JP2004028845A - Micro x-ray generation source of high brightness/high output, and nondestructive inspection device using the same - Google Patents

Micro x-ray generation source of high brightness/high output, and nondestructive inspection device using the same Download PDF

Info

Publication number
JP2004028845A
JP2004028845A JP2002187177A JP2002187177A JP2004028845A JP 2004028845 A JP2004028845 A JP 2004028845A JP 2002187177 A JP2002187177 A JP 2002187177A JP 2002187177 A JP2002187177 A JP 2002187177A JP 2004028845 A JP2004028845 A JP 2004028845A
Authority
JP
Japan
Prior art keywords
target
ray source
substrate
ray
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002187177A
Other languages
Japanese (ja)
Other versions
JP2004028845A5 (en
Inventor
Takayasu Mochizuki
望月 孝晏
Shuji Miyamoto
宮本 修治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002187177A priority Critical patent/JP2004028845A/en
Publication of JP2004028845A publication Critical patent/JP2004028845A/en
Publication of JP2004028845A5 publication Critical patent/JP2004028845A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray generation source for realizing high brightness of a microspot, and to provide a nondestructive inspection device for a high density multilayered printed circuit board or the like using the source. <P>SOLUTION: In this X-ray generation source, a target 15 formed of a single columnar metal wire comprising tungsten (W) or molybdenum (Mo) of a heavy element high in X-ray generation efficiency is arranged in the bottom part of a vacuum duct 6. The target is a columnar shape having 1.5 or more of ratio of the maximum diameter in its cross-section to its length, the target 15 of the heavy element serves for both cooling and holding, and embedded in a substrate 8 comprising a light element of beryllium (Be) or carbon (C). A cooler 9 is arranged under a condition to surround the target 15 and the substrate 8, and the cooler 9 has heat pump structure 17 in which a coolant 18 is sealed, or structure for making the coolant flow as a fluid in a flow passage surrounding the substrate 8. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はX線源を微小なスポットで且つ高輝度で実現するX線発生源と、それを用いた非破壊検査装置に関する。
【0002】
【従来の技術】
携帯電話に見られるように電子機器の小型化が加速し、プリント基板や半導体パッケージにおいては微細化、多層化が進展し検査対象が高密度化している。そのため、プリント基板や半導体パッケージの評価技術が重要になり、X線透過法を用いて微細な内部構造を非破壊で検査する非破壊検査法が各分野で用いられている。それに伴って、X線透過検査への要求が高度化し、それらの開発や製品検査において、分解能を上げるため、X線の微小焦点化が要求されている。
【0003】
X線管の中で透過型は、収束された電子ビームを、厚さが薄いタングステンターゲットに打ち込み、ターゲットの裏面より放出されるX線を利用するものである。この時、電子ビームをターゲット面で1〜50μm程度に絞ることによって、X線源を微小化している。このX線源はマイクロフォーカスX線と呼称され、既に商品化されているものがある。
【0004】
この方式は電子ビームを微小スポットにしても、ターゲット内部での電子ビームの散乱があるため光源サイズは小さくならず、X線の出力(輝度)が低い。そこで、X線の出力を高めるために電子ビームの電流を増加させると冷却が不充分になり出力に限度がある。このため測定に時間を要し、製品検査での全数検査に対応できない。そのため、プリント基板の高密度化が進み全数検査への要望が強いが、現実にはオフラインでの検査になっている。
【0005】
また、強力なX線源を得るため、ターゲットを高熱伝導率の無機化合物/金属薄膜の二層構造とし、冷却効果を発揮させて高出力を得るものは、特公平7−60757号公報のものがある。これは電子ビーム入射に対して90度方向に放出するX線を利用する反射型と呼ばれる輝度の高いX線源であるが、X線源スポットは電子ビームの太さと飛程とに依存し、小さなスポットは得られない。
【0006】
【発明が解決しようとする課題】
このように、従来のX線発生源は、電子ビームを微小スポットにしようとしても電流の増加に限度があり、ターゲット内部での電子ビーム散乱のため光源サイズが小さくならず輝度が低かった。このため非破壊検査の測定に時間を要し、製品検査での全数検査に対応できず、オフラインでの検査になっていた。また、反射型の輝度の高いX線源のものもあるが、X線源スポットは電子ビームの太さと飛程とに依存し、小さなスポットは得られなかった。そこで、本発明は微小なスポットで且つ高輝度を実現するX線発生源と、それを用いて高密度多層プリント基板等の非破壊検査をオンラインで可能とする非破壊検査装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係るX線発生源は、電子ビームを金属ターゲットに照射し、ターゲットの電子ビームとは反対側からX線を発生させる透過型X線発生源に用いられ、当該ターゲットを柱状とし、当該ターゲットの片側断面に、この断面より大きな径を有する電子ビームを照射してX線を発生させるように構成した。
【0008】
こうして、ターゲットは柱状形状とし、ターゲットの片側断面に、この断面より大きな径を有する電子ビームを照射してX線を発生させるものであり、ターゲット径でX線源の大きさが決まり、X線取り出し方向から見ると微小なスポットを形成することができる。そして、金属薄膜のターゲットの作成が簡単であると共に、熱に対する制限も緩和され、より高い電子パワー密度で運転が可能な高輝度X線源とすることができる。
【0009】
本発明の請求項2に係るX線発生源は、電子ビームを金属ターゲットに照射し、ターゲットの電子ビームとは反対側からX線を発生させる透過型X線発生源に用いられ、当該ターゲットを長さ/断面の最大径の比が1.5以上の柱状とし、当該ターゲットの片側断面に、この断面より大きな径を有する電子ビームを照射してX線を発生させるように構成した。但し、ターゲットの長さは少なくとも電子の飛程と同じとする。
【0010】
本発明の請求項3に係るX線発生源は、電子ビームを金属ターゲットに照射し、ターゲットの電子ビームとは反対側からX線を発生させる透過型X線発生源に用いられ、当該ターゲットを断面の最大径が10μm以下で、長さは電子飛程長(例えば、50keVの入射電子では5μm)の柱状とし、当該ターゲットの片側断面に、この断面より大きな径を有する電子ビームを照射してX線を発生させるように構成した。
【0011】
本発明の請求項4に係るX線発生源は、上記請求項1乃至請求項3記載の高輝度・高出力微小X線発生源に用いる前記ターゲットを、タングステン又はモリブデンでなる単一の柱状の金属ワイヤで構成とした。
【0012】
こうして、ターゲットはX線発生効率の高い重元素のタングステン(W)又はモリブデン(Mo)でなる単一の柱状の金属ワイヤで形成され、該ターゲットは長さ/断面の最大径の比が1.5以上の柱状とし、例えば、断面の最大径が10μm以下で、長さは電子飛程長とすることにより、微小タングステンのターゲットで微小X線源を構成でき、より高い電子パワー密度で運転が可能な高輝度X線源とすることができる。
【0013】
本発明の請求項5に係るX線発生源は、上記請求項1乃至請求項3記載の高輝度・高出力微小X線発生源に用いる前記ターゲットを、タングステン又はモリブデンでなる単一の柱状の金属ワイヤで構成し、前記ターゲットはX線発生量の極めて少ない基板に埋設されており、該基板に冷却装置が配置されている構成とした。
【0014】
本発明の請求項6に係るX線発生源は、上記請求項1乃至請求項3記載の高輝度・高出力微小X線発生源に用いる前記ターゲットを、タングステン又はモリブデンでなる単一の柱状の金属ワイヤで構成し、前記ターゲットはX線発生量の極めて少なく、かつ熱伝導量の大きなベリリウム又はカーボンからなる基板に埋設されており、該基板に冷却装置が配置されている構成とした。
【0015】
こうして、ターゲットはX線発生効率の高い重元素のタングステン(W)又はモリブデン(Mo)でなる単一の柱状の金属ワイヤで形成され、該ターゲットは長さ/断面の最大径の比が1.5以上の柱状とする。そして、冷却と保持を兼ねて、ベリリウム(Be)又はカーボン(C)の軽元素からなる基板に埋設され、熱伝導率が大きく冷却機能を有する軽元素の基板で囲まれているため、効率よく冷却できる。更に、ターゲットと基板を囲む状態で冷却装置を配置することにより、冷却効率をより高くすることができる。
【0016】
本発明の請求項7に係る非破壊検査装置は、上記請求項1乃至請求項6記載のX線発生源を非破壊検査装置のX線発生源として適用して構成した。
【0017】
こうして、プリント基板や半導体パッケージの評価を非破壊検査技術を用いて行なう際に、微小なスポットで且つ高輝度を実現するX線発生源を用いて高密度多層プリント基板等の非破壊検査をオンラインで可能とし、プリント基板の高密度化に伴う全数検査の要望に応える非破壊検査装置を実現できる。
【0018】
【発明の実施の形態】
本発明は微小なスポットで且つ高輝度を実現するX線発生源と、それを用いた非破壊検査装置に関するものであり、図を参照して説明する。図1は非破壊検査装置の模式的概略図を示し、図2はX線発生源の模式的概略図を示し、図3はX線発生源の詳細図を示す。
【0019】
図において、1は真空チャンバー、2は真空排気装置、3は高電圧パルス発生器、4はニードル束光陰極電子銃、5は紫外線パルスレーザー発振器、6は真空ダクト、7は電子収束用磁気レンズ、8は基板、9は冷却装置、10はXY(Z)走査台ステージ、11はステージ10上に載置される多層回路基板等の試料、12は高速X線撮像装置、13は画像信号処理装置、14はXY(Z)制御装置、15は重元素でなるターゲット、16はX線射出口である。
【0020】
図1により本発明の非破壊検査装置の概要を説明する。真空チャンバー1は真空排気装置2により10−5Paの真空度が保たれる。高電圧パルス発生器3が50kV,1〜10kHzの高圧を発生し、ニードル束光陰極電子銃4で電子を放出する。紫外線パルスレーザー発振器5が1〜10kHzの3倍高調波をニードル束先端に照射することにより得られる超高輝度電子ビームを真空ダクト6を通りビーム収束用磁気レンズ7によって、微小な電子ビームとして収束する。
【0021】
ここで、紫外線パルスレーザー発振器が1〜10kHzの3倍高調波をニードル束先端に照射することにより得られる超高輝度電子ビームについては、本発明者等の発表論文「Study of High−Bright Needle Photocathode for FEL」(T.Inoue,S.Miyamoto,H.Higashiuchi,M.Yatsuzuka,and T.Mochizuki Proceedings of the 25th Linear Accelerator Meeting in Japan,pp.74−76,Himeji,July 12−14(2000))に詳細に説明している。
【0022】
電子ビームはスポットとなるため、そこに例えば直径10μm、長さ20μmの柱状のX線発生用ターゲットを配置し、軸方向より電子ビームを収束させて照射すると、X線取り出し方向から見ると硬X線を発生する直径10μmの擬似的な点X線源を生成する。
