, and extends above the boat 9. The gas introduction nozzle 8 is provided with a large number of nozzle holes 35 in accordance with the arrangement of the wafers stacked in multiple stages. On the tube wall of the inner pipe 6 opposed to the gas introduction nozzle 8 provided with the nozzle hole 35, a slit-shaped opening 14 for leading out the gas introduced into the inner pipe 6 from the gas introduction nozzle 8 is provided. The slit-shaped openings 14 are provided in multiple stages like the nozzle holes 35. The derived gas flows into a cylindrical space 23 formed between the outer pipe 7 and the inner pipe 6, and is discharged from an exhaust port 13 provided in the furnace port flange 10. The space 23 and the exhaust port 13 form an exhaust path.
[0021]
The boat 9 is lowered by the boat elevating means 4, the wafers 7 are loaded into the boat 9 in multiple stages, and the boat 9 is inserted into the inner pipe 6 by the boat elevating means 4. After the seal cap 33 completely seals the lower end of the furnace port flange 10, the inside of the reaction chamber 32 is evacuated to reduce the pressure.
[0022]
The inside of the inner tube 6 is heated to a predetermined film forming temperature by the heater 12. The boat 9 is rotated by the rotation drive unit 26. A processing gas is introduced from the gas introduction nozzle 8 into the reaction tube 6. The processing gas is ejected from the nozzle holes 8, passes over the stacked wafers in parallel with the wafer surface, is led out of the reaction tube 6 through the slit-shaped opening 14, passes through the space 23, and passes through the gas exhaust port. 13 to be discharged. When the processing gas passes over the wafer, a film is formed on the surface of each wafer 7. After the film formation, an inert gas is introduced from the gas introduction nozzle 8, and the inside of the reaction tube 31 is replaced with the inert gas to return to normal pressure. The boat 9 is lowered, and the wafers 7 after film formation are discharged from the boat 9.
[0023]
Here, the flow of gas in the inner pipe 6 will be described with reference to FIG. 6A shows a case where the gap t between the inner pipe 6 and the outer diameter of the boat 9 is small, and FIG. 6B shows a case where the gap is large.
[0024]
As shown in FIG. 6A, when the processing gas is injected from a direction parallel to the surface of the wafer 11, a gap t between the inner pipe 6 and the outer diameter of the boat 9 is set in order to make the flow of the processing gas uniform. Must be as small as possible. This is because, after the processing gas discharged from the nozzle 8 is introduced along the ring-shaped mounting plate 16 and passes through the surface of the wafer 11, the gas flow is not disturbed as it is, and the slit provided in the inner pipe 6 is provided. This is because it is drawn out from the opening 14 and exhausted from the space 23. On the other hand, as shown in FIG. 6B, when the gap t is large, a downflow 19 as indicated by an arrow occurs in the space 34 between the inner pipe 6 and the outer diameter of the boat 9 and the reaction chamber 32 The exhaust becomes uneven in the vertical direction, which affects the uniformity of the film thickness of the wafer 11.
[0025]
In order to make the gap t as small as possible, as described above, it is necessary to prevent the columns constituting the boat 9 from protruding from the ring-shaped mounting plate 16. In addition, it is required that the outer shape of the ring-shaped mounting plate 16 is not deformed even if the pillar does not protrude.
[0026]
Therefore, in the embodiment, the boat constituting the boat 9 is configured as shown in FIGS. 1 and 2. 1A and 1B are explanatory views of a mounting plate constituting a boat, wherein FIG. 1A is a side view and FIG. 1B is a plan view. FIG. 2 is an overall configuration diagram of the boat.
[0027]
The boat 9 is made of quartz, and has a bottom disk 41, four columns 21 and a top disk 42 as shown in FIGS. The four columns 21 are arranged and fixed in a semicircular shape on the bottom disk 41. The top disk 42 is fixed to the upper ends of the four columns 21. Circular holes 43 and 44 are formed in the center portions of the bottom disk 41 and the top disk 42, respectively, so that the processing gas can easily enter the inside of the boat 9. Between the bottom disk 41 and the top disk 42, a plurality of ring-shaped mounting plates 20 that are stacked at desired intervals in multiple stages in a horizontal posture are fixed by columns 21. The ring-shaped mounting plate 20 is formed in a substantially circular shape with an opening at the center, and a plurality of (for example, three) wafer support projections 17 are formed on the upper surface to float and support the wafer from the mounting plate. . Further, the support plate 20 is formed with four support hole insertion holes 24 for inserting the four supports 21. The four support hole insertion holes 24 are formed at appropriate intervals on a half circle on one half of the mounting plate 20. The support insertion hole 24 is opened so as to fit within the plate width of the mounting plate 20, and is not opened outside or inside. The gas flow is disturbed when the support is protruded outward from the mounting plate 20 when the support is opened outward, and the wafer cannot be inserted into the boat when the support is protruded inward from the support plate 20 when the support is protruded inward from the mounting plate 20. is there. The columns 21 are inserted into the four column insertion holes 24, respectively, and the mounting plates 20 are welded and fixed at desired intervals in a horizontal posture.
[0028]
