JP2004029887A - Position commanding method of position controller and method for measuring natural vibration angular frequency of machine base - Google Patents

Position commanding method of position controller and method for measuring natural vibration angular frequency of machine base Download PDF

Info

Publication number
JP2004029887A
JP2004029887A JP2002180909A JP2002180909A JP2004029887A JP 2004029887 A JP2004029887 A JP 2004029887A JP 2002180909 A JP2002180909 A JP 2002180909A JP 2002180909 A JP2002180909 A JP 2002180909A JP 2004029887 A JP2004029887 A JP 2004029887A
Authority
JP
Japan
Prior art keywords
load
position command
machine
command
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002180909A
Other languages
Japanese (ja)
Other versions
JP2004029887A5 (en
Inventor
Bunno Cho
張 文農
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002180909A priority Critical patent/JP2004029887A/en
Publication of JP2004029887A publication Critical patent/JP2004029887A/en
Publication of JP2004029887A5 publication Critical patent/JP2004029887A5/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Feedback Control In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in which since a reaction force of a positioned and controlled driving mechanism is applied to a machine base where the driving mechanism is installed, high-precision positioning can not be performed and a positioning settlement becomes long. <P>SOLUTION: In a position commanding method of a position controller that drives a load 3 to follow up a position command x<SB>r</SB>while the driving mechanism including the load 3 is installed on the machine base 4, vibrating machine base displacement X<SB>B</SB>is represented as an arbitrary constant polynomial of degree (n) and the acceleration of the load is represented as a known constant coefficient differential equation of second order based upon the machine base displacement X<SB>B</SB>; and the acceleration of the load is integrated twice to represent the load position as a polynomial of degree (n+2) and simultaneous equations generated from the two polynomials and border conditions including the load positions at the start and end of a position command are solved to determine as a position command x<SB>r</SB>a polynomial of degree (n+2) based upon the time (t) of the load position (x). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の属する技術分野】
本発明は、駆動機構が設置されている機台の低周波数の残留振動を抑制しながら、位置決めを行う位置制御装置の指令方法および機台の固有振動角周波数等の測定方法に関するものである。
【従来の技術】
近年の産業用機械は、高速度化と高精度化が要求されている。高速度化の要求により、モータが高加速度で負荷を駆動するとき、駆動機構が設置されている機台は大きい反力を受けて振動し、サーボ制御系に悪影響を与える。特に、位置決め制御をするときは、大きな残留振動が存在するため高精度の制御ができないという問題がある。
このような問題を解決する為に従来技術では、特開平05−108165号公報に示すように、位置指令の加速度パターンを矩形波指令とし、矩形波状の加速度時間を機械の固有振動周期の整数倍とすることによって、機台の残留振動を抑制している。
【発明が解決しようとする課題】
ところで前記従来の技術では、速度指令時間を機台の固有振動周期の整数倍とする必要があるため、機台の固有振動周期が長い場合には、低速かつ指令時間の長い速度指令を設定する必要があり、高速位置決め制御には適しない、特に送り距離が短い場合においては、その弊害が顕著に現われるという問題があった。
そこで本発明は、従来技術の有する問題点を解消して、機台の残留振動を抑制でき、しかも速度指令時間が短い、従って高速に位置決め制御ができるという、位置決め制御制御装置の指令方法を提供することを目的とするものである。
【課題を解決するための手段】
上記課題を解決するため請求項1記載の本発明は、負荷を含む駆動機構が機台に設置され、前記負荷を駆動し位置指令に追従させる位置制御装置の位置指令方法において、
n≧(境界条件数−3)となる自然数nを設定し、前記機台変位を時間tによる任意定係数n次多項式で表し、前記負荷の加速度を、前記機台変位による既知の定係数2階微分方程式で表し、前記負荷の加速度を2回積分して、前記負荷位置を時間tによる(n+2)次多項式で表し、位置指令開始時の前記負荷位置および位置指令終了時の前記負荷位置を含む境界条件を設定し、前記機台変位のn次多項式と、前記負荷位置の(n+2)次多項式と、前記境界条件とを用いて連立方程式を作成し、前記連立方程式を満足する全ての任意定係数の定数値を決定し、前記決定した定数値により前記負荷位置の時間tによる(n+2)次多項式を決定し、前記決定した負荷位置の時間tによる(n+2)次多項式を位置指令とすることを特徴としている。
n≧(境界条件数−3)としたのは、以下の理由による。
前記機台変位は時間tによる任意定係数n次多項式である為、前記n次多項式中には数値未定の任意定係数が(n+1)個存在する。さらに前記負荷位置を、前記機台変位による既知の定係数2階微分方程式を2回積分して得ている為、その過程でも2つの任意定係数が発生する。従って(n+3)個の任意定係数が存在することになり、任意定係数の全ての定数値が決定されるには、(n+3)≧境界条件数の関係が必要になる為による。
また請求項2記載の本発明では、負荷を含む駆動機構が機台に設置され、前記負荷を駆動し位置指令に追従させる位置制御装置の位置指令方法において、
前記機台変位を、l≧1およびp≧2およびq≧2、tsは位置指令開始時間、teは位置指令終了時間、b,bl−1,… b,b,bは任意定係数として、時間tにより、