【0023】
X線発生源の概略図は図2に示すように、ターゲット15としてはX線発生効率の高い重元素(効率約10−3/立体角)のタングステン(W)又はモリブデン(Mo)からなる単一の柱状の金属ワイヤを用い、当該ターゲット15は冷却と保持を兼ねて、ベリリウム(Be)又はカーボン(C)の軽元素からなる基板8に埋設されている。基板8にはその外方に冷却装置9が配置されている。そして、ターゲット15で発生したX線はX線射出口16から放射される。
【0024】
ターゲット15から放射されたX線をXY(Z)走査台ステージ10上に載置された試料の多層回路基板11に照射して得られる透過像は、点X線源からのX線によって拡大投影され、ペルチェ冷却X線用CCDマルチ方式、又はXY走査合成式による読取方式で高速X線撮像装置12中に記録される。
【0025】
高速X線撮像装置12の画像は画像信号処理装置13によって、並列処理と高速像判読アルゴリズムを用いて、画像の評価を行い、その結果をシステム制御装置20に蓄積する。システム制御装置20は検査手順等システム全体の動作を制御し、得られたデータ全体を外部に出力する。そのため、システム制御装置20は制御装置14を介して、XY(Z)走査台ステージ10を制御し、更に、磁気レンズ7を制御する。
【0026】
また、システム制御装置20による画像の評価結果に基づき、レーザーのパルス幅とタイミングを制御することによってX線の発生時間幅とタイミングを制御し、瞬間X線透過像も容易に観察することができる。
【0027】
図3に本発明のX線発生源の詳細図を示す。真空ダクト6の底部にターゲット15が配置される。ターゲット15はX線発生効率の高い重元素のタングステン(W)又はモリブデン(Mo)でなる単一の柱状の金属ワイヤで形成されている。
【0028】
ターゲット15に重元素のタングステンを用いる理由は、電子の吸収は大体ターゲットの質量密度に比例するので、比重19.4のタングステンは比重2.6の炭素(グラファイト)に比べ7倍以上の効率で電子を吸収するためである。また、X線発生率はターゲットの原子番号の2乗に比例するので、タングステン(z=74)と炭素(z=6)を比べると、タングステンのX線発生率が150倍以上多い。そのため、微小タングステンのターゲット15で微小X線源を構成できる。
【0029】
該ターゲットは長さと断面の最大径の比が1.5〜2以上の柱状とし、例えば、断面の最大径が10μm以下で、長さは20μm以下とすることが実験的に好ましい結果が得られた。重元素のターゲット15は冷却と保持を兼ねて、ベリリウム(Be)又はカーボン(C)の軽元素からなる基板8に埋設されている。
【0030】
そして、ターゲット15を埋め込む基板8にグラファイトを用いる理由は、発生したX線はグラファイトの基板内を通過するが、X線吸収率は、図4に示すように、利用するX線エネルギー(30keV)付近で、タングステンに比べ炭素(グラファイト)は吸収係数が2桁小さいため、基板8で殆んど減衰することなく、取り出すことができるためである。
【0031】
更に、少しでもX線の吸収損失を下げるためと、ターゲット15の冷却のために、基板8であるグラファイトの底面を削っている。電子のエネルギーが高密度で吸収される重元素のターゲット15部が微小であるため、X線源として利用されない電子は周辺を照射する。しかし、そのような電子は基板8中に広く拡散され単位体積当りの熱負荷は小さい。
【0032】
このように、熱発生の主たる要素である重元素のターゲット15が、冷却機能を有する軽元素の基板8で囲まれているため、効率よく冷却できる。更に、ターゲット15と基板8を囲む状態で、熱交換用のフィンを有する冷却装置9を配置する。冷却装置9は冷媒18を密封したヒートポンプ構造17とすることにより、熱輸送係数が銅以上となり冷却効率をより高くすることができる。又は冷媒を流体として基板8を取り囲む流路に流すことによって、冷却効率を高くすることができる。
【0033】
こうして、ターゲット15で発生した高出力のX線はX線射出口16から放射され、金属薄膜でなるターゲットの作成が簡単であると共に、熱に対する制限も緩和され、より高い電子パワー密度で運転が可能で、1017Photon/cms/srと10倍以上の高輝度X線源とすることができる。
【0034】
以上のように本発明は、電子ビームを金属ターゲットに照射し、ターゲットの電子ビームとは反対側からX線を発生させる透過型X線発生源において、重元素のターゲットは柱状形状で、柱の側面で軽元素の基板と接触するように填め込んだ構造とし、その断面の最大径が10μm以下、柱の長さを1.5倍以上とし、ターゲットの片側断面に、この断面より大きな径を有する電子ビームを照射してX線を発生させるものであり、ターゲット径でX線源の大きさが決まり、X線取り出し方向では微小なスポットを形成することができる。
【0035】
例えば、10μm径、20μm長さのターゲットのタングステンを厚さ数mmのグラファイトなどの低原子番号の基板に埋め込みX線源とすると、電子の吸収は主にタングステンで起こり、そこで発生したX線の吸収は小さく、効率よくX線が取り出せる。また、ターゲット側面で基板と接触しているため冷却機構が取り付けられ、冷却効果が充分である。
【0036】
また、従来のマイクロフォーカスで見られる電子ビームの散乱による解像度劣化が防げられ、電子ビーム収束関係が簡略化され、高出力が得られる。一例を挙げれば、X線源から20cm離れた位置に設置したX線検出用2次元検出器でのX線密度は、10から10 光子/10μmピクセルとなり、通常の値より1桁ないし2桁高い値となるので、CCDの1フレームで画像が得ることができ、広い応用範囲が期待できる。本実施例は一例にすぎず、本発明はここで説明に使われた数値又は形状には限定されないことは言うまでもない。
【0037】
【発明の効果】
本発明はターゲットを柱状形状とし、ターゲットはX線発生効率の高い重元素のタングステン(W)又はモリブデン(Mo)でなる単一の柱状の金属ワイヤで形成され、ターゲットの片側断面に、この断面より大きな径を有する電子ビームを照射してX線を発生させるものであり、ターゲット径でX線源の大きさが決まり、微小なスポットを形成することができ、より高い電子パワー密度で運転が可能な高輝度X線源とすることができる。
【0038】
また、ターゲットは冷却と保持を兼ねて、ベリリウム(Be)又はカーボン(C)の軽元素からなる基板に埋設され、冷却機能を有する軽元素の基板で囲まれているため、効率よく冷却できる。更に、ターゲットと基板を囲む状態で冷却装置を配置することにより、冷却効率をより高くすることができる。
【0039】
そして、プリント基板や半導体パッケージの評価を非破壊検査技術を用いて行なう際に、微小なスポットで且つ高輝度を実現するX線発生源を用いて高密度多層プリント基板等の非破壊検査をオンラインで可能とし、プリント基板の高密度化に伴う全数検査を高速で行なうことに対する要望を満足させる非破壊検査装置を実現できる。
【図面の簡単な説明】
【図1】本発明の非破壊検査装置の模式図。
【図2】本発明のX線発生源の模式図。
【図3】本発明のX線発生源の詳細図。
【図4】元素のX線エネルギーと吸収係数との関係図。
【符号の説明】
1        真空チャンバー
2        真空排気装置
3        高電圧パルス発生器
4        ニードル束光陰極電子銃
5        紫外線パルスレーザー発振器
6        真空ダクト
7        磁気レンズ
8        基板
9        冷却装置
10       XY(Z)走査台ステージ
11       多層回路基板等の試料
12       高速X線撮像装置
13       画像信号処理装置
14       XY(Z)制御装置
15       ターゲット
16       X線射出口
17       ヒートポンプ構造
18       冷媒
20       システム制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray source realizing an X-ray source with a minute spot and high luminance, and a nondestructive inspection apparatus using the same.
[0002]
[Prior art]
As seen in mobile phones, the miniaturization of electronic devices is accelerating, and printed circuit boards and semiconductor packages are becoming finer and more multilayered, and the inspection targets are becoming denser. For this reason, evaluation techniques for printed circuit boards and semiconductor packages have become important, and nondestructive inspection methods for nondestructively inspecting a fine internal structure using an X-ray transmission method have been used in various fields. Accompanying this, the demand for X-ray transmission inspections has become more sophisticated, and in their development and product inspection, microfocusing of X-rays has been required in order to increase the resolution.
[0003]
The transmission type in the X-ray tube is one in which a focused electron beam is injected into a thin tungsten target and X-rays emitted from the back surface of the target are used. At this time, the X-ray source is miniaturized by narrowing the electron beam to about 1 to 50 μm on the target surface. This X-ray source is called a microfocus X-ray, and some of them have already been commercialized.
[0004]
In this method, even if the electron beam is made a minute spot, the size of the light source is not reduced due to the scattering of the electron beam inside the target, and the output (luminance) of X-rays is low. Therefore, if the current of the electron beam is increased to increase the output of X-rays, cooling becomes insufficient and the output is limited. For this reason, measurement requires time, and it is not possible to cope with 100% inspection in product inspection. For this reason, the density of printed circuit boards has been increasing, and there is a strong demand for 100% inspection. However, in reality, the inspection is performed offline.
[0005]
