JP2004028823A - Workpiece processing apparatus - Google Patents

Workpiece processing apparatus Download PDF

Info

Publication number
JP2004028823A
JP2004028823A JP2002186314A JP2002186314A JP2004028823A JP 2004028823 A JP2004028823 A JP 2004028823A JP 2002186314 A JP2002186314 A JP 2002186314A JP 2002186314 A JP2002186314 A JP 2002186314A JP 2004028823 A JP2004028823 A JP 2004028823A
Authority
JP
Japan
Prior art keywords
workpiece
processing chamber
elastic wave
abnormality
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002186314A
Other languages
Japanese (ja)
Other versions
JP3883910B2 (en
Inventor
Yoshiji Fujii
藤井 佳詞
Kazuhiko Saito
斎藤 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002186314A priority Critical patent/JP3883910B2/en
Publication of JP2004028823A publication Critical patent/JP2004028823A/en
Application granted granted Critical
Publication of JP3883910B2 publication Critical patent/JP3883910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a workpiece processing apparatus for surely and easily detecting abnormality of a processed workpiece without an influence from background noise. <P>SOLUTION: The workpiece processing apparatus 30 is provided with a processing chamber 11 for processing the workpiece W, a workpiece support means 12 disposed in the processing chamber 11 and supporting the workpiece W, an acoustoelectric conversion element 13 disposed outside the processing chamber 11, receiving a sound wave and converting it into an electrical signal, a sound wave transmission means 31 for transmitting the sound wave generated in the processing chamber 11 to the acoustoelectric conversion element 13 and an abnormality detection means 15 for detecting the abnormality of the workpiece W based on an output signal from the acoustoelectric conversion element 17. The sound wave transmission means 31 noncontactly penetrates a wall 11a of the processing chamber 11 through a sound wave attenuation member 10. One end of the sound wave transmission means 31 contacts the workpiece W or the workpiece support means 12 in the processing chamber 11. The other end is connected to the acoustoelectric conversion element 13 outside the processing chamber 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体ウェーハなどのワークにスパッタ処理などの各種処理を行うワーク処理装置に関し、更に詳しくは、ワークの処理中にリアルタイムで(即時に)ワークに生じた異常を検知する技術に係るものである。
【0002】
【従来の技術】
一般に、半導体ウェーハはスパッタ処理される以前に複雑な工程を経ており、その過程でさまざまな応力が加えられ蓄積される。更に、スパッタ工程においても、加熱及び冷却による熱衝撃やスパッタ粒子が衝突することによる衝撃が加えられたり、他にも静電チャック、機械式チャック、スパッタ膜から応力が加えられ、これらの応力に耐えられなくなり割れや欠けを生じることがある。
【0003】
スパッタ処理中にウェーハに割れや欠けが発生すると、ウェーハが載置されたステージ面にもスパッタされた膜が形成されてしまい、ステージ面上での熱分布が不均一になりウェーハの加熱不良を起こしてしまうことにつながる。
【0004】
従来より、ウェーハの割れや欠けなどの破損を検出する方法として、処理終了後に、ウェーハに光を照射してその光の透過や反射具合からウェーハの破損を検出する方法がある。しかし、この方法では、ウェーハ処理中の破損をリアルタイムで検出し、直ちに処理を停止することができないため、ウェーハ以外の部分へ処理が及んでしまい、装置にダメージが残ってしまう点で十分ではなく、多くの部品交換が必要となったり、装置のダウンタイムを長くするなどの問題がある。
【0005】
そこで、例えば、特開平7−120440号公報、特開2000−24919号公報には、AEセンサを用いて、ワークの処理中にリアルタイムでワークの破損を検出する方法が開示されている。これは、ワークの破損に伴って生じる弾性波をAEセンサで検出することで、ワークの破損を検知するものである。
【0006】
【発明が解決しようとする課題】
しかし、弾性波はワークの破損以外の様々な要因によっても発生し、AEセンサはそのような弾性波も区別なく検出してしまう。AEセンサの検出信号の中に、ワークの破損に起因しない弾性波によるバックグランドノイズが多く混在していると、ワークの破損によって生じた弾性波を特定することが困難になり、ワークが破損したか否かを確実且つ容易に検知することができなくなる。
【0007】
本発明は上述の問題に鑑みてなされ、その目的とするところは、ワーク処理中のワークの異常を、バックグランドノイズに影響されることなくリアルタイムで確実に且つ容易に検知することのできるワーク処理装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明のワーク処理装置は、ワークを処理する処理室と、処理室の内部に配設され、ワークを支持するワーク支持手段と、処理室の外部に配設され、弾性波を受けて電気信号に変換する音響電気変換子と、処理室の内部で発生した弾性波を音響電気変換子に伝達する弾性波伝達手段と、音響電気変換子の出力信号に基づいて、ワークの異常を検知する異常検知手段とを備え、
更に、弾性波伝達手段は、弾性波減衰部材を介在させて処理室の壁部に非接触でその壁部を貫通し、一端を処理室の内部でワークまたはワーク支持手段に接触させ、他端を処理室の外部で音響電気変換子に接続させている。
【0009】
固体が変形や破壊をするとき、AE(Acoustic Emission)と呼ばれる弾性波を発生する。この弾性波は固体中を伝播して音響電気変換子に到達し、音響電気変換子はその弾性波を電気信号に変換して、異常検知手段に出力する。これによって、弾性波を発生させる異常の検知が可能となる。この方法によれば、稼働状態にある対象物の割れ、あるいは変形による弾性波などの微小な異常発生をリアルタイムにとらえることができるので、常時監視が要求される場合に有効である。
【0010】
処理室内で、ワークの異常に起因して発生した弾性波は、弾性波伝達手段を介して、処理室の外部に配設された音響電気変換子に伝達する。
弾性波伝達手段は、処理室の壁部との間に弾性波減衰部材を介在させているので、処理室の壁部を伝わってくるワークの異常に起因しない弾性波は弾性波減衰部材にて減衰されて、弾性波伝達手段及び音響電気変換子にバックグランドノイズとして入ってくる弾性波を抑制できる。
【0011】