機台変位=(bl + bl−1l−1 + … + b2 + bt + b)(t − ts)(t − te)
として表し、前記負荷の加速度を、前記機台変位による既知の定係数2階微分方程式で表し、前記負荷の加速度を2回積分して、負荷位置を時間tによる関数で表し、位置指令開始時の負荷位置および位置指令終了時の負荷位置を含む境界条件を設定し、
前記機台変位の関数と、前記負荷位置の関数と、前記境界条件とを用いて連立方程式を作成し、前記連立方程式を満足する全ての任意定係数の定数値を決定し、前記決定した定数値を用いて前記負荷位置の時間tによる関数を決定し、前記決定した負荷位置の時間tによる関数を位置指令とすることを特徴としている。
時間ts,teにおける機台変位、機台速度をいずれもゼロとする境界条件を機台変位の関数に反映させており、任意定係数の数および連立方程式の数を減少させて、位置指令を得るまでの計算負担を軽減させたものである。
なお、p≧3およびq≧3とすれば、時間ts,teにおける機台加速度をいずれもゼロとする境界条件をも反映させることが可能となる。
また請求項3記載の本発明では、機台に負荷を含む駆動機構が設置されており、前記負荷を位置指令に追従させる位置制御装置により、前記機台の固有振動各周波数および振動減衰係数を測定する測定方法において、
前記位置制御装置のフィードバックゲインを低く設定し、位置指令を出力し、
前記位置指令終了後における位置偏差の変動を観測し、前記により観測した隣接する振動ピーク間の時間を前記機台の固有振動周期として前記固有振動周期から前記機台の固有振動角周波数を算出し、前記により観測した隣接する振動のピーク値を大小比較して減衰率を算出し、これを前記機台の振動減衰係数とすることを特徴としている。
位置指令終了後前記位置制御装置のフィードバックゲインを低く設定して負荷への駆動力を小さくすることで、駆動機構内部での負荷の動きを抑えて機台変動のみが顕著に現われる状況を作り出し、これによって位置偏差から機台変位の動きを近似把握できるようにしたものである。
【発明の実施形態】
本発明の実施例を図を用いて説明する。図3は本発明が適用される機械系の概略図である。図3において、モータ1が力伝達機構2を介して負荷3を駆動するとき、モータ1及び負荷3の固定部分は駆動力の反力を受け、この反力が機台4に伝わる。機台4を支えている支持足5の剛性が低い場合において、モータ1が高加減速度で負荷3を駆動し、特に駆動力の加わる時間が機台4の固有振動周期に近いときは、機台4が大きく振動する。
図1はモータ1から負荷3までの駆動機構を剛体と見なして本発明を適用し、これを制御系のブロック図で示したものである。図1において、6は位置指令生成部、7は位置制御部、8は速度制御部、12はモータを含む機械系のモデルである。Mは駆動方向に換算した駆動機構内にある機械可動部の等価質量、Mは機台の質量、Kは機台のばね定数、Dは機台の粘性摩擦係数である。この図1から次式の関係が得られる。
【数1】

Figure 2004029887
ただし、Arは加速度指令、Fは駆動方向に換算したモータの駆動力、xは機台の変位である。
ここで、機台の固有振動角周波数をω、機台振動の減衰係数をζとすると、
/M=2ζωB 、K/M=ω 2   …(2)
が成り立つので、式(1)は
【数2】
Figure 2004029887
となる。
ただし、xBBは機台変位xを駆動機構側に換算した変位(以下、機台の換算変位とする)であり、xとは以下のような関係となる。
BB= −M/M  …(4)
一般に、駆動系の加減速時のことを考察する場合は、機台の質量Mが駆動機構可動部の等価質量Mより遥かに大きいため、機台の変位xが駆動機構可動部の変位xより遥かに小さいので、図1を近似的に図2のように書き直すことができる。この図2から、位置指令xから駆動機構可動部の変位xまでの伝達関数を求めると、x(s)/x(s)=1となる。xの初期値をxの初期値と同じ値にすると、x(t)=x(t)が成り立つ。また、
【数3】
Figure 2004029887
が明らかであり、式(3)より、
【数4】
Figure 2004029887
となる。上式を2回積分すると位置指令は、
【数5】
Figure 2004029887
となる。ただし、c1とc2は任意定係数である。この式から機台変位をn次多項式で表すものとすれば位置指令は(n+2)次多項式で表すものとなる。
位置指令の多項式を決定する際に、境界条件を用いることが必要であるため、以下に境界条件について説明する。
一般に指令開始前、機台が振動しないことは容易に満足される。また、この発明の目的は指令終了後も振動機台が振動しないようにすることである。そして、機台の速度および変位は任意時刻においても連続でなければならないので、機台変位に関する境界条件を、
【数6】
Figure 2004029887
のように与える。ただし、tsは指令開始時刻、teは指令終了時刻である。
また、モータの駆動力が有限であるため、負荷の速度および位置が必ず連続で変化する。一方、負荷の位置を位置指令に追従させるため、位置指令および位置指令の速度パターンがすべての時刻においても連続であるように指令を構成する必要がある。よって、負荷を初期位置Xsから終端位置Xeまで移動させるため、位置指令に関する基本的な境界条件を、
【数7】
Figure 2004029887
のように与える。
そして、高周波振動を刺激しないことや機械に衝撃を与えないことなどの理由で、力指令(すなわち、加速度指令)も連続で変化することが要求される。この場合では、位置指令に対してもう一つ境界条件を次式のように与える。
【数8】
Figure 2004029887
以下、ωとζが既知であり、ts、te、Xs、Xeが指定された場合において、本発明の第1の実施例である位置制御装置の位置指令方法を説明する。
まず、機台変位の時間tによる関数を指定する。
指令開始前および指令終了後の機台変位を0とし、指令期間の機台変位をn次多項式で表すものとし、すなわち、機台変位の時間関数を
BB(a,t)=a+an−1n−1+…+at+a0    、(ts<t<te)
BB(a,t)=0、(t≦ts、te≦t) …(10)
としておく。ただし、a=[a、an−1、…、a,a]は後述するように境界条件により定める定係数ベクトルである。また、nは境界条件の数によって定める自然数である。上式および式(6)より、xBB(t)およびx(t)に含まれる任意定係数は(n+3)個あるので、境界条件の数がmであるとしたら、すべての境界条件を満たすため、n+3≧m、すなわち、
n≧m−3  …(11)
が成り立つようにしなければならない。
次に、位置指令の関数を導出する。
式(10)を式(5)に代入すると、位置指令の加速度パターンは、
【数9】
Figure 2004029887
となる。上式を積分すると、位置指令の速度パターンは、
【数10】
Figure 2004029887
となる。さらに上式を積分すると、位置指令は、
【数11】
Figure 2004029887
となる。
最後に、境界条件を用いてa、c1およびc2を求め、位置指令を定める。
式(10)および式(12)〜(14)を式(7)および式(8)の境界条件に適用し、次式を得る。
【数12】
Figure 2004029887
また、加速度指令が連続変化であることが要求される場合は、式(12)を式(9)の境界条件に適用すると、次式が得られる。
【数13】
Figure 2004029887
明らかに式(15)と式(16)はa、c1およびc2の線形方程式である。式(11)より、未知数の数は方程式の数以上あるため、連立方程式の解が必ず存在する。これらの連立方程式を解くと、a、c1およびc2を求められる。a、c1およびc2の値を式(14)に代入すると、位置指令xの時間関数が定まる。
尚、aの値を式(15)の第2式および第4式に代入すると、
【数14】
Figure 2004029887
が得られる。
従って、位置指令終了時teにおける機台変位、機台速度のいずれもが零となる。また、図1の制御系ではフィードフォワードが用いられたため負荷位置がほぼ位置指令に追従することから、位置指令終了後駆動力がほぼ0となり、すなわち、駆動機構が機台に与える力も0となる。よって、位置指令終了後の機台振動は発生しないといえる。
このように、上記により求めた位置指令xを位置制御装置の位置指令とすることで、位置指令終了後の機台の振動を発生せずに負荷の位置決め制御を行うことが可能となる。
次に本発明の第2の実施例について説明する。
まず、機台の換算変位xBBの時間関数を、