In order to obtain a strong X-ray source, a target having a two-layer structure of an inorganic compound / metal thin film having a high thermal conductivity and exhibiting a cooling effect to obtain a high output is disclosed in Japanese Patent Publication No. 7-60575. There is. This is an X-ray source of high brightness called a reflection type that uses X-rays emitted in a direction of 90 degrees with respect to the incidence of an electron beam. The X-ray source spot depends on the thickness and range of the electron beam, You can't get a small spot.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional X-ray generation source, even if an attempt is made to make the electron beam into a minute spot, the current is limited, and the light source size is not reduced due to the scattering of the electron beam inside the target, and the luminance is low. For this reason, it took time to measure the nondestructive inspection, and it was not possible to cope with 100% inspection in the product inspection, and the inspection had to be performed off-line. There is also a reflection type X-ray source having a high luminance, but the X-ray source spot depends on the thickness and range of the electron beam, and a small spot cannot be obtained. Therefore, the present invention provides an X-ray source that realizes high brightness with a minute spot, and a non-destructive inspection apparatus that enables non-destructive inspection of a high-density multilayer printed circuit board or the like using the X-ray source online. Aim.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an X-ray source according to claim 1 of the present invention irradiates a metal target with an electron beam and generates X-rays from a side of the target opposite to the electron beam. The target was used as a source, the target was formed in a columnar shape, and one side cross section of the target was irradiated with an electron beam having a diameter larger than this cross section to generate X-rays.
[0008]
Thus, the target has a columnar shape, and one side of the target is irradiated with an electron beam having a diameter larger than this cross section to generate X-rays. The size of the X-ray source is determined by the target diameter. When viewed from the takeout direction, a minute spot can be formed. Further, it is possible to provide a high-brightness X-ray source that can easily operate with a higher electron power density while simplifying the preparation of a metal thin film target and relaxing heat restrictions.
[0009]
The X-ray source according to claim 2 of the present invention is used as a transmission type X-ray source for irradiating a metal target with an electron beam and generating X-rays from a side of the target opposite to the electron beam. The target was formed into a columnar shape having a ratio of the maximum diameter of the length to the cross section of 1.5 or more, and an X-ray was generated by irradiating an electron beam having a diameter larger than this cross section to one side cross section of the target. However, the length of the target is at least the same as the range of the electrons.
[0010]
The X-ray source according to claim 3 of the present invention is used as a transmission type X-ray source that irradiates an electron beam onto a metal target and generates X-rays from the side of the target opposite to the electron beam. The maximum diameter of the cross section is 10 μm or less, and the length is columnar with an electron range (for example, 5 μm for 50 keV incident electrons). One side cross section of the target is irradiated with an electron beam having a diameter larger than this cross section. It was configured to generate X-rays.
[0011]
According to a fourth aspect of the present invention, there is provided an X-ray source, wherein the target used for the high-brightness and high-output minute X-ray source according to the first to third aspects is a single columnar shape made of tungsten or molybdenum. It consisted of a metal wire.
[0012]
Thus, the target is formed of a single columnar metal wire made of heavy element tungsten (W) or molybdenum (Mo) having high X-ray generation efficiency, and the target has a length / cross-section maximum diameter ratio of 1. The X-ray source can be configured with a fine tungsten target by forming the column with five or more columns, for example, with a maximum cross-sectional diameter of 10 μm or less and a length of the electron range, so that operation can be performed with a higher electron power density. A possible high-brightness X-ray source can be obtained.
[0013]
According to a fifth aspect of the present invention, there is provided an X-ray source, wherein the target used for the high-intensity and high-output minute X-ray source according to any one of the first to third aspects is a single columnar shape made of tungsten or molybdenum. The target is made of a metal wire, the target is embedded in a substrate that generates a very small amount of X-rays, and a cooling device is arranged on the substrate.
[0014]
An X-ray source according to claim 6 of the present invention is configured such that the target used for the high-brightness, high-output micro X-ray source according to any one of claims 1 to 3 is a single columnar shape made of tungsten or molybdenum. The target is made of a metal wire, and the target is buried in a substrate made of beryllium or carbon having a very small amount of X-ray generation and a large amount of heat conduction, and a cooling device is arranged on the substrate.
[0015]
Thus, the target is formed of a single columnar metal wire made of heavy element tungsten (W) or molybdenum (Mo) having high X-ray generation efficiency, and the target has a length / cross-section maximum diameter ratio of 1. 5 or more columns. The substrate is buried in a substrate made of a beryllium (Be) or carbon (C) light element for both cooling and holding, and is surrounded by a light element substrate having a large thermal conductivity and a cooling function, so that it is efficiently used. Can be cooled. Further, by arranging the cooling device so as to surround the target and the substrate, the cooling efficiency can be further increased.
[0016]
A nondestructive inspection apparatus according to a seventh aspect of the present invention is configured by applying the X-ray source according to the first to sixth aspects as an X-ray source of the nondestructive inspection apparatus.
[0017]