弾性波減衰部材の材質としては、例えばフッ素系樹脂などの樹脂、ゴム、ガラス繊維、綿などの繊維類などを用いることができる。
【0012】
音響電気変換子には、水晶振動子、ニオブ酸リチウム、チタン酸バリウム(BaTiO3 )、ジルコン酸鉛(PbZrO3 )、チタン酸鉛(PbTiO3 )の固溶体(いわゆるPZT)などの電歪セラミックス、フェライトなどの磁歪振動子などが用いられる。また、音響電気変換子は処理室の外部に配設されるので、処理室内は真空中、高圧中、プラズマ中など、どのような雰囲気であってもよい。
【0013】
異常検知手段は、例えば、音響電気変換子の出力信号から得られる各種の波形特徴パラメータに基づいて異常の発生を検知する。
例えば、シリコンウェーハやガラス基板などの硬いワークが割れたり、変形したときに発生する弾性波は高周波になる傾向がわかっており、音響電気変換子の出力信号波形をフーリエ変換して周波数ごとのスペクトルを見ることなどにより確実に異常発生を検知できる。
また、機械的な振動成分ノイズの場合は、通常低い周波数成分を持つため、ハイパスフィルタを用いて、低い周波数成分を除去することも有効である。
その他、例えば、あるしきい値以上の振幅が持続する持続時間によっても、ワークの異常の発生に起因する弾性波を特定できる。
【0014】
処理中のワークの異常としては、シリコンウェーハやガラス基板などの割れや欠けや変形、粉体の割れ、プラスチックの射出成型時の割れなどが挙げられる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0016】
(第1の実施の形態)
図1は本発明の第1の実施の形態によるワーク処理装置30の全体構成を示す概略図である。ワーク処理装置30は、処理室11と、処理室11の内部に配設されたワーク支持手段12と、処理室11の外部に配設されたAEセンサ13と、処理室11の内部で発生した弾性波をAEセンサ13に伝達する弾性波伝達手段31と、AEセンサ13からの微弱な出力信号を増幅するアンプ14と、アンプ14の出力信号を受ける異常検知手段15とを備えている。ワーク処理装置30は、例えばワークである半導体ウェーハWにスパッタ処理などを行う半導体製造装置である。
【0017】
AEセンサ13は、ワークWの割れなどに伴って生じる弾性波を検出して電気信号に変換して出力する音響電気変換子である。
【0018】
弾性波伝達手段31は棒状を呈し、その一端が処理室11内でワーク支持手段12に接触しており、他端が処理室11外部のAEセンサ13に接続されている(AEセンサ13の構成要素である圧電素子に接触して、圧電素子に弾性波を伝達可能になっている)。
処理室11内が比較的高温となる場合には、例えばセラミック製の弾性波伝達手段31が使用される。それほど処理室11内の温度が高くない場合には、例えばステンレスなどの金属を弾性波伝達手段31の材質として用いてもよい。
【0019】
処理室11の壁部(側壁)11aには、樹脂やゴムなどでなる弾性波減衰部材10が埋め込まれている。そして、弾性波伝達手段31は弾性波減衰部材10を貫通して、その一端を処理室11の内部に、他端を処理室11の外部に位置させている。すなわち、弾性波伝達手段31は処理室11の壁部11aを貫通している部分において、弾性波減衰部材10に接触しており、壁部11aには接触していない。したがって、壁部11aを伝わる外部からの弾性波(ワークWの異常に起因しない弾性波)は弾性波減衰部材10にて減衰され、AEセンサ13への到達を抑制することができる。
【0020】
ワーク支持手段12は、処理室11内の設置面11bの上に設置された例えば銅でなるプレート12bと、ワークWが載置される例えばカーボンでなるプレート12aとからなる。更に、プレート12aと12bとの間には、樹脂やゴムでなる弾性波減衰部材9が組み込まれている。したがって、設置面11bを伝わる外部からの弾性波(ワークWの異常に起因しない弾性波)は弾性波減衰部材9にて減衰され、弾性波伝達手段31への到達を抑制することができる。
【0021】
その他、図示していないが、ワーク処理装置30には、ウェーハWを処理室11に搬出入する搬出入手段、排気口や真空ポンプ、スパッタリングターゲット、プロセスガス導入手段などが設けられている。
【0022】
図2は異常検知手段15の構成を示すブロック図である。異常検知手段15は、表示手段(例えば液晶ディスプレイ)25と、演算処理手段(例えばCPU)27と、記憶手段(例えばハードディスク)26と、警報手段(例えばランプ)16、17を備えている。ランプ16は正常時に例えば緑色で点灯し、ランプ17は異常発生時に例えば赤色で点灯する。
【0023】
本実施の形態のワーク処理装置30は以上のように構成され、次にその作用について説明する。
【0024】
処理室11内に搬入されたワーク(半導体ウェーハ)Wは、ワーク支持手段12上で加熱を受けながら、スパッタ処理などされる。その処理中にワークWが割れたり欠けたりしてしまった場合には、その割れや欠けに伴って生じた弾性波が、ワーク支持手段12から、このワーク支持手段12に接触している弾性波伝達手段31へと伝播し、更に弾性波伝達手段31を介してAEセンサ13に到達する。
【0025】
AEセンサ13はその弾性波を検出し電気信号に変換して、アンプ14に出力する。アンプ14にて増幅されたAEセンサ13の出力信号は異常検知手段15に入力し逐次処理される。異常検知手段15に内蔵された演算処理手段27は、、AEセンサ13の出力信号から各種の波形特徴パラメータを算出する。更に、演算処理手段27は、その算出された波形特徴パラメータを、予めウェーハWに割れなどが発生しなかった正常処理時に得られた波形特徴パラメータ(記憶部26に格納されている)と照らし合わせて、今処理室11内でウェーハ割れなどの異常が生じているかどうかを判別する。
【0026】
波形特徴パラメータとしては、以下に示すものが一例として挙げられる。
図3は異常発生時のAEセンサ13の出力信号の波形を示し、これを参照して各種波形特徴パラメータについて説明する。
【0027】
しきい値;これより大きい振幅の信号を異常と認識するための基準レベル(正常時のバックグラウンドノイズの振幅はこのしきい値より小さい)
計数;しきい値を越えた一連の信号波形の回数
事象数;しきい値を越えた一連の信号波形を1つのパルス集団として計数したもの
最大値;1つの事象の信号波形が到達する最大電圧
エネルギー;1回の事象によって放出される弾性エネルギーの全量で、図3に示す波形の包絡線内の面積、または、最大値の二乗
実効値;二乗平均の平方根
立ち上がり時間;しきい値を越えた信号の開始から最大値に至るまでの時間
持続時間;しきい値を越えた信号の開始から終結までの時間
【0028】
更に、一定時間、または、サイクル時間内の上記各波形特徴パラメータの中心傾向、バラツキ具合、および、分布具合を示す波形特徴パラメータとして、以下のものが挙げられる。
例えば、上記で挙げた計数(x)とエネルギー(y)についての計算式を以下に示す。(nは一定時間、または、サイクル時間内の事象数、Σはi=1からnまでの和)
計数平均値M=(1/n)Σxi 
エネルギー平均値My =(1/n)Σyi 
計数分布V=(1/n−1)Σ(xi −x)2 
エネルギー分散Vy =(1/n−1)Σ(yi −y)2 
計数標準偏差S=V 1/2  
エネルギー標準偏差Sy =V 1/2
計数変動計数CV=S/M
エネルギー変動計数CVy =S/M
計数尖度K=mx4 /m x2
xk =(1/n)Σ(xi −x)
エネルギー尖度Ky=my4 /m y2
yk =(1/n)Σ(xi −x)
【0029】
更に、図3の信号波形を高速フーリエ変換(FFT:Fast Fourier Transform)して得られる周波数スペクトル特性に基づいて、以下に示すものも波形特徴パラメータとして挙げられる。
トータルパワー(総エネルギー);1つの事象のパワースペクトルの面積
ピークスペクトル;1つの事象のパワースペクトルの最大値
ピーク周波数;1つの事象の最大パワースペクトル値での周波数
平均(中心)周波数;1つの事象のパワースペクトルの平均(中心)周波数
スペクトル高低比;1つの事象のパワースペクトルの平均値と最大値の比
【0030】
図4は、人為的に異常音を発生させる試験にて得られたAEセンサ13の出力信号波形を示す。
【0031】
図4Aは、処理室11の横で床にシリコンウェーハを置いて、アルミ板によって叩き割ったときのAEセンサ13の出力信号波形を示す。
図4Bは、図4Aと同じ場所にシリコンウェーハを置いて、アルミ板によって、図4Aの場合よりも軽く叩き割ったときのAEセンサ13の出力信号波形を示す。
図4Cは、処理室11を直接アルミ板で叩いたときのAEセンサ13の出力信号波形を示す。
なお、図4Aと図4Bの場合において、シリコンウェーハは同材料、同形状、同寸法のものを用いた。
【0032】
これら結果からわかるように、ウェーハが割れるときは、立ち上がりが鋭く、その後徐々に振幅が減衰していく信号波形が得られる。また、その信号波形の振幅の大小から割れの大小の認識可能である。
【0033】
図5は、図4の各信号をA/D変換した後、高速フーリエ変換して得られた周波数スペクトルグラフである。図5Aは図4Aに、図5Bは図4Bに、図5Cは図4Cに、それぞれ対応する。ウェーハを割ったときには、割れの大小に関係なく周波数(190kHz〜230kHz付近)にピークがあることがわかる。