BB(b,t)=(bl + bl−1l−1 + … + bt + b)(t − ts)(t − te)q    (ts <t < te)xBB(b,t)= 0   、(t≦ts , te≦t)  …(17)
としておく。ただし、b=[b, bl−1, …, b, b]は後述するように境界条件により定める定係数ベクトルである。また、l、pおよびqは境界条件の数により定める自然数である。一般に、
l≧1、p≧2、q≧2  …(18)
とするが、加速度指令が連続で変化する要求がある場合は、
l≧1、p≧3、q≧3  …(19)
とする。
次に、位置指令の関数を導出する。
式(5)より、位置指令の加速度パターンは
【数15】
Figure 2004029887
となる。上式を積分すると、位置指令の速度パターンは、
【数16】
Figure 2004029887
となる。さらにこの式を積分すると、位置指令は、
【数17】
Figure 2004029887
となる。
最後に、境界条件を用いてbを求め、位置指令を定める。
式(21)と式(22)を境界条件の式(8)の終端条件に適用すると、
【数18】
Figure 2004029887
が成り立つ。
明らかに上記の連立方程式はbの2元線形方程式である。式(18)或いは式(19)より、l≧1なので、未知数の数は方程式の数以上であり、方程式の解が必ず存在する。この連立方程式を解くと、bを求められる。bの値を式(22)に代入すると、位置指令の時間関数が定める。
上述のように求めた位置指令は必ず全ての境界条件を満足することを以下に説明する。
式(18)より、p≧2、q≧2なので、式(17)より、
【数19】
Figure 2004029887
の多項式には(t−ts)と(t−te)の因子が含まれ、式(7)の境界条件
【数20】(24)
Figure 2004029887
がbと関係なく常に満たされる。また、式(19)より、p≧3、q≧3なので、式(5)より、
【数21】
Figure 2004029887
の多項式には(t−ts)と(t−te)の因子が含まれ、式(9)の境界条件
【数22】
Figure 2004029887
もbと関係なく常に満たされる。
式(17)、式(21)および式(22)より、境界条件の式(8)の初期条件
【数23】
Figure 2004029887
がbと関係なく常に満たされる。
式(23)〜(26)により、式(7)〜(9)に示されている境界条件が全て満足されていることが分かる。
本発明の第1の実施例では8以上の方程式を解く必要があるが、本発明の第2の実施例では2つの方程式を解くだけで良いので、簡単である。
次に本発明の第3の実施例について、説明する。
前記第1の実施例および第2の実施例では、位置指令を求める際に機台の固有振動角周波数ωおよび機台振動の減衰係数ζを知っておく必要がある。一般に、これらのパラメータを同定するのは機台にパルスの外力を加えて機台の変位の波形から求める方法があるが、レーザ変位計を取り付ける必要がある。ここでは、レーザ変位計を取り付ける必要がなく、制御装置の位置偏差から求める方法を以下に説明する。
位置偏差は位置指令xと位置検出器によるフィードバック位置信号xとの差である。また、位置検出器は可動部と固定部で構成され、検出した信号は可動部と固定部の相対変位である。一般に、位置検出器の可動部は駆動機構の可動部に、位置検出器の固定部は機台または機台に固定される機構に取り付けられる。従って、位置検出器からの信号xは駆動機構の可動部と機台との相対変位である。駆動機構の可動部の絶対変位をxとし、機台の絶対変位がxであることから、
【数24】
Figure 2004029887
が得られる。
一方、位置指令終了後、位置制御部7および速度制御部8のゲインを十分低く設定(例えば0.1以下)した場合は、フィードフォワード信号が0となり、フィードバック信号も小さくなるので、加速度指令Arおよび駆動力Fがほぼ0になり、駆動機構の可動部の絶対変位xもほぼ0になる。よって位置指令終了後の位置偏差eは、
e(t)=x(t)−{x(t) −x(t)}≒x(t)  、(t>te)   …(27)
となる。すなわち、指令終了後の機台の振動は図6に示すように、そのまま位置偏差に現れる。
よって、
Te≒T     …(28)
および
λe=epp2/epp1≒λ=xBpp2/xBpp1     …(29)
が成り立つ。ただし、Teは指令終了後の位置偏差の振動成分の隣接する2つのピーク(或いは谷)間の時間、Tは機台の固有振動周期である。また、λeは指令終了後の位置偏差の振動振幅減衰比、λは機台振動の振幅減衰比である。
上記のように、Teとλeは容易に求められる。これらを用いてωとζを以下のように与える。
ω=2π/T≒2π/Te  …(30)
ζ≒−(lnλ)/2π≒−(lnλe)/2π  …(31)
次に、本発明の効果を数値例を用いて説明する。
まず、機台の固有振動角周波数ωおよび機台振動の減衰係数ζを求める。
図6より、Te=0.0673s,λe=0.7が得られ、 式(30)および式(31)より、
ω≒2π/Te=93.3(rad/s) ,ζ≒−(lnλ)/2π≒0.0568    …(32)
次に、機台の換算変位xBBを時間tの関数として表す。
l=1, p=2, q=2, ts=0.05s, te=0.09sとし、式(17)より、機台の換算変位を
BB(b,t)=(bt + b)(t−0.05)(t−0.14)2  、(0.05 < t < 0.14)
BB(b,t)=0 、(t ≦ 0.05 、0.14 ≦ t)      …(33)
としておく。
次に、位置指令の関数を導出する。
Xs=0とし、式(32)と式(33)を式(21)および式(22)に代入すると、
【数25】
Figure 2004029887
および
【数26】
Figure 2004029887
となる。
最後に、境界条件を用いてbを求め、位置指令を定める。
Xe=6000μmとし、式(23)より、
【数27】
Figure 2004029887
となる。
上の方程式を解くと、b=−1.21×1010, b=5.447×10となり、b、bの値を式(35)に代入すると、位置指令の時間関数は、
【数28】
Figure 2004029887
となる。
このような指令を用いた場合のシミュレーション結果を示したのが図5である。一方で、従来方式の位置指令としての三角形指令を同じ指令時間で用いた場合のシミュレーション結果を示したのが、図4である。
図4と図5を比較すると、本発明の方法による位置指令を用いた場合は位置指令終了後の機台振動および位置偏差がいずれも小さく抑えられていることが分かる。
【発明の効果】
以上述べたように本発明によれば、駆動機構が設置された機台の剛性が低い場合でも、また機台の固有振動周期の長短にも関わりなく、さらには移動量の大小にも関わりなく、位置指令終了後の機台の振動を抑制して、高速かつ短時間で高精度な位置決め制御ができるという効果がある。
【図面の簡単な説明】
【図1】機台の振動系を含む本発明の対象となる位置決め制御系のブロック図
【図2】駆動系の加減速時のことを考察する場合の図1の近似等価ブロック図
【図3】本発明を適用した機械系の概略図
【図4】従来指令方式である三角形指令を用いた場合のシミュレーション結果を示したもの
【図5】本発明の位置指令方式を用いた場合のシミュレーション結果を示したもの
【図6】本発明の第3の実施例として制御部のゲインを低く設定した場合のシミュレーション結果を示したもの
【符号の説明】
1 モータ
2 力伝達機構
3 負荷
4 機台
5 機台の支持足
6 位置指令生成部
7 位置制御部
8 速度制御部
9、10 微分
11 ゲイン
12 モータを含む機械系のモデルTECHNICAL FIELD OF THE INVENTION
The present invention relates to a command method of a position control device that performs positioning while suppressing low-frequency residual vibration of a machine on which a drive mechanism is installed, and a method of measuring a natural vibration angular frequency and the like of the machine.
[Prior art]