In this way, when performing evaluation of printed circuit boards and semiconductor packages using nondestructive inspection technology, nondestructive inspection of high-density multilayer printed circuit boards and the like is performed online by using an X-ray source that realizes small spots and high brightness. It is possible to realize a nondestructive inspection apparatus that can meet the demand for 100% inspection with the increase in the density of printed circuit boards.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to an X-ray source that realizes high brightness with a minute spot and a non-destructive inspection device using the same, and will be described with reference to the drawings. FIG. 1 is a schematic diagram of a nondestructive inspection apparatus, FIG. 2 is a schematic diagram of an X-ray source, and FIG. 3 is a detailed diagram of the X-ray source.
[0019]
In the figure, 1 is a vacuum chamber, 2 is a vacuum exhaust device, 3 is a high voltage pulse generator, 4 is a needle bundle photocathode electron gun, 5 is an ultraviolet pulse laser oscillator, 6 is a vacuum duct, and 7 is a magnetic lens for electron focusing. , 8 is a substrate, 9 is a cooling device, 10 is an XY (Z) scanning stage, 11 is a sample such as a multilayer circuit board mounted on the stage 10, 12 is a high-speed X-ray imaging device, and 13 is image signal processing. The apparatus, 14 is an XY (Z) controller, 15 is a target made of heavy elements, and 16 is an X-ray exit.
[0020]
The outline of the nondestructive inspection apparatus of the present invention will be described with reference to FIG. The vacuum chamber 1 is maintained at a degree of vacuum of 10 −5 Pa by the vacuum exhaust device 2. The high voltage pulse generator 3 generates a high voltage of 50 kV and 1 to 10 kHz, and emits electrons by the needle bundle photocathode electron gun 4. An ultra-high brightness electron beam obtained by irradiating the tip of the needle bundle with the third harmonic of 1 to 10 kHz by the ultraviolet pulse laser oscillator 5 passes through the vacuum duct 6 and is converged as a minute electron beam by the beam converging magnetic lens 7. I do.
[0021]
Here, regarding the ultra-high-brightness electron beam obtained by irradiating the tip of the needle bundle with the 3rd harmonic of 1 to 10 kHz by the ultraviolet pulse laser oscillator, a paper published by the present inventors, "Study of High-Bright Needle Photocathode". for FEL "(T. Inoue, S. Miyamoto, H. Higashiuchi, M. Yasuzuka, and T. Mochizuki Proceedings of the 25th Linear Accelerator Meeting in Japan-Jap. Is described in detail.
[0022]
Since the electron beam becomes a spot, a column-shaped X-ray generation target having a diameter of, for example, 10 μm and a length of 20 μm is arranged there, and when the electron beam is converged and irradiated in the axial direction, a hard X-ray is seen from the X-ray extraction direction. A pseudo point X-ray source having a diameter of 10 μm for generating a line is generated.
[0023]
As shown in FIG. 2, a schematic diagram of the X-ray generation source is a single target made of tungsten (W) or molybdenum (Mo) of a heavy element (efficiency of about 10 −3 / solid angle) having high X-ray generation efficiency. The target 15 is buried in the substrate 8 made of a beryllium (Be) or carbon (C) light element for cooling and holding, using one columnar metal wire. A cooling device 9 is arranged outside the substrate 8. Then, the X-rays generated by the target 15 are emitted from the X-ray exit 16.
[0024]
A transmission image obtained by irradiating the X-ray radiated from the target 15 onto the multilayer circuit board 11 of the sample placed on the XY (Z) scan table stage 10 is enlarged and projected by the X-ray from the point X-ray source. Then, the image is recorded in the high-speed X-ray imaging apparatus 12 by a Peltier-cooled X-ray CCD multi-system or a reading system based on an XY scanning synthesis system.
[0025]
The image of the high-speed X-ray imaging device 12 is evaluated by the image signal processing device 13 using parallel processing and a high-speed image interpretation algorithm, and the result is stored in the system control device 20. The system control device 20 controls the operation of the entire system such as an inspection procedure, and outputs the obtained entire data to the outside. Therefore, the system controller 20 controls the XY (Z) scan table stage 10 and further controls the magnetic lens 7 via the controller 14.
[0026]
Further, based on the evaluation result of the image by the system controller 20, the pulse width and timing of the laser are controlled to control the generation time width and timing of X-rays, so that an instantaneous X-ray transmission image can be easily observed. .
[0027]
FIG. 3 shows a detailed view of the X-ray source of the present invention. The target 15 is arranged at the bottom of the vacuum duct 6. The target 15 is formed of a single columnar metal wire made of heavy element tungsten (W) or molybdenum (Mo) having high X-ray generation efficiency.
[0028]
The reason for using tungsten as a heavy element for the target 15 is that the absorption of electrons is roughly proportional to the mass density of the target, so that tungsten having a specific gravity of 19.4 is more than seven times more efficient than carbon (graphite) having a specific gravity of 2.6. This is for absorbing electrons. In addition, since the X-ray generation rate is proportional to the square of the atomic number of the target, when comparing tungsten (z = 74) and carbon (z = 6), the X-ray generation rate of tungsten is at least 150 times higher. Therefore, a minute X-ray source can be constituted by the minute tungsten target 15.
[0029]
The target has a columnar shape having a ratio of the length to the maximum diameter of the cross section of 1.5 to 2 or more. For example, it is experimentally preferable that the maximum diameter of the cross section is 10 μm or less and the length is 20 μm or less. Was. The heavy element target 15 is buried in the substrate 8 made of beryllium (Be) or carbon (C) light element for both cooling and holding.
[0030]