【0034】
上記で挙げた波形特徴パラメータの中で、例えば、しきい値、立ち上がり時間、持続時間を異常検知の判別に用いる。また、波形特徴パラメータは1つで判別するのではなく、複数を組み合わせることで異常の検知精度を上げることができる。更には、波形特徴パラメータを用いた判別に加えて、表示手段25にAEセンサ13の出力信号波形を表示させて、これを作業者が目視にて監視することも同時に行えば、異常の検知はより確実に行える。
【0035】
そして、異常検出手段15が異常の発生を検知した場合には、異常検出手段15からワーク処理装置1の制御部へと停止信号を出力して、この停止信号を受けてワーク処理装置1の制御部はワーク処理装置1を直ちに停止させる。同時に、異常検出手段15はランプ17に異常発生信号を出力してランプ17を赤色で点灯させて異常発生を作業者に知らせる。あるいは、ランプ17の点灯ではなく、音で警報を発してもよい。
【0036】
以上述べたように、本実施の形態によれば、処理室11の壁部11aや設置面11bから伝わってくる外部の機械的振動などに起因する弾性波を、弾性波減衰部材9、10にて減衰させて、弾性波伝達手段31及びAEセンサ13に伝わるのを抑制できる。したがって、AEセンサ13は、ワークWの割れなどのワークWの異常に起因する弾性波を、バックグランドノイズの影響を小さくして検出することができ、ワークWに異常が発生したか否かを確実に且つ容易に特定できる。
【0037】
そして、処理室11にて処理中のワークWが割れたり欠けたりした際に、即時にその処理を止めることができるため、割れたり欠けた部分を通してワークW以外の部分に処理が及んでしまうことを防げる。このことにより、装置の復旧作業を最小限にすることができ、装置の稼働率の低下を抑制できる。
【0038】
また、AEセンサ13は、処理室13の外部に配設されるので、処理室11内の温度やプロセスガスによって損傷を受けることがない。
【0039】
更に、AEセンサ13の出力信号や、この出力信号から算出される波形特徴パラメータや、この波形特徴パラメータに基づく異常の検知結果などを、記憶手段26に保存しておけば、これら保存された各種データは過去の処理履歴として次回以降の処理に反映させることができる。例えば、ワークの割れが処理のどの時点で発生したか、更にはその頻度などを把握して、次回以降の処理条件などを変更して、異常の発生を予防することに役立てることができる。
もちろん、記憶手段26に保存された各種データは、異常かどうかを判別する際の比較データとして用いることもできる。
【0040】
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。なお、上記第1の実施の形態と同じ構成部分には同一の符号を付し、その詳細な説明は省略する。
【0041】
図6は、第2の実施の形態における処理室11’の底壁部の断面図を示す。処理室11’の底壁部は、例えばアルミニウムでなる固定部11’aと、例えばステンレスでなる取付部5とからなる。取付部5は、樹脂やゴムなどでなる弾性波減衰部材7a、7bを介在させて固定部11’aに対して気密にボルト6で固定されている。
【0042】
更に、取付部5との間に例えばゴムでなるOリング8を介在させて、弾性波伝達手段31が処理室11’内に臨んでおり、その一端はワーク支持手段12(プレート12b)の底面に接触している。他端は、AEセンサ13に接続されている。Oリング8は、処理室11’内外を気密に遮断するシールの機能を有するとともに、取付部5を伝わる弾性波を減衰させ弾性波伝達手段31への到達を抑制する弾性波減衰部材としても機能する。なお、弾性波減衰部材7a、7bも、弾性波を減衰させる機能と、処理室11’内外を気密に遮断するシールの機能を有する。
【0043】
本実施の形態においても、第1の実施の形態と同様、処理室11’の壁部から伝わってくる外部の機械的振動などに起因する弾性波を、弾性波減衰部材7a、7b、Oリング8にて減衰させて、弾性波伝達手段31及びAEセンサ13に伝わるのを抑制できる。したがって、AEセンサ13は、ワークWの割れなどのワークWの異常に起因する弾性波を、バックグランドノイズの影響を小さくして検出することができ、ワークWに異常が発生したか否かを確実に且つ容易に特定できる。
【0044】
以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0045】
ワークとしての半導体ウェーハに対する処理としては、スパッタ処理以外にも、洗浄、乾燥、リソグラフィ、現像、CVD、めっき、蒸着、イオン注入、レジストの塗布、エッチング、アニール、CMP、研磨、ダイシング、などの処理を一例として挙げることができ、これら処理中の異常検知が可能である。
【0046】
また、図2に示す、表示手段25、演算処理手段27、記憶手段26、警報手段16、17は、異常検出手段15に備えさせる形態に限らず、異常検出手段15とは別に設けてもよい。
【0047】
また、弾性波伝達手段31は、その一端を円錐状に尖らしてワークWに直接接触させてもよい。
【0048】
また、図1に示す第1の実施の形態において、弾性波減衰部材9を、設置面11bとワーク支持手段12(プレート12b)との間に介在させてもよい。
【0049】
また、処理室11に対して、AEセンサ13と、弾性波減衰部材10を介して処理室の壁部を貫通する弾性波伝達手段31との組を、複数組用いれば、1つの処理室内でどこに異常が発生したを特定することができる。
【0050】
【発明の効果】
以上述べたように、本発明によれば、ワーク処理中にワークに生じた異常に起因する弾性波を、バックグランドノイズの影響を小さくしてリアルタイムで確実に検出することができるとともに、容易にワーク異常に起因する弾性波だと特定できる。これにより、ワークの異常によって被る被害を最小限に留めることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態によるワーク処理装置の構成を示す概略斜視図である。
【図2】異常検知手段の構成を示すブロック図である。
【図3】ワークの異常に起因する異常な弾性波を検出したAEセンサの出力信号波形図である。
【図4】実験によって得られたAEセンサの出力信号波形図であり、Aはワークに大きな割れが生じた際の、Bはワークに小さな割れが生じた際の、Cは処理室自体を叩いた際のAEセンサの出力信号波形図である。
【図5】図4A〜Cそれぞれをフーリエ変換した周波数スペクトルのグラフである。
【図6】本発明の第2の実施の形態によるワーク処理装置の要部断面図である。
【符号の説明】
7a,7b…弾性波減衰部材、8…弾性波減衰部材、9…弾性波減衰部材、10…弾性波減衰部材、11…処理室、11’…処理室、11a…壁部、11b…設置面、12…ワーク支持手段、13…音響電気変換子(AEセンサ)、15…異常検知手段、17…警報ランプ、25…表示手段、26…記憶手段、27…演算処理手段、30…ワーク処理装置、31…弾性波伝達手段、W…ワーク(半導体ウェーハ)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a workpiece processing apparatus that performs various types of processing such as sputtering on a workpiece such as a semiconductor wafer, and more particularly to a technique for detecting an abnormality occurring in a workpiece in real time (immediately) during workpiece processing. Is.
[0002]
[Prior art]
Generally, a semiconductor wafer undergoes a complicated process before being sputtered, and various stresses are applied and accumulated in the process. Furthermore, in the sputtering process, thermal shock due to heating and cooling, impact due to collision of sputtered particles, and other stresses are applied from the electrostatic chuck, mechanical chuck, and sputtered film. It may become unbearable and may crack or chip.
[0003]
If the wafer is cracked or chipped during the sputtering process, a sputtered film is also formed on the stage surface on which the wafer is placed, resulting in non-uniform heat distribution on the stage surface and poor heating of the wafer. It leads to waking up.