In recent years, industrial machines are required to have higher speed and higher accuracy. When a motor drives a load at high acceleration due to a demand for high speed, a machine on which a driving mechanism is installed vibrates due to a large reaction force, which adversely affects a servo control system. In particular, when performing positioning control, there is a problem that high-precision control cannot be performed due to the presence of large residual vibration.
In order to solve such a problem, in the prior art, as disclosed in Japanese Patent Application Laid-Open No. 05-108165, the acceleration pattern of the position command is a rectangular wave command, and the acceleration time of the rectangular wave is an integral multiple of the natural vibration period of the machine. By doing so, the residual vibration of the machine base is suppressed.
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional technology, since the speed command time needs to be an integral multiple of the natural vibration cycle of the machine, when the natural vibration cycle of the machine is long, a speed command having a low speed and a long command time is set. However, this method is not suitable for high-speed positioning control, and in particular, when the feed distance is short, there is a problem that the adverse effect is remarkably exhibited.
Accordingly, the present invention provides a command method for a positioning control control device which solves the problems of the prior art, suppresses the residual vibration of the machine base, and furthermore, has a short speed command time and therefore can perform high-speed positioning control. It is intended to do so.
[Means for Solving the Problems]
In order to solve the above problem, the present invention according to claim 1 is a position command method of a position control device in which a drive mechanism including a load is installed on a machine base and drives the load to follow a position command.
A natural number n satisfying n ≧ (boundary condition number−3) is set, and the machine displacement is represented by an arbitrary constant coefficient n-order polynomial with time t, and the acceleration of the load is calculated by a known constant coefficient 2 based on the machine displacement. The load position is represented by an (n + 2) -th order polynomial with time t by expressing the load acceleration by integrating the acceleration of the load twice and expressing the load position at the start of the position command and the load position at the end of the position command. A boundary equation including the n-th order polynomial of the machine displacement, the (n + 2) -order polynomial of the load position, and the boundary condition, and creating any simultaneous equation that satisfies the simultaneous equation The constant value of the constant coefficient is determined, the (n + 2) -order polynomial based on the load position time t is determined based on the determined constant value, and the (n + 2) -order polynomial based on the determined load position time t is used as the position command. Is characterized by There.
The reason for setting n ≧ (the number of boundary conditions−3) is as follows.
Since the machine displacement is an n-th order polynomial with an arbitrary constant coefficient according to time t, there are (n + 1) arbitrary constant coefficients whose numerical values are undetermined in the n-th order polynomial. Further, since the load position is obtained by twice integrating a known constant coefficient second-order differential equation due to the machine displacement, two arbitrary constant coefficients are generated in the process. Therefore, there are (n + 3) arbitrary constant coefficients, and the relationship of (n + 3) ≧ the number of boundary conditions is required in order to determine all the constant values of the arbitrary constant coefficients.