The reason why graphite is used for the substrate 8 in which the target 15 is embedded is that the generated X-rays pass through the graphite substrate, but the X-ray absorption rate is, as shown in FIG. 4, the X-ray energy (30 keV) to be used. In the vicinity, since carbon (graphite) has an absorption coefficient two orders of magnitude smaller than that of tungsten, it can be extracted with almost no attenuation on the substrate 8.
[0031]
Further, the bottom surface of the graphite as the substrate 8 is shaved in order to lower the absorption loss of X-rays and to cool the target 15. Since the target 15 of the heavy element, in which the energy of the electrons is absorbed at a high density, is minute, the electrons not used as the X-ray source irradiate the periphery. However, such electrons are diffused widely in the substrate 8 and the heat load per unit volume is small.
[0032]
As described above, since the target 15 of the heavy element, which is a main element of heat generation, is surrounded by the substrate 8 of the light element having a cooling function, cooling can be performed efficiently. Further, a cooling device 9 having fins for heat exchange is arranged so as to surround the target 15 and the substrate 8. Since the cooling device 9 has the heat pump structure 17 in which the refrigerant 18 is sealed, the heat transport coefficient becomes higher than that of copper, and the cooling efficiency can be further increased. Alternatively, the cooling efficiency can be increased by flowing a coolant as a fluid through the flow path surrounding the substrate 8.
[0033]
Thus, the high-power X-rays generated from the target 15 are radiated from the X-ray emission port 16, which makes it easy to prepare a target made of a metal thin film, relaxes the restriction on heat, and allows operation at a higher electron power density. It is possible, and a high-brightness X-ray source of 1017 Photon / cm 2 s / sr, which is 10 times or more can be obtained.
[0034]
As described above, the present invention provides a transmission type X-ray source that irradiates a metal target with an electron beam and generates X-rays from the side of the target opposite to the electron beam. The structure is such that the side surface is in contact with the light element substrate, the maximum diameter of the cross section is 10 μm or less, the length of the column is 1.5 times or more, and the diameter of one side of the target is larger than this cross section. X-rays are generated by irradiating the target with an electron beam, and the size of the X-ray source is determined by the diameter of the target, and a minute spot can be formed in the X-ray extraction direction.
[0035]
For example, if a target tungsten having a diameter of 10 μm and a length of 20 μm is embedded in a substrate having a low atomic number such as graphite having a thickness of several mm as an X-ray source, the absorption of electrons mainly occurs in tungsten, and the X-rays generated there are The absorption is small and X-rays can be extracted efficiently. Also, since the side surface of the target is in contact with the substrate, a cooling mechanism is attached, and the cooling effect is sufficient.
[0036]
Further, resolution degradation due to scattering of the electron beam seen in the conventional microfocus can be prevented, the convergence relation of the electron beam can be simplified, and high output can be obtained. As an example, the X-ray density of a two-dimensional detector for X-ray detection installed at a position 20 cm away from the X-ray source is 10 4 to 10 5 photons / 10 μm pixel, which is one digit to 2 digits smaller than a normal value. Since the value is an order of magnitude higher, an image can be obtained with one frame of the CCD, and a wide range of application can be expected. This embodiment is merely an example, and it goes without saying that the present invention is not limited to the numerical values or shapes used in the description.
[0037]
【The invention's effect】
According to the present invention, the target is formed in a columnar shape, and the target is formed of a single columnar metal wire made of heavy element tungsten (W) or molybdenum (Mo) having high X-ray generation efficiency. X-rays are generated by irradiating an electron beam with a larger diameter, the size of the X-ray source is determined by the target diameter, a minute spot can be formed, and operation can be performed with a higher electron power density. A possible high-brightness X-ray source can be obtained.
[0038]
Further, the target is buried in a substrate made of a beryllium (Be) or carbon (C) light element for cooling and holding, and is surrounded by a light element substrate having a cooling function, so that the target can be cooled efficiently. Further, by arranging the cooling device so as to surround the target and the substrate, the cooling efficiency can be further increased.
[0039]
When evaluating printed circuit boards and semiconductor packages using non-destructive inspection technology, non-destructive inspection of high-density multilayer printed circuit boards and the like is performed online using an X-ray source that realizes high brightness with minute spots. Thus, a nondestructive inspection apparatus that satisfies the demand for high-speed 100% inspection in accordance with the high density of printed circuit boards can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic view of a non-destructive inspection apparatus according to the present invention.
FIG. 2 is a schematic view of an X-ray source according to the present invention.
FIG. 3 is a detailed view of an X-ray source according to the present invention.
FIG. 4 is a diagram showing the relationship between X-ray energy and absorption coefficient of an element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Vacuum exhaust device 3 High voltage pulse generator 4 Needle bundle photocathode electron gun 5 Ultraviolet pulse laser oscillator 6 Vacuum duct 7 Magnetic lens 8 Substrate 9 Cooling device 10 XY (Z) scan stage 11 Multilayer circuit board etc. Sample 12 High-speed X-ray imaging device 13 Image signal processing device 14 XY (Z) control device 15 Target 16 X-ray emission port 17 Heat pump structure 18 Refrigerant 20 System control device