[0004]
Conventionally, as a method of detecting breakage such as a crack or chip of a wafer, there is a method of irradiating the wafer with light after the processing is completed and detecting breakage of the wafer from the transmission or reflection of the light. However, this method cannot detect the damage during wafer processing in real time and cannot stop the processing immediately. There are problems such as the need to replace many parts and lengthening the downtime of the apparatus.
[0005]
Thus, for example, Japanese Patent Application Laid-Open Nos. 7-120440 and 2000-24919 disclose a method for detecting breakage of a workpiece in real time during workpiece processing using an AE sensor. This is to detect breakage of a workpiece by detecting an elastic wave generated along with breakage of the workpiece with an AE sensor.
[0006]
[Problems to be solved by the invention]
However, the elastic wave is also generated due to various factors other than the breakage of the workpiece, and the AE sensor detects such an elastic wave without distinction. If the detection signal of the AE sensor contains a lot of background noise due to elastic waves that are not caused by work breakage, it becomes difficult to identify the elastic waves caused by work breakage and the work breaks. It becomes impossible to reliably and easily detect whether or not.
[0007]
The present invention has been made in view of the above-described problems, and an object of the present invention is to perform workpiece processing capable of reliably and easily detecting an abnormality of a workpiece during workpiece processing in real time without being affected by background noise. To provide an apparatus.
[0008]
[Means for Solving the Problems]
The work processing apparatus of the present invention is provided with a processing chamber for processing a work, a work supporting means for supporting the work, and an outside of the processing chamber. An acoustoelectric transducer for converting to an acoustic wave, elastic wave transmitting means for transmitting an elastic wave generated inside the processing chamber to the acoustoelectric transducer, and an abnormality for detecting an abnormality of the workpiece based on the output signal of the acoustoelectric transducer Detecting means,
Further, the elastic wave transmission means penetrates the wall portion of the processing chamber in a non-contact manner through the elastic wave attenuating member, one end is brought into contact with the work or the work supporting means inside the processing chamber, and the other end Is connected to the acoustoelectric transducer outside the processing chamber.
[0009]
When a solid deforms or breaks, an elastic wave called AE (Acoustic Emission) is generated. The elastic wave propagates through the solid and reaches the acoustoelectric converter, and the acoustoelectric converter converts the elastic wave into an electric signal and outputs it to the abnormality detecting means. This makes it possible to detect an abnormality that generates an elastic wave. According to this method, it is possible to catch in real time a minute abnormality such as an elastic wave due to cracking or deformation of an object in operation, which is effective when constant monitoring is required.
[0010]
The elastic wave generated due to the abnormality of the workpiece in the processing chamber is transmitted to the acoustoelectric transducer disposed outside the processing chamber via the elastic wave transmitting means.
Since the elastic wave transmission means interposes an elastic wave attenuating member between the wall portion of the processing chamber, the elastic wave that is not caused by the abnormality of the workpiece transmitted through the wall portion of the processing chamber is generated by the elastic wave attenuating member. It is possible to suppress the elastic wave that is attenuated and enters the acoustic wave transmitting means and the acoustoelectric transducer as background noise.