According to the present invention as set forth in claim 2, in a position command method of a position control device in which a drive mechanism including a load is installed on a machine base and drives the load to follow a position command,
Where l ≧ 1, p ≧ 2, and q ≧ 2, ts is a position command start time, te is a position command end time, b 1 , b 1 ,..., B 2 , b 1 , and b 0 are As an arbitrary constant coefficient, by time t,
Machine frame displacement = (b l t l + b l-1 t l-1 + ... + b 2 t 2 + b 1 t + b 0) (t - ts) p (t - te) q
Where the acceleration of the load is represented by a known constant coefficient second order differential equation based on the displacement of the machine, the acceleration of the load is integrated twice, and the load position is represented by a function based on time t. Set the boundary conditions including the load position of
A simultaneous equation is created using the function of the machine displacement, the function of the load position, and the boundary condition, and constant values of all arbitrary constant coefficients satisfying the simultaneous equation are determined. A function based on the time t of the load position is determined using a numerical value, and the function based on the determined time t of the load position is used as a position command.
The boundary condition that makes the machine displacement and the machine speed at time ts and te both zero is reflected in the machine displacement function, the number of arbitrary constant coefficients and the number of simultaneous equations are reduced, and the position command is changed. This reduces the computational burden until it is obtained.
If p ≧ 3 and q ≧ 3, it is possible to reflect the boundary condition where the machine accelerations at times ts and te are both zero.
Further, in the present invention according to claim 3, a drive mechanism including a load is installed on the machine base, and each frequency and the vibration damping coefficient of the natural vibration of the machine are controlled by a position control device that causes the load to follow a position command. In the measuring method to measure,
The feedback gain of the position control device is set low, and a position command is output,
Observe the fluctuation of the position deviation after the end of the position command, calculate the natural vibration angular frequency of the machine from the natural vibration cycle with the time between adjacent vibration peaks observed as the natural vibration cycle of the machine. The damping rate is calculated by comparing the peak values of the adjacent vibrations observed as described above with magnitude, and this is used as the vibration damping coefficient of the machine.
By setting the feedback gain of the position control device low after the end of the position command to reduce the driving force to the load, the movement of the load inside the driving mechanism is suppressed, and a situation in which only the machine fluctuation is remarkably created, Thus, the movement of the machine displacement can be approximately grasped from the position deviation.
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram of a mechanical system to which the present invention is applied. In FIG. 3, when the motor 1 drives the load 3 via the force transmission mechanism 2, a fixed portion of the motor 1 and the load 3 receives a reaction force of the driving force, and the reaction force is transmitted to the machine base 4. When the rigidity of the supporting feet 5 supporting the machine base 4 is low, the motor 1 drives the load 3 at a high acceleration / deceleration speed, and particularly when the time when the driving force is applied is close to the natural vibration cycle of the machine base 4, The table 4 vibrates greatly.
FIG. 1 is a block diagram of a control system to which the present invention is applied, assuming that a drive mechanism from a motor 1 to a load 3 is a rigid body. In FIG. 1, 6 is a position command generator, 7 is a position controller, 8 is a speed controller, and 12 is a model of a mechanical system including a motor. M is equivalent mass of the machine moving part in the drive mechanism in terms of the driving direction, M B is the machine base of the mass, K B is the machine base of the spring constant, D B is the viscous friction coefficient of the machine base. The following relationship is obtained from FIG.
(Equation 1)
Figure 2004029887
However, Ar is acceleration command, F is the driving force of the motor in terms of the driving direction, x B is the machine base displacement.
Here, assuming that the natural vibration angular frequency of the machine base is ω B and the damping coefficient of the machine vibration is B B ,
D B / M B = 2ζ B ω B, K B / M B = ω B 2 ... (2)
Holds, Equation (1) becomes
Figure 2004029887
It becomes.
However, displacement x BB obtained by converting the machine base displacement x B on the driving mechanism side (hereinafter, the machine base Conversion displacement), and the following as related to x B.
x BB = -M B x B / M ... (4)
In general, when considering that during acceleration or deceleration of the drive system, since the machine stand of the mass M B much larger than the equivalent mass M of the drive mechanism moving parts, the machine stand of the displacement x B is the displacement of the driving mechanism moving unit Since it is much smaller than x, FIG. 1 can be rewritten approximately as in FIG. From FIG. 2, when a transfer function from the position command xr to the displacement x of the drive mechanism movable portion is obtained, x (s) / xr (s) = 1. Assuming that the initial value of xr is the same as the initial value of x, x (t) = xr (t) holds. Also,
[Equation 3]
Figure 2004029887
Is apparent, and from equation (3),
(Equation 4)
Figure 2004029887
It becomes. By integrating the above equation twice, the position command becomes
(Equation 5)
Figure 2004029887
It becomes. Here, c1 and c2 are arbitrary constant coefficients. If the machine displacement is expressed by an nth-order polynomial from this equation, the position command is expressed by an (n + 2) th-order polynomial.
Since it is necessary to use boundary conditions when determining the position command polynomial, the boundary conditions will be described below.
Generally, it is easily satisfied that the machine does not vibrate before the command is started. Another object of the present invention is to prevent the vibration stand from vibrating even after the command is completed. And since the speed and displacement of the machine must be continuous even at any time, the boundary condition for the machine displacement is
(Equation 6)
Figure 2004029887
Give like. Here, ts is a command start time and te is a command end time.
Further, since the driving force of the motor is finite, the speed and position of the load always change continuously. On the other hand, in order to make the position of the load follow the position command, it is necessary to configure the command so that the position command and the speed pattern of the position command are continuous at all times. Therefore, in order to move the load from the initial position Xs to the end position Xe, the basic boundary condition for the position command is
(Equation 7)
Figure 2004029887
Give like.
In addition, it is required that the force command (that is, the acceleration command) is also continuously changed because the high frequency vibration is not stimulated or the machine is not shocked. In this case, another boundary condition is given to the position command as in the following equation.
(Equation 8)
Figure 2004029887
Hereinafter, the position command method of the position control device according to the first embodiment of the present invention when ω B and 、 B are known and ts, te, Xs, and Xe are designated will be described.
First, a function according to the time t of the machine displacement is specified.