Claims (7)

電子ビームを金属ターゲットに照射し、ターゲットの電子ビームとは反対側からX線を発生させる透過型X線発生源に用いられ、当該ターゲットを柱状とし、当該ターゲットの片側断面に、この断面より大きな径を有する電子ビームを照射してX線を発生させる高輝度・高出力微小X線発生源。It is used for a transmission type X-ray generation source that irradiates a metal target with an electron beam and generates X-rays from the side opposite to the electron beam of the target. A high-brightness, high-output micro X-ray source that irradiates an electron beam having a diameter to generate X-rays. 前記ターゲットは長さ/断面の最大径の比が1.5以上の柱状とすることを特徴とする請求項1記載の高輝度・高出力微小X線発生源。2. The high-intensity and high-output micro X-ray source according to claim 1, wherein the target has a columnar shape having a ratio of length / maximum diameter of cross section of 1.5 or more. 前記柱状ターゲットは断面の最大径が10μm以下で、長さは電子の飛程以下であることを特徴とする請求項2記載の高輝度・高出力微小X線発生源。3. The high-intensity and high-output micro X-ray source according to claim 2, wherein the columnar target has a maximum diameter of a cross section of 10 μm or less and a length of an electron range or less. 前記ターゲットはタングステン又はモリブデンでなる単一並びに複層どちらかの柱状の金属ワイヤであることを特徴とする請求項1乃至請求項3記載の高輝度・高出力微小X線発生源。4. The high-intensity and high-output micro X-ray source according to claim 1, wherein the target is a single- or multi-layer columnar metal wire made of tungsten or molybdenum. 前記ターゲットは軽元素基板に埋設されており、基板に冷却装置が配置されていることを特徴とする請求項1乃至請求項4記載の高輝度・高出力微小X線発生源。5. The high-intensity and high-output micro X-ray source according to claim 1, wherein the target is buried in a light element substrate, and a cooling device is disposed on the substrate. 前記基板はベリリウム又はカーボンからなることを特徴とする請求項5記載の高輝度・高出力微小X線発生源。6. The high-brightness and high-output micro X-ray source according to claim 5, wherein the substrate is made of beryllium or carbon. 上記請求項1乃至請求項6記載のX線発生源を用いた非破壊検査装置。A nondestructive inspection apparatus using the X-ray source according to any one of claims 1 to 6.
JP2002187177A 2002-06-27 2002-06-27 Micro x-ray generation source of high brightness/high output, and nondestructive inspection device using the same Pending JP2004028845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187177A JP2004028845A (en) 2002-06-27 2002-06-27 Micro x-ray generation source of high brightness/high output, and nondestructive inspection device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187177A JP2004028845A (en) 2002-06-27 2002-06-27 Micro x-ray generation source of high brightness/high output, and nondestructive inspection device using the same