[0011]
As a material of the elastic wave attenuating member, for example, a resin such as a fluorine-based resin, a fiber such as rubber, glass fiber, or cotton can be used.
[0012]
Acoustoelectric transducers include crystal oscillators, electrostrictive ceramics such as lithium niobate, barium titanate (BaTiO3), lead zirconate (PbZrO3), lead titanate (PbTiO3) solid solutions (so-called PZT), ferrites, etc. A magnetostrictive vibrator or the like is used. Further, since the acoustoelectric transducer is disposed outside the processing chamber, the processing chamber may be in any atmosphere such as in vacuum, high pressure, or plasma.
[0013]
The abnormality detection means detects the occurrence of abnormality based on, for example, various waveform feature parameters obtained from the output signal of the acoustoelectric transducer.
For example, it is known that elastic waves generated when a hard work such as a silicon wafer or a glass substrate breaks or deforms tend to be high frequency, and the output signal waveform of the acoustoelectric transducer is Fourier transformed to obtain a spectrum for each frequency. The occurrence of an abnormality can be reliably detected by looking at the screen.
In addition, since mechanical vibration component noise usually has a low frequency component, it is also effective to remove the low frequency component using a high-pass filter.
In addition, for example, the elastic wave caused by the occurrence of the abnormality of the workpiece can be specified also by the duration in which the amplitude equal to or greater than a certain threshold value is maintained.
[0014]
Examples of abnormalities in the workpiece being processed include cracking, chipping and deformation of silicon wafers and glass substrates, cracking of powder, cracking during plastic injection molding, and the like.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
(First embodiment)
FIG. 1 is a schematic diagram showing an overall configuration of a work processing apparatus 30 according to a first embodiment of the present invention. The work processing apparatus 30 is generated inside the processing chamber 11, the work supporting means 12 disposed inside the processing chamber 11, the AE sensor 13 disposed outside the processing chamber 11, and the processing chamber 11. An elastic wave transmission unit 31 that transmits an elastic wave to the AE sensor 13, an amplifier 14 that amplifies a weak output signal from the AE sensor 13, and an abnormality detection unit 15 that receives the output signal of the amplifier 14 are provided. The workpiece processing apparatus 30 is a semiconductor manufacturing apparatus that performs a sputtering process or the like on a semiconductor wafer W that is a workpiece, for example.
[0017]
The AE sensor 13 is an acoustoelectric transducer that detects an elastic wave generated when the workpiece W is cracked, converts it into an electrical signal, and outputs the electrical signal.
[0018]
The elastic wave transmission means 31 has a rod shape, one end of which is in contact with the work support means 12 in the processing chamber 11 and the other end is connected to the AE sensor 13 outside the processing chamber 11 (configuration of the AE sensor 13). The elastic wave can be transmitted to the piezoelectric element by contacting the element piezoelectric element).
When the inside of the processing chamber 11 is relatively hot, for example, a ceramic elastic wave transmission means 31 is used. If the temperature in the processing chamber 11 is not so high, for example, a metal such as stainless steel may be used as the material of the elastic wave transmission means 31.
[0019]
An elastic wave attenuating member 10 made of resin, rubber or the like is embedded in the wall (side wall) 11a of the processing chamber 11. The elastic wave transmitting means 31 penetrates the elastic wave attenuating member 10 and has one end positioned inside the processing chamber 11 and the other end positioned outside the processing chamber 11. That is, the elastic wave transmission means 31 is in contact with the elastic wave attenuating member 10 and not in contact with the wall portion 11 a in a portion penetrating the wall portion 11 a of the processing chamber 11. Therefore, an external elastic wave (an elastic wave not caused by an abnormality of the workpiece W) transmitted through the wall portion 11a is attenuated by the elastic wave attenuating member 10 and the arrival at the AE sensor 13 can be suppressed.
[0020]
The workpiece support means 12 includes a plate 12b made of, for example, copper installed on the installation surface 11b in the processing chamber 11, and a plate 12a made of, for example, carbon on which the workpiece W is placed. Further, an elastic wave attenuating member 9 made of resin or rubber is incorporated between the plates 12a and 12b. Therefore, an external elastic wave (an elastic wave not caused by an abnormality of the workpiece W) transmitted through the installation surface 11 b is attenuated by the elastic wave attenuating member 9, and can be prevented from reaching the elastic wave transmission means 31.
[0021]
In addition, although not shown, the work processing apparatus 30 is provided with a loading / unloading means for loading / unloading the wafer W into / from the processing chamber 11, an exhaust port, a vacuum pump, a sputtering target, a process gas introduction means, and the like.
[0022]
FIG. 2 is a block diagram showing the configuration of the abnormality detection means 15. The abnormality detection unit 15 includes a display unit (for example, a liquid crystal display) 25, an arithmetic processing unit (for example, a CPU) 27, a storage unit (for example, a hard disk) 26, and alarm units (for example, lamps) 16 and 17. The lamp 16 is lit in green when normal, and the lamp 17 is lit in red when an abnormality occurs.
[0023]
The work processing apparatus 30 of the present embodiment is configured as described above, and the operation thereof will be described next.
[0024]
The workpiece (semiconductor wafer) W carried into the processing chamber 11 is sputtered while being heated on the workpiece supporting means 12. When the work W is cracked or chipped during the processing, the elastic wave generated along with the crack or chip is from the work support means 12 and is in contact with the work support means 12. It propagates to the transmission means 31 and further reaches the AE sensor 13 via the elastic wave transmission means 31.
[0025]
The AE sensor 13 detects the elastic wave, converts it into an electrical signal, and outputs it to the amplifier 14. The output signal of the AE sensor 13 amplified by the amplifier 14 is input to the abnormality detecting means 15 and sequentially processed. The arithmetic processing means 27 built in the abnormality detection means 15 calculates various waveform characteristic parameters from the output signal of the AE sensor 13. Further, the arithmetic processing means 27 compares the calculated waveform feature parameter with the waveform feature parameter (stored in the storage unit 26) obtained in the normal processing in which no cracks or the like have occurred in the wafer W in advance. Thus, it is determined whether or not an abnormality such as a wafer crack has occurred in the processing chamber 11.
[0026]
Examples of the waveform feature parameters include those shown below.
FIG. 3 shows the waveform of the output signal of the AE sensor 13 when an abnormality occurs, and various waveform characteristic parameters will be described with reference to this.