The machine displacement before the command start and after the command end is set to 0, and the machine displacement during the command period is represented by an n-th order polynomial, that is, the time function of the machine displacement is x BB (a, t) = a n t n + a n-1 t n -1 + ... + a 1 t + a 0, (ts <t <te)
x BB (a, t) = 0, (t ≦ ts, te ≦ t) (10)
And keep it. However, a = [a n, a n-1, ..., a 1, a 0] is a constant coefficient vector determined by the boundary conditions as described below. Further, n is a natural number determined by the number of boundary conditions. From the above equation and equation (6), there are (n + 3) arbitrary constant coefficients included in x BB (t) and x r (t). Therefore, if the number of boundary conditions is m, all the boundary conditions are To satisfy, n + 3 ≧ m, ie,
n ≧ m−3 (11)
Must be satisfied.
Next, a function of the position command is derived.
Substituting equation (10) into equation (5), the acceleration pattern of the position command is
(Equation 9)
Figure 2004029887
It becomes. By integrating the above equation, the speed pattern of the position command is
(Equation 10)
Figure 2004029887
It becomes. Further integrating the above equation, the position command is
[Equation 11]
Figure 2004029887
It becomes.
Finally, a, c1, and c2 are obtained using the boundary conditions, and a position command is determined.
Equation (10) and Equations (12) to (14) are applied to the boundary conditions of Equations (7) and (8) to obtain the following equation.
(Equation 12)
Figure 2004029887
When it is required that the acceleration command is a continuous change, the following equation is obtained by applying equation (12) to the boundary condition of equation (9).
(Equation 13)
Figure 2004029887
Clearly, equations (15) and (16) are linear equations of a, c1 and c2. From equation (11), the number of unknowns is equal to or greater than the number of equations, so that a solution to the simultaneous equations always exists. Solving these simultaneous equations gives a, c1, and c2. When the value of a, c1 and c2 into equation (14), determined the time function of the position command x r.
By substituting the value of a into the second and fourth equations of equation (15),
[Equation 14]
Figure 2004029887
Is obtained.
Accordingly, both the machine displacement and the machine speed at the end of the position command te become zero. In addition, in the control system of FIG. 1, since the load position substantially follows the position command because the feedforward is used, the driving force after the end of the position command becomes substantially zero, that is, the force applied by the drive mechanism to the machine base also becomes zero. . Therefore, it can be said that the machine vibration after the end of the position command does not occur.
In this manner, by the position command of the position control device position command x r obtained by the above, it is possible to perform the positioning control of the load without causing the machine stand of the vibration of the position command completion.
Next, a second embodiment of the present invention will be described.
First, the time function of the machined displacement xBB is
x BB (b, t) = (b l t l + b l-1 t l-1 + ... + b 1 t + b 0) (t - ts) p (t - te) q,   (Ts <t <te) x BB (b, t) = 0, (t ≦ ts, te ≦ t) (17)
And keep it. Here, b = [b l , b l−1 ,..., B 1 , b 0 ] is a constant coefficient vector determined by boundary conditions as described later. Also, l, p and q are natural numbers determined by the number of boundary conditions. In general,
l ≧ 1, p ≧ 2, q ≧ 2 (18)
However, if there is a demand for the acceleration command to change continuously,
l ≧ 1, p ≧ 3, q ≧ 3 (19)
And
Next, a function of the position command is derived.
From equation (5), the acceleration pattern of the position command is given by:
Figure 2004029887
It becomes. By integrating the above equation, the speed pattern of the position command is
(Equation 16)
Figure 2004029887
It becomes. Further integrating this equation, the position command is
[Equation 17]
Figure 2004029887
It becomes.
Finally, b is obtained using the boundary condition, and a position command is determined.
When Equations (21) and (22) are applied to the termination condition of Equation (8) of the boundary condition,
(Equation 18)
Figure 2004029887
Holds.
Obviously, the above simultaneous equations are binary linear equations of b. From equation (18) or equation (19), since l ≧ 1, the number of unknowns is equal to or greater than the number of equations, and there is always a solution to the equations. Solving this simultaneous equation gives b. Substituting the value of b into equation (22) determines the time function of the position command.
It will be described below that the position command obtained as described above always satisfies all the boundary conditions.
From equation (18), since p ≧ 2 and q ≧ 2, from equation (17),
[Equation 19]
Figure 2004029887
Includes the factors of (t−ts) and (t−te), and the boundary condition of equation (7)
Figure 2004029887
Is always satisfied regardless of b. Since p ≧ 3 and q ≧ 3 from the equation (19), from the equation (5),
(Equation 21)
Figure 2004029887
Includes the factors of (t−ts) and (t−te), and the boundary condition of the equation (9)
Figure 2004029887
Is always satisfied regardless of b.
From Expressions (17), (21) and (22), the initial condition of the boundary condition Expression (8)
Figure 2004029887
Is always satisfied regardless of b.
It can be seen from Equations (23) to (26) that all the boundary conditions shown in Equations (7) to (9) are satisfied.
In the first embodiment of the present invention, it is necessary to solve eight or more equations, but in the second embodiment of the present invention, it is simple because only two equations need to be solved.
Next, a third embodiment of the present invention will be described.
In the first embodiment and the second embodiment, it is necessary to know the machine stand of the natural oscillation angular frequency ω attenuation coefficient zeta B of B and machine base vibration at the time of obtaining the position command. In general, there is a method for identifying these parameters by applying an external force of a pulse to the machine and obtaining the parameters from the waveform of displacement of the machine. However, it is necessary to attach a laser displacement meter. Here, it is not necessary to attach a laser displacement meter, and a method of obtaining from a position deviation of the control device will be described below.
The position deviation is the difference between the position command xr and the feedback position signal x from the position detector. The position detector includes a movable part and a fixed part, and the detected signal is a relative displacement between the movable part and the fixed part. Generally, the movable part of the position detector is attached to the movable part of the drive mechanism, and the fixed part of the position detector is attached to the machine base or a mechanism fixed to the machine base. Therefore, the signal x from the position detector is a relative displacement between the movable part of the drive mechanism and the machine base. The absolute displacement of the movable portion of the drive mechanism and x L, since the machine stand of the absolute displacement is x B,
[Equation 24]
Figure 2004029887
Is obtained.