Publications (2)

Publication Number Publication Date
JP2004028845A true JP2004028845A (en) 2004-01-29
JP2004028845A5 JP2004028845A5 (en) 2005-10-20

Family

ID=31182293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187177A Pending JP2004028845A (en) 2002-06-27 2002-06-27 Micro x-ray generation source of high brightness/high output, and nondestructive inspection device using the same

Country Status (1)

Country Link
JP (1) JP2004028845A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123022A (en) * 2005-10-27 2007-05-17 Shimadzu Corp X-ray source and target used for it
JP2007258669A (en) * 2006-02-23 2007-10-04 Matsushita Electric Works Ltd Imprint lithography method and imprint lithography apparatus
JP2008016339A (en) * 2006-07-06 2008-01-24 Toshiba Corp X-ray source and fluorescent x-ray analysis device
US7649980B2 (en) 2006-12-04 2010-01-19 The University Of Tokyo X-ray source
WO2010012403A2 (en) * 2008-07-29 2010-02-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. X-ray target and a method for producing x-rays
US7809113B2 (en) 2006-02-01 2010-10-05 Toshiba Electron Tubes & Devices Co., Ltd. X-ray source and fluorescent X-ray analyzing apparatus
EP2293318A1 (en) 2009-09-04 2011-03-09 Tokyo Electron Limited Target for X-ray generation, X-ray generator, and method for producing target for X-ray generation
DE102010039926A1 (en) 2009-08-31 2011-03-17 Hamamatsu Photonics K.K., Hamamatsu X-ray generator
JP2012054045A (en) * 2010-08-31 2012-03-15 Hamamatsu Photonics Kk X-ray irradiation device
WO2013105149A1 (en) * 2012-01-12 2013-07-18 ヤマハ発動機株式会社 X-ray inspection device
WO2013168468A1 (en) 2012-05-11 2013-11-14 浜松ホトニクス株式会社 X-ray generation device and x-ray generation method
JP2013541803A (en) * 2010-08-25 2013-11-14 ジーエーエムシー バイオテック デベロップメント カンパニー リミテッド Thick target for transmission X-ray tube
WO2014174997A1 (en) * 2013-04-22 2014-10-30 東京エレクトロン株式会社 Cantilever, manufacturing process, detection device, and detection method
WO2015056493A1 (en) 2013-10-16 2015-04-23 浜松ホトニクス株式会社 X-ray generation device
JP2015125043A (en) * 2013-12-26 2015-07-06 株式会社島津製作所 X-ray generation device and x-ray analysis device
WO2018198517A1 (en) * 2017-04-28 2018-11-01 浜松ホトニクス株式会社 X-ray tube and x-ray generating device
US10453579B2 (en) 2015-02-05 2019-10-22 Shimadzu Corporation X-ray generator
US11882642B2 (en) 2021-12-29 2024-01-23 Innovicum Technology Ab Particle based X-ray source