[0027]
Threshold value: A reference level for recognizing a signal with an amplitude larger than this as abnormal (the amplitude of background noise during normal operation is smaller than this threshold value)
Count: Number of times of a series of signal waveforms exceeding a threshold Number of events; Maximum value obtained by counting a series of signal waveforms exceeding a threshold as one pulse group; Maximum voltage reached by a signal waveform of one event Energy: The total amount of elastic energy released by a single event, the area within the envelope of the waveform shown in FIG. 3, or the root mean square of the maximum value; the root mean square rise time; Time duration from start of signal to maximum; time from start of signal to end of crossing threshold
Furthermore, the following are mentioned as the waveform feature parameters indicating the central tendency, variation, and distribution of the waveform feature parameters within a certain time or cycle time.
For example, the calculation formulas for the count (x) and energy (y) mentioned above are shown below. (N is the number of events within a certain time or cycle time, Σ is the sum from i = 1 to n)
Count average value M x = (1 / n) Σx i
Energy average value M y = (1 / n) Σy i
Count distribution V x = (1 / n−1) Σ (x i −x) 2
Energy dispersion V y = (1 / n−1) Σ (y i −y) 2
Count standard deviation S x = V x 1/2  
Energy standard deviation S y = V y 1/2
Count variation count CV x = S x / M x
Energy fluctuation count CV y = S y / M y
Count kurtosis K x = m x4 / m 2 x2
m xk = (1 / n) Σ (x i −x) k
Energy kurtosis Ky = m y4 / m 2 y2
m yk = (1 / n) Σ (x i −x) k
[0029]
Further, based on the frequency spectrum characteristics obtained by performing fast Fourier transform (FFT) on the signal waveform of FIG.
Total power (total energy); area peak spectrum of the power spectrum of one event; maximum peak frequency of the power spectrum of one event; frequency average (center) frequency at the maximum power spectrum value of one event; one event Power spectrum average (center) frequency spectrum height ratio; ratio of average and maximum power spectrum of one event
FIG. 4 shows an output signal waveform of the AE sensor 13 obtained in a test for artificially generating an abnormal sound.
[0031]
FIG. 4A shows an output signal waveform of the AE sensor 13 when a silicon wafer is placed on the floor beside the processing chamber 11 and beaten with an aluminum plate.
FIG. 4B shows an output signal waveform of the AE sensor 13 when a silicon wafer is placed in the same place as FIG. 4A and is struck lightly by an aluminum plate than in the case of FIG. 4A.
FIG. 4C shows an output signal waveform of the AE sensor 13 when the processing chamber 11 is directly hit with an aluminum plate.
In the case of FIGS. 4A and 4B, silicon wafers of the same material, shape, and dimensions were used.
[0032]
As can be seen from these results, when the wafer breaks, a signal waveform is obtained in which the rise is sharp and the amplitude gradually decreases thereafter. Further, it is possible to recognize the magnitude of the crack from the magnitude of the amplitude of the signal waveform.
[0033]
FIG. 5 is a frequency spectrum graph obtained by subjecting each signal of FIG. 4 to A / D conversion and then fast Fourier transform. 5A corresponds to FIG. 4A, FIG. 5B corresponds to FIG. 4B, and FIG. 5C corresponds to FIG. 4C. When the wafer is broken, it can be seen that there is a peak at the frequency (around 190 kHz to 230 kHz) regardless of the size of the crack.
[0034]
Among the waveform feature parameters mentioned above, for example, a threshold value, a rise time, and a duration are used for abnormality detection discrimination. In addition, the abnormality detection accuracy can be improved by combining a plurality of waveform characteristic parameters instead of determining them by one. Furthermore, in addition to the determination using the waveform feature parameter, if the output signal waveform of the AE sensor 13 is displayed on the display means 25 and this is also monitored by the operator at the same time, the abnormality can be detected. It can be done more reliably.
[0035]
When the abnormality detection unit 15 detects the occurrence of an abnormality, the abnormality detection unit 15 outputs a stop signal to the control unit of the work processing apparatus 1 and receives the stop signal to control the work processing apparatus 1. The unit immediately stops the work processing apparatus 1. At the same time, the abnormality detection means 15 outputs an abnormality occurrence signal to the lamp 17 and lights the lamp 17 in red to notify the operator of the occurrence of the abnormality. Alternatively, an alarm may be issued with sound instead of lighting the lamp 17.
[0036]
As described above, according to the present embodiment, an elastic wave caused by an external mechanical vibration transmitted from the wall 11a or the installation surface 11b of the processing chamber 11 is applied to the elastic wave attenuating members 9, 10. And can be suppressed from being transmitted to the elastic wave transmission means 31 and the AE sensor 13. Therefore, the AE sensor 13 can detect an elastic wave caused by an abnormality of the workpiece W such as a crack of the workpiece W while reducing the influence of the background noise, and whether or not an abnormality has occurred in the workpiece W. Certainly and easily identified.
[0037]
Then, when the workpiece W being processed in the processing chamber 11 is cracked or chipped, the processing can be stopped immediately, so that the portion other than the workpiece W is processed through the cracked or chipped portion. Can be prevented. As a result, the restoration work of the apparatus can be minimized, and a reduction in the operating rate of the apparatus can be suppressed.
[0038]
Further, since the AE sensor 13 is disposed outside the processing chamber 13, it is not damaged by the temperature in the processing chamber 11 or the process gas.
[0039]
Further, if the output signal of the AE sensor 13, the waveform feature parameter calculated from the output signal, the abnormality detection result based on the waveform feature parameter, and the like are stored in the storage means 26, these stored various Data can be reflected in the subsequent processing as past processing history. For example, it is possible to know at which point in the processing the work breaks, and the frequency thereof, and to change the processing conditions for the next and subsequent times to help prevent the occurrence of an abnormality.
Of course, the various data stored in the storage means 26 can also be used as comparison data when determining whether or not there is an abnormality.
[0040]
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same component as the said 1st Embodiment, and the detailed description is abbreviate | omitted.
[0041]
FIG. 6 shows a cross-sectional view of the bottom wall portion of the processing chamber 11 ′ in the second embodiment. The bottom wall portion of the processing chamber 11 ′ includes a fixing portion 11′a made of, for example, aluminum and an attachment portion 5 made of, for example, stainless steel. The mounting portion 5 is airtightly fixed to the fixing portion 11′a by bolts 6 with elastic wave attenuating members 7a and 7b made of resin or rubber.
[0042]
Further, an O-ring 8 made of, for example, rubber is interposed between the mounting portion 5 and the elastic wave transmitting means 31 faces the processing chamber 11 ′, one end of which is the bottom surface of the work supporting means 12 (plate 12b). Touching. The other end is connected to the AE sensor 13. The O-ring 8 has a function of a seal that hermetically blocks the inside and outside of the processing chamber 11 ′, and also functions as an elastic wave attenuation member that attenuates an elastic wave transmitted through the attachment portion 5 and suppresses arrival at the elastic wave transmission means 31. To do. The elastic wave attenuating members 7a and 7b also have a function of attenuating elastic waves and a function of a seal that hermetically blocks the inside and outside of the processing chamber 11 ′.