On the other hand, if the gains of the position control unit 7 and the speed control unit 8 are set sufficiently low (for example, 0.1 or less) after the end of the position command, the feedforward signal becomes 0 and the feedback signal also becomes small. and become the driving force F is approximately 0, the absolute displacement x L also almost 0 of the movable portion of the drive mechanism. Therefore, the position deviation e after the end of the position command is
e (t) = x r ( t) - {x L (t) -x B (t)} ≒ x B (t), (t> te) ... (27)
It becomes. That is, the vibration of the machine after completion of the command directly appears in the position deviation as shown in FIG.
Therefore,
Te @ T B ... (28)
And λe = e pp2 / e pp1 ≒ λ B = x Bpp2 / x Bpp1 ... (29)
Holds. However, Te is the time between two adjacent peaks of the oscillating component of the position deviation after command completion (or troughs), T B is the natural vibration period of the machine base. Further, .lambda.e the vibration amplitude damping ratio of the positional deviation after the command completion, lambda B is the amplitude attenuation ratio of the machine base vibration.
As described above, Te and λe are easily determined. Using these, ω B and B B are given as follows.
ω B = 2π / T B ≒ 2π / Te (30)
B B ≒ − (lnλ B ) / 2π ≒ − (Inλe) / 2π (31)
Next, effects of the present invention will be described using numerical examples.
First, the attenuation coefficient zeta B natural oscillation angular frequency omega B and machine stand vibration of the machine base.
From FIG. 6, Te = 0.0673s and λe = 0.7 are obtained. From Expressions (30) and (31),
ω B ≒ 2π / Te = 93.3 (rad / s), B B ≒ − (lnλ B ) /2π≒0.0568 (32)
Then, representing the converted displacement x BB of machine stand as a function of time t.
l = 1, p = 2, q = 2, ts = 0.05 s, te = 0.09 s, and from equation (17), the converted displacement of the machine is x BB (b, t) = (b 1 t + b 0 ) (t−0.05) 2 (t−0.14) 2 , (0.05 <t <0.14)
x BB (b, t) = 0, (t ≦ 0.05, 0.14 ≦ t) (33)
And keep it.
Next, a function of the position command is derived.
When Xs = 0 and Equations (32) and (33) are substituted into Equations (21) and (22),
(Equation 25)
Figure 2004029887
And
Figure 2004029887
It becomes.
Finally, b is obtained using the boundary condition, and a position command is determined.
Xe = 6000 μm, and from equation (23),
[Equation 27]
Figure 2004029887
It becomes.
Solving the above equation gives b 1 = −1.21 × 10 10 , b 0 = 5.447 × 10 8. Substituting the values of b 1 and b 0 into equation (35) gives the time function of the position command. Is
[Equation 28]
Figure 2004029887
It becomes.
FIG. 5 shows a simulation result when such a command is used. On the other hand, FIG. 4 shows a simulation result when a triangle command as a position command of the conventional method is used at the same command time.
4 and 5, it can be seen that when the position command according to the method of the present invention is used, both the machine vibration and the position deviation after the end of the position command are suppressed to a small value.
【The invention's effect】
As described above, according to the present invention, even when the rigidity of the machine base on which the drive mechanism is installed is low, and irrespective of the length of the natural vibration cycle of the machine base, and further regardless of the magnitude of the movement amount In addition, the vibration of the machine after the end of the position command is suppressed, and there is an effect that high-speed, high-accuracy positioning control can be performed in a short time.
[Brief description of the drawings]
FIG. 1 is a block diagram of a positioning control system which is an object of the present invention including a vibration system of a machine base. FIG. 2 is an approximate equivalent block diagram of FIG. 1 when considering acceleration and deceleration of a drive system. FIG. 4 is a schematic diagram of a mechanical system to which the present invention is applied. FIG. 4 shows a simulation result when a conventional triangular command is used. FIG. 5 is a simulation result when a position command method of the present invention is used. FIG. 6 shows a simulation result when the gain of the control unit is set low as a third embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Motor 2 Force transmission mechanism 3 Load 4 Machine base 5 Support foot 6 of machine base Position command generation part 7 Position control part 8 Speed control part 9, 10 Differentiation 11 Gain 12 Model of mechanical system including motor

Claims (3)

負荷を含む駆動機構が機台に設置され、前記負荷を駆動し位置指令に追従させる位置制御装置の位置指令方法において、
n≧(境界条件数−3)となる自然数nを設定し、
前記機台変位を時間tによる任意定係数n次多項式で表し、
前記負荷の加速度を、前記機台変位による既知の定係数2階微分方程式で表し、前記負荷の加速度を2回積分して、前記負荷位置を時間tによる(n+2)次多項式で表し、
位置指令開始時の前記負荷位置および位置指令終了時の前記負荷位置を含む境界条件を設定し、
前記機台変位のn次多項式と、前記負荷位置の(n+2)次多項式と、前記境界条件とを用いて連立方程式を作成し、
前記連立方程式を満足する全ての任意定係数の定数値を決定し、
前記決定した定数値により前記負荷位置の時間tによる(n+2)次多項式を決定し、
前記決定した負荷位置の時間tによる(n+2)次多項式を位置指令とすることを特徴とする位置制御装置の位置指令方法。
A drive mechanism including a load is installed in the machine base, and in the position command method of the position control device that drives the load and follows the position command,
Set a natural number n such that n ≧ (boundary condition number−3),
The machine displacement is represented by an arbitrary constant coefficient n-order polynomial with time t,
The load acceleration is represented by a known constant coefficient second-order differential equation due to the machine displacement, the load acceleration is integrated twice, and the load position is represented by an (n + 2) -degree polynomial with time t.
Set boundary conditions including the load position at the start of the position command and the load position at the end of the position command,
Creating a simultaneous equation using the n-th order polynomial of the machine displacement, the (n + 2) -order polynomial of the load position, and the boundary condition;
Determine constant values of all arbitrary constant coefficients that satisfy the simultaneous equations,
An (n + 2) -order polynomial based on the time t of the load position is determined from the determined constant value,
A position command method for a position control device, wherein an (n + 2) -order polynomial based on the determined load position time t is used as a position command.