In order to manufacture the boat 9, here, a method is adopted in which a mounting plate 20 temporarily fixed in multiple stages horizontally is inserted from above the support column 21 using a jig (not shown) and welded. That is, a plurality of ring-shaped mounting plates 20 having the support hole 24 are prepared. A plurality of mounting plates 20 are temporarily fixed with a jig in a state where the mounting plates 20 are aligned and stacked so that the respective support insertion holes 24 are aligned. The four columns 2 are arranged in a semicircular shape and fixed to the bottom disk 43. The column 21 is inserted into the column insertion holes 24 of the plurality of temporarily fixed mounting plates 20, and the inserted column 21 is fixed to the mounting plate 20 at the column insertion holes. The ceiling disk 42 is fixed to the support 21. When the jig is removed, a boat in which many wafers are stacked in multiple stages is completed. Note that the fixing between the boat members including the fixing of the mounting plate 20 is performed by welding quartz glass to each other. Although the mounting plate 20 is inserted from the upper part of the column 21, it may be inserted from the lower part. The mounting plate is not particularly limited as long as it has heat resistance. However, in addition to quartz, a heat-resistant material such as cesium carbide (SiC), alumina (Al 2 O 3 ), and ceramic is preferable.
[0029]
In the boats of FIGS. 1 and 2 according to the embodiment, since there is no projecting portion of the pillar portion, it is possible to minimize the gap t between the inner tube and the mounting plate portion. When the gas is injected, the gas passes in parallel with the wafer surface, and is discharged from the exhaust port 13 through the space 23 through the slit-shaped opening without any downflow. Therefore, the flow of the processing gas in the vertical direction in the reaction chamber 32 does not become uneven. Further, since there is no notch on the outer periphery of the mounting plate and the outer circumference of the mounting plate keeps a circular shape, thermal uniformity and uniformity in gas flow are not impaired. Therefore, the thermal effect on the wafer can be made uniform and the flow of the processing gas can be made uniform, and the uniformity of the film thickness in the processing wafer surface can be improved. As a result, it is possible to improve the quality in manufacturing the semiconductor element.
[0030]
In the embodiment, the case has been described in which the column insertion hole 24 is opened so as to fit within the plate width of the mounting plate 20 and is not opened outside. However, even if a part of the support hole 24 is opened outside the plate, the support hole inserted there closes the opening of the insertion hole, and as a result, the outer periphery of the mounting plate is held in a circular shape. I just need.
[0031]
In addition, the case where the insertion hole for the support and the support inserted into the support have a circular shape and a circular cross-section are shown, but the cross-section of the support should be streamlined so as not to disturb the gas flow in the horizontal gas flow. Is preferred. As shown in FIG. 3, for example, the cross section has a spindle shape, and the protruding portions of the columns are directed to the upstream side and the downstream side of the gas flow, so that the horizontal gas flow is hardly disturbed. When performing the film forming process while the boat is stopped, it is preferable that the directions of the columns are all parallel to the gas flow as illustrated. Thus, the gas flow is not disturbed by the columns 21, and the uniformity of the film thickness in the surface of the processing wafer can be further improved.
[0032]
FIG. 3 shows a particularly effective example in the case where the film formation process is performed while the boat is stopped. However, in the case where the process is performed by rotating the boat, the direction of the columns is changed as shown in FIG. As shown in FIG. In the case of FIG. 9A, when the column 21 comes closest to the gas introduction nozzle 8 by the rotation of the boat (in the direction of the thick arrow) (FIG. 9B), the column 21 closes from the nozzle hole 35 by the column 21 that comes close. This is an example in which one end of the protruding portion of all the columns 21 is directed to the rotation center so that the flow (arrow) of the energetic processing gas immediately after the ejection is not disturbed. Thereby, even if the column 21 approaches the gas introduction nozzle 8, the disturbance is reduced, and the uniformity in the wafer surface can be improved.
[0033]
【The invention's effect】
According to the present invention, the uneven portion of the gas flow caused by the substrate mounting member can be eliminated, so that the uniformity of the film thickness in the substrate surface can be improved. Therefore, it is possible to improve the quality in manufacturing the semiconductor element.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a mounting plate constituting a boat used in a semiconductor manufacturing apparatus according to an embodiment, wherein (a) is a side view and (b) is a plan view.
FIG. 2 is an overall configuration diagram of a boat according to the embodiment.
FIG. 3 is an explanatory view showing a modified example of a column supporting a mounting plate according to the embodiment.
FIG. 4 is an overall configuration diagram of a semiconductor manufacturing apparatus according to an embodiment.
FIG. 5 is a configuration diagram of a heat treatment apparatus according to an embodiment.
6A and 6B are explanatory diagrams showing a relationship between a distance between an inner tube and a mounting plate and a gas flow according to the embodiment, wherein FIG. This shows the case where the gap is large.
FIG. 7 is a configuration diagram of a mounting plate configuring a boat according to a conventional example.
FIG. 8 is a configuration diagram of a mounting plate constituting a boat according to another conventional example.
FIGS. 9A and 9B are explanatory views showing a modified example of a column supporting the mounting plate according to the embodiment, wherein FIG. 9A is an overall view and FIG. 9B is a partially enlarged view.
[Explanation of symbols]
9 Boat (substrate mounting member)
11 Wafer (substrate)
12 heater (heating means)
21 Support 20 Mounting plate 24 Support insertion hole 31 Reaction tube