[0043]
Also in the present embodiment, as in the first embodiment, elastic waves caused by external mechanical vibration transmitted from the wall portion of the processing chamber 11 ′ are converted into elastic wave attenuating members 7 a and 7 b, O-rings. 8, it is possible to suppress transmission to the elastic wave transmission means 31 and the AE sensor 13. Therefore, the AE sensor 13 can detect an elastic wave caused by an abnormality of the workpiece W such as a crack of the workpiece W while reducing the influence of the background noise, and whether or not an abnormality has occurred in the workpiece W. Certainly and easily identified.
[0044]
As mentioned above, although each embodiment of this invention was described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.
[0045]
As processing for semiconductor wafers as workpieces, in addition to sputtering processing, cleaning, drying, lithography, development, CVD, plating, vapor deposition, ion implantation, resist coating, etching, annealing, CMP, polishing, dicing, etc. As an example, it is possible to detect abnormality during these processes.
[0046]
In addition, the display unit 25, the arithmetic processing unit 27, the storage unit 26, and the alarm units 16 and 17 shown in FIG. 2 are not limited to the form provided in the abnormality detection unit 15, and may be provided separately from the abnormality detection unit 15. .
[0047]
Further, the elastic wave transmission means 31 may be brought into direct contact with the workpiece W with one end thereof being pointed conically.
[0048]
In the first embodiment shown in FIG. 1, the elastic wave attenuating member 9 may be interposed between the installation surface 11b and the workpiece support means 12 (plate 12b).
[0049]
Further, if a plurality of sets of the AE sensor 13 and the elastic wave transmission means 31 penetrating the wall portion of the processing chamber through the elastic wave attenuating member 10 are used for the processing chamber 11, one processing chamber is used. It is possible to identify where an abnormality has occurred.
[0050]
【The invention's effect】
As described above, according to the present invention, an elastic wave caused by an abnormality occurring in a workpiece during workpiece processing can be reliably detected in real time while reducing the influence of background noise, and easily It can be identified as an elastic wave caused by a workpiece abnormality. As a result, the damage caused by the abnormality of the workpiece can be minimized.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a configuration of a work processing apparatus according to a first embodiment of the present invention.
FIG. 2 is a block diagram illustrating a configuration of an abnormality detection unit.
FIG. 3 is an output signal waveform diagram of an AE sensor that detects an abnormal elastic wave caused by a workpiece abnormality.
FIG. 4 is a waveform diagram of an output signal of an AE sensor obtained by an experiment, where A is when a large crack is generated in the workpiece, B is when a small crack is generated in the workpiece, and C is hitting the processing chamber itself. It is the output signal waveform figure of the AE sensor at the time of hitting.
FIG. 5 is a graph of a frequency spectrum obtained by Fourier transforming each of FIGS.
FIG. 6 is a cross-sectional view of a main part of a work processing apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
7a, 7b ... elastic wave attenuation member, 8 ... elastic wave attenuation member, 9 ... elastic wave attenuation member, 10 ... elastic wave attenuation member, 11 ... treatment chamber, 11 '... treatment chamber, 11a ... wall portion, 11b ... installation surface , 12 ... Work support means, 13 ... Acoustoelectric transducer (AE sensor), 15 ... Abnormality detection means, 17 ... Alarm lamp, 25 ... Display means, 26 ... Storage means, 27 ... Arithmetic processing means, 30 ... Work processing device 31 ... elastic wave transmission means, W ... work (semiconductor wafer).

Claims (9)

ワークを処理する処理室と、
前記処理室の内部に配設され、前記ワークを支持するワーク支持手段と、
前記処理室の外部に配設され、弾性波を受けて電気信号に変換する音響電気変換子と、
前記処理室の内部で発生した弾性波を前記音響電気変換子に伝達する弾性波伝達手段と、
前記音響電気変換子の出力信号に基づいて、前記ワークの異常を検知する異常検知手段とを備えたワーク処理装置であって、
前記弾性波伝達手段は、弾性波減衰部材を介在させて前記処理室の壁部に非接触で前記壁部を貫通し、一端を前記処理室の内部で前記ワークまたは前記ワーク支持手段に接触させ、他端を前記処理室の外部で前記音響電気変換子に接続させている
ことを特徴とするワーク処理装置。
A processing chamber for processing workpieces;
A workpiece support means disposed inside the processing chamber and supporting the workpiece;
An acoustoelectric transducer disposed outside the processing chamber and receiving an elastic wave to convert it into an electrical signal;
Elastic wave transmission means for transmitting elastic waves generated inside the processing chamber to the acoustoelectric transducer;
A workpiece processing apparatus comprising an abnormality detection means for detecting an abnormality of the workpiece based on an output signal of the acoustoelectric transducer,
The elastic wave transmission means passes through the wall portion without contact with the wall portion of the processing chamber with an elastic wave attenuating member interposed, and has one end in contact with the workpiece or the workpiece supporting means inside the processing chamber. The work processing apparatus, wherein the other end is connected to the acoustoelectric transducer outside the processing chamber.
前記ワーク支持手段と、前記処理室内部の設置面との間に弾性波減衰部材を介在させて、前記ワーク支持手段を設置した
ことを特徴とする請求項1に記載のワーク処理装置。
The work processing apparatus according to claim 1, wherein the work support means is installed with an elastic wave attenuating member interposed between the work support means and an installation surface inside the processing chamber.
前記ワーク支持手段に弾性波減衰部材を組み込んだ
ことを特徴とする請求項1又は請求項2に記載のワーク処理装置。
The work processing apparatus according to claim 1, wherein an elastic wave attenuating member is incorporated in the work support means.
前記処理室に対して、前記音響電気変換子と前記弾性波伝達手段の組を複数組設け、前記音響電気変換子の各出力信号の時間差から前記異常の発生位置を特定する
ことを特徴とする請求項1乃至請求項3の何れかに記載のワーク処理装置。
A plurality of sets of the acoustoelectric transducer and the elastic wave transmission means are provided for the processing chamber, and the occurrence position of the abnormality is specified from a time difference between output signals of the acoustoelectric transducer. The work processing apparatus according to claim 1.