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123022A (en) * 2005-10-27 2007-05-17 Shimadzu Corp X-ray source and target used for it
US7809113B2 (en) 2006-02-01 2010-10-05 Toshiba Electron Tubes & Devices Co., Ltd. X-ray source and fluorescent X-ray analyzing apparatus
JP2007258669A (en) * 2006-02-23 2007-10-04 Matsushita Electric Works Ltd Imprint lithography method and imprint lithography apparatus
JP2008016339A (en) * 2006-07-06 2008-01-24 Toshiba Corp X-ray source and fluorescent x-ray analysis device
US7649980B2 (en) 2006-12-04 2010-01-19 The University Of Tokyo X-ray source
WO2010012403A2 (en) * 2008-07-29 2010-02-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. X-ray target and a method for producing x-rays
WO2010012403A3 (en) * 2008-07-29 2010-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. X-ray target and a method for producing x-rays
DE102010039926A1 (en) 2009-08-31 2011-03-17 Hamamatsu Photonics K.K., Hamamatsu X-ray generator
EP2618360A1 (en) 2009-09-04 2013-07-24 Tokyo Electron Limited Target for X-ray generation, X-ray generator, and method for producing target for X-ray generation
EP2293318A1 (en) 2009-09-04 2011-03-09 Tokyo Electron Limited Target for X-ray generation, X-ray generator, and method for producing target for X-ray generation
US8416920B2 (en) 2009-09-04 2013-04-09 Tokyo Electron Limited Target for X-ray generation, X-ray generator, and method for producing target for X-ray generation
JP2011077027A (en) * 2009-09-04 2011-04-14 Tokyo Electron Ltd Target for x-ray generation, x-ray generator, and manufacturing method of target for x-ray generation
JP2013541803A (en) * 2010-08-25 2013-11-14 ジーエーエムシー バイオテック デベロップメント カンパニー リミテッド Thick target for transmission X-ray tube
JP2012054045A (en) * 2010-08-31 2012-03-15 Hamamatsu Photonics Kk X-ray irradiation device
US9322790B2 (en) 2012-01-12 2016-04-26 Yamaha Hatsudoki Kabushiki Kaisha X-ray inspection device
WO2013105149A1 (en) * 2012-01-12 2013-07-18 ヤマハ発動機株式会社 X-ray inspection device
JP2013142677A (en) * 2012-01-12 2013-07-22 Yamaha Motor Co Ltd X-ray inspection device
KR20150010936A (en) 2012-05-11 2015-01-29 하마마츠 포토닉스 가부시키가이샤 X-ray generation device and x-ray generation method
WO2013168468A1 (en) 2012-05-11 2013-11-14 浜松ホトニクス株式会社 X-ray generation device and x-ray generation method
WO2014174997A1 (en) * 2013-04-22 2014-10-30 東京エレクトロン株式会社 Cantilever, manufacturing process, detection device, and detection method
WO2015056493A1 (en) 2013-10-16 2015-04-23 浜松ホトニクス株式会社 X-ray generation device
US10115557B2 (en) 2013-10-16 2018-10-30 Hamamatsu Photonics K.K. X-ray generation device having multiple metal target members
JP2015125043A (en) * 2013-12-26 2015-07-06 株式会社島津製作所 X-ray generation device and x-ray analysis device
US10453579B2 (en) 2015-02-05 2019-10-22 Shimadzu Corporation X-ray generator
WO2018198517A1 (en) * 2017-04-28 2018-11-01 浜松ホトニクス株式会社 X-ray tube and x-ray generating device
JP2018190526A (en) * 2017-04-28 2018-11-29 浜松ホトニクス株式会社 X-ray tube and X-ray generator
US11004646B2 (en) 2017-04-28 2021-05-11 Hamamatsu Photonics K.K. X-ray tube and X-ray generation device
US11882642B2 (en) 2021-12-29 2024-01-23 Innovicum Technology Ab Particle based X-ray source

Similar Documents

Publication Publication Date Title
JP2004028845A (en) Micro x-ray generation source of high brightness/high output, and nondestructive inspection device using the same
JP5548188B2 (en) X-ray generator and inspection apparatus using the same
TWI469690B (en) System, method and apparatus for droplet catcher for prevention of backsplash in a euv generation chamber
US6711233B2 (en) Method and apparatus for generating X-ray or EUV radiation
JP5871529B2 (en) Transmission X-ray generator and X-ray imaging apparatus using the same
EP0461776B1 (en) X-ray analysis apparatus, especially computer tomography apparatus
Baldacchini et al. Soft x-ray submicron imaging detector based on point defects in LiF
US20080240344A1 (en) X-ray tomosynthesis device
JP5871528B2 (en) Transmission X-ray generator and X-ray imaging apparatus using the same
JP2009212058A (en) X-ray generator, x-ray analysis device, x-ray transmission image measurement device, and x-ray interferometer
CN1917135B (en) New X ray tube, and fabricating method
Martynenko et al. Optimization of a laser plasma-based x-ray source according to WDM absorption spectroscopy requirements
US20110080997A1 (en) Radiation source and method for the generation of x-radiation
KR20230006506A (en) X-ray imaging system
JP5486762B2 (en) Method and system for a multifocal X-ray system
EP1463085B1 (en) X-ray inspection system and method of operating
US7173999B2 (en) X-ray microscope having an X-ray source for soft X-ray
Li et al. Experimental investigations of hard x-ray source produced by picosecond laser-irradiated solid target
Sobierajski et al. Experimental station to study the interaction of intense femtosecond vacuum ultraviolet pulses with matter at TTF1 free electron laser
Wang et al. Water-window x-ray emission from laser-produced Au plasma under optimal target thickness and focus conditions
WO2019172269A1 (en) X-ray generating device for phase imaging
JP2004006294A (en) X-ray tube and target of high quantum energy efficiency
JP2010146992A (en) Scanning type x-ray tube
Bott-Suzuki et al. Characterization of plasma emission in the 1-6 nm band from laser-irradiated cryogenic xenon targets
US11145482B2 (en) Target for a radiation source, radiation source for generating invasive electromagnetic radiation, method of operating a radiation source, and method for producing a target for a radiation source

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212