Claims (1)

複数枚の基板を多段に積載した基板載置部材を反応管内に挿入し、反応管内にガスを流しながら反応管内の基板を加熱して成膜処理する半導体製造装置において、
前記基板載置部材は、前記基板を1枚ずつ載置する複数のリング状の載置プレートを備え、
前記載置プレートは、プレート幅内に納まるように開けられた複数の支柱用挿入孔を有し、前記支柱用挿入孔が合致するように多段に積載されており、
各支柱用挿入孔に支柱を挿入して各載置プレート間を所望する間隔で固定したことを特徴とする半導体製造装置。
In a semiconductor manufacturing apparatus that inserts a substrate mounting member in which a plurality of substrates are stacked in multiple stages into a reaction tube and heats the substrate in the reaction tube while flowing gas into the reaction tube to form a film,
The substrate mounting member includes a plurality of ring-shaped mounting plates for mounting the substrate one by one,
The mounting plate has a plurality of strut insertion holes opened to fit within the plate width, and is stacked in multiple stages so that the strut insertion holes match.
A semiconductor manufacturing apparatus wherein a support is inserted into each support insertion hole and fixed between mounting plates at desired intervals.
JP2002181071A 2002-06-21 2002-06-21 Semiconductor manufacturing equipment Pending JP2004031395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181071A JP2004031395A (en) 2002-06-21 2002-06-21 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181071A JP2004031395A (en) 2002-06-21 2002-06-21 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JP2004031395A true JP2004031395A (en) 2004-01-29

Family

ID=31178000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181071A Pending JP2004031395A (en) 2002-06-21 2002-06-21 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2004031395A (en)

Similar Documents

Publication Publication Date Title
TWI615501B (en) Gas flow control device, showerhead assembly, and semiconductor manufacturing apparatus
JP6820816B2 (en) Substrate processing equipment, reaction tubes, semiconductor equipment manufacturing methods, and programs
KR20180054366A (en) Gas supply unit and substrate processing apparatus including the same
KR101814478B1 (en) Support structure, processing container structure and processing apparatus
JP2018107255A (en) Film deposition apparatus, film deposition method and heat insulation member
US20090280248A1 (en) Porous substrate holder with thinned portions
TWI764225B (en) Substrate processing apparatus, manufacturing method of semiconductor device, substrate holder, and program
TW201600174A (en) Showerhead design
WO2007145132A1 (en) Placing table structure and heat treatment apparatus
JP2004356624A (en) Mounting stand structure and heat treatment equipment
JP2007158358A (en) Substrate processing apparatus
TWI781346B (en) Multi-station chamber lid with precise temperature and flow control
US20150368830A1 (en) One-piece injector assembly and one-piece exhaust liner
JP2008166321A (en) Substrate processing apparatus and method of manufacturing semiconductor device
TW202230471A (en) Thermally uniform deposition station
JP5278376B2 (en) Heat treatment apparatus and heat treatment method
JP5292963B2 (en) Film forming apparatus and manufacturing method using the same
JP2008258207A (en) Film deposition device
JP2004031395A (en) Semiconductor manufacturing equipment
JP2003100579A (en) Substrate treatment apparatus
JP7048690B2 (en) Substrate processing equipment, semiconductor device manufacturing methods and substrate holders
JP4553263B2 (en) Heat treatment apparatus and heat treatment method
JP4665204B2 (en) Thermal processing chamber
JP2005056908A (en) Substrate treatment system
JP2536406B2 (en) Semiconductor manufacturing equipment