前記音響電気変換子の前記出力信号から波形特徴パラメータを算出する演算処理手段を備えている
ことを特徴とする請求項1乃至請求項4の何れかに記載のワーク処理装置。
The work processing apparatus according to claim 1, further comprising an arithmetic processing unit that calculates a waveform characteristic parameter from the output signal of the acoustoelectric transducer.
前記異常の発生を報知する警報手段が設けられ、
前記異常検知手段は、前記異常を検知すると前記警報手段に異常発生信号を出力する
ことを特徴とする請求項1乃至請求項5の何れかに記載のワーク処理装置。
Alarm means for notifying the occurrence of the abnormality is provided,
The workpiece processing apparatus according to claim 1, wherein the abnormality detection unit outputs an abnormality occurrence signal to the alarm unit when the abnormality is detected.
前記異常が検知されると自動的に前記処理室の動作が停止される
ことを特徴とする請求項1乃至請求項6の何れかに記載のワーク処理装置。
The work processing apparatus according to claim 1, wherein when the abnormality is detected, the operation of the processing chamber is automatically stopped.
前記音響電気変換子の前記出力信号の処理結果を保存する記憶手段を備えている
ことを特徴とする請求項1乃至請求項7の何れかに記載のワーク処理装置。
The work processing apparatus according to claim 1, further comprising a storage unit that stores a processing result of the output signal of the acoustoelectric transducer.
前記ワークは半導体ウェーハである
ことを特徴とする請求項1乃至請求項8の何れかに記載のワーク処理装置。
The workpiece processing apparatus according to claim 1, wherein the workpiece is a semiconductor wafer.
JP2002186314A 2002-06-26 2002-06-26 Work processing device Expired - Lifetime JP3883910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186314A JP3883910B2 (en) 2002-06-26 2002-06-26 Work processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186314A JP3883910B2 (en) 2002-06-26 2002-06-26 Work processing device

Publications (2)

Publication Number Publication Date
JP2004028823A true JP2004028823A (en) 2004-01-29
JP3883910B2 JP3883910B2 (en) 2007-02-21

Family

ID=31181700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186314A Expired - Lifetime JP3883910B2 (en) 2002-06-26 2002-06-26 Work processing device

Country Status (1)

Country Link
JP (1) JP3883910B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226731A (en) * 2005-02-15 2006-08-31 Sumitomo Metal Ind Ltd Abnormality detection device of bearing
JP2012235044A (en) * 2011-05-09 2012-11-29 Ulvac Japan Ltd Preliminary substrate inspection method
JP2013207106A (en) * 2012-03-28 2013-10-07 Avanstrate Inc Production method, transfer method and damage detection method of glass plate
JP2014146745A (en) * 2013-01-30 2014-08-14 Ulvac Japan Ltd Substrate suction detection method
JP2017190971A (en) * 2016-04-12 2017-10-19 旭硝子株式会社 Method and device for detecting cracks in glass, method and device for polishing glass plates, and method of manufacturing glass plates
JP2020127041A (en) * 2020-04-24 2020-08-20 キオクシア株式会社 Semiconductor device manufacturing method and semiconductor manufacturing device
CN117470968A (en) * 2023-11-10 2024-01-30 武汉路通市政工程质量检测中心有限公司 Method and system for monitoring fracture of prestressed reinforcement in prestressed concrete structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226731A (en) * 2005-02-15 2006-08-31 Sumitomo Metal Ind Ltd Abnormality detection device of bearing
JP4542918B2 (en) * 2005-02-15 2010-09-15 住友金属工業株式会社 Bearing abnormality detection device
JP2012235044A (en) * 2011-05-09 2012-11-29 Ulvac Japan Ltd Preliminary substrate inspection method
JP2013207106A (en) * 2012-03-28 2013-10-07 Avanstrate Inc Production method, transfer method and damage detection method of glass plate
JP2014146745A (en) * 2013-01-30 2014-08-14 Ulvac Japan Ltd Substrate suction detection method
JP2017190971A (en) * 2016-04-12 2017-10-19 旭硝子株式会社 Method and device for detecting cracks in glass, method and device for polishing glass plates, and method of manufacturing glass plates
JP2020127041A (en) * 2020-04-24 2020-08-20 キオクシア株式会社 Semiconductor device manufacturing method and semiconductor manufacturing device
CN117470968A (en) * 2023-11-10 2024-01-30 武汉路通市政工程质量检测中心有限公司 Method and system for monitoring fracture of prestressed reinforcement in prestressed concrete structure

Also Published As

Publication number Publication date
JP3883910B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
KR100830070B1 (en) Acoustic detection of dechucking and apparatus therefor
US8333114B2 (en) Microstructure inspecting device, and microstructure inspecting method
JP5363213B2 (en) Abnormality detection system, abnormality detection method, storage medium, and substrate processing apparatus
US20140208850A1 (en) Apparatus and method of detecting a defect of a semiconductor device
US6899766B2 (en) Diagnosis method for semiconductor processing apparatus
KR100711937B1 (en) Method of inspecting a substrate using an ultrasonic wave and apparatus for performing the same
TW201012305A (en) Plasma processing device and method for monitoring state of discharge in plasma processing device
JP3883910B2 (en) Work processing device
US7712370B2 (en) Method of detecting occurrence of sticking of substrate
KR101575391B1 (en) Film crack detection apparatus and film forming apparatus
US20040182311A1 (en) Semiconductor processing apparatus having semiconductor wafer mounting
JP3541359B2 (en) Substrate mounting table incorporating part of ultrasonic probe and sealing device for ultrasonic probe through hole
JP3653668B2 (en) Ultrasonic sensor contact state confirmation method, ultrasonic sensor contact state confirmation function, plasma abnormal discharge monitoring device, and plasma processing device
JP2004335570A (en) Substrate processing device
CN100385611C (en) Method and apparatus for monitoring film deposition in a process chamber
JP2014022594A (en) Film crack detector and deposition apparatus
JP2003247986A (en) Breakage detection system and breakage detecting method
US20110060442A1 (en) Methods and arrangement for detecting a wafer-released event within a plasma processing chamber
JP4936334B2 (en) Method and system for detecting occurrence of substrate sticking
JP2000121615A (en) Manufacture of electronic component and its manufacturing device
KR20140002821A (en) Particle attachment preventing apparatus by ultrasonic and system of particle attachment preventing
US20210028036A1 (en) Method for detecting the splitting of a substrate weakened by implanting atomic species
JP4663205B2 (en) Dry etching equipment
JP2004111691A (en) Semiconductor processing apparatus, semiconductor processing method, semiconductor device, and its manufacturing method
JPH1026612A (en) Damage detector for thin plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3883910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141124

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term