負荷を含む駆動機構が機台に設置され、前記負荷を駆動し位置指令に追従させる位置制御装置の位置指令方法において、
前記機台変位を、l≧1およびp≧2およびq≧2、tsは位置指令開始時間、teは位置指令終了時間、b,bl−1,… b,b,bは任意定係数として、時間tにより、
機台変位=(bl + bl−1l−1 + … + b2 + bt + b)(t − ts)(t − te)
として表し、
前記負荷の加速度を、前記機台変位による既知の定係数2階微分方程式で表し、前記負荷の加速度を2回積分して、前記負荷位置を時間tによる関数で表し、
位置指令開始時の負荷位置および位置指令終了時の負荷位置を含む境界条件を設定し、
前記機台変位の関数と、前記負荷位置の関数と、前記境界条件とを用いて連立方程式を作成し、
前記連立方程式を満足する全ての任意定係数の定数値を決定し、
前記決定した定数値により前記負荷位置の時間tによる関数を決定し、
前記決定した負荷位置の時間tによる関数を位置指令とすることを特徴とする位置制御装置の位置指令方法。
A drive mechanism including a load is installed in the machine base, and in the position command method of the position control device that drives the load and follows the position command,
Where l ≧ 1, p ≧ 2, and q ≧ 2, ts is a position command start time, te is a position command end time, b 1 , b 1 ,..., B 2 , b 1 , and b 0 are As an arbitrary constant coefficient, by time t,
Machine frame displacement = (b l t l + b l-1 t l-1 + ... + b 2 t 2 + b 1 t + b 0) (t - ts) p (t - te) q
Represented as
The load acceleration is represented by a known constant coefficient second-order differential equation based on the machine displacement, the load acceleration is integrated twice, and the load position is represented by a function based on time t,
Set the boundary conditions including the load position at the start of the position command and the load position at the end of the position command,
Create a simultaneous equation using the function of the machine displacement, the function of the load position, and the boundary condition,
Determine constant values of all arbitrary constant coefficients that satisfy the simultaneous equations,
A function of the load position according to time t is determined based on the determined constant value,
A position command method for a position control device, wherein a function based on the determined load position time t is used as a position command.
機台に負荷を含む駆動機構が設置されており、前記負荷を位置指令に追従させる位置制御装置により、前記機台の固有振動各周波数および振動減衰係数を測定する測定方法において、
前記位置制御装置のフィードバックゲインを低く設定し、
位置指令を出力し、
前記位置指令終了後における位置偏差の変動を観測し、
前記により観測した隣接する振動ピーク間の時間を前記機台の固有振動周期として前記固有振動周期から前記機台の固有振動角周波数を算出し、
前記により観測した隣接する振動のピーク値を大小比較して減衰率を算出し、これを前記機台の振動減衰係数とすることを特徴とする機台の固有振動角周波数および振動減衰係数の測定方法。
A drive mechanism including a load is installed in the machine base, and a position control device that causes the load to follow a position command, by a measurement method for measuring each natural vibration frequency and vibration damping coefficient of the machine base,
The feedback gain of the position control device is set low,
Output position command,
Observe the change in position deviation after the end of the position command,
Calculating the natural vibration angular frequency of the machine from the natural vibration cycle as the natural vibration cycle of the machine, the time between adjacent vibration peaks observed by the above,
Measurement of the natural vibration angular frequency and vibration damping coefficient of the machine characterized by calculating the damping rate by comparing the peak values of the adjacent vibrations observed as described above with magnitude, and using this as the vibration damping coefficient of the machine. Method.
JP2002180909A 2002-06-21 2002-06-21 Position commanding method of position controller and method for measuring natural vibration angular frequency of machine base Abandoned JP2004029887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180909A JP2004029887A (en) 2002-06-21 2002-06-21 Position commanding method of position controller and method for measuring natural vibration angular frequency of machine base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180909A JP2004029887A (en) 2002-06-21 2002-06-21 Position commanding method of position controller and method for measuring natural vibration angular frequency of machine base

Publications (2)

Publication Number Publication Date
JP2004029887A true JP2004029887A (en) 2004-01-29
JP2004029887A5 JP2004029887A5 (en) 2005-10-06

Family

ID=31177877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180909A Abandoned JP2004029887A (en) 2002-06-21 2002-06-21 Position commanding method of position controller and method for measuring natural vibration angular frequency of machine base

Country Status (1)

Country Link
JP (1) JP2004029887A (en)

Similar Documents

Publication Publication Date Title
KR100651352B1 (en) Velocity generation apparatus
US9075400B2 (en) Motor control device
EP1283593A1 (en) Motor controller
JP5078891B2 (en) Method and apparatus for moving guidance of machine elements in a machine
JP5269158B2 (en) Control method and control apparatus
JP2002304219A (en) Motor controller and mechanism characteristic measuring method
JP5206994B2 (en) Electric motor control device and gain adjustment method thereof
JP5441944B2 (en) Motor control device
JPH06278080A (en) Calculation method for natural frequency
JP2004328829A (en) Method and device for controlling motor
JP2005198404A (en) Motor controller
CN111015661B (en) Active vibration control method and system for flexible load of robot
JPWO2005064781A1 (en) Motor control device
JP5316424B2 (en) Motor control device
JP2004029887A (en) Position commanding method of position controller and method for measuring natural vibration angular frequency of machine base
JPH06114762A (en) Vibration damping control method
JP6661676B2 (en) Robot controller
JPH0616246B2 (en) Positioning control device
WO2023013168A1 (en) Control device, control method, and program
JPH0815058A (en) Method for measuring load constant of motor drive system
JP2577713B2 (en) Control device for robot
JP6395927B2 (en) Positioning control device
JP4415631B2 (en) Control device
JP4142793B2 (en) Correction method of shaker time delay in structural vibration simulation
JP2005050215A (en) Vibration suppression instructing method for position control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060517