JP2004028820A - Measurement method of v-groove width - Google Patents

Measurement method of v-groove width Download PDF

Info

Publication number
JP2004028820A
JP2004028820A JP2002186175A JP2002186175A JP2004028820A JP 2004028820 A JP2004028820 A JP 2004028820A JP 2002186175 A JP2002186175 A JP 2002186175A JP 2002186175 A JP2002186175 A JP 2002186175A JP 2004028820 A JP2004028820 A JP 2004028820A
Authority
JP
Japan
Prior art keywords
groove
width
substrate
silicon dioxide
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002186175A
Other languages
Japanese (ja)
Other versions
JP4322476B2 (en
Inventor
Rei Yamamoto
山本 礼
Toshihiro Kuroda
黒田 敏裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002186175A priority Critical patent/JP4322476B2/en
Publication of JP2004028820A publication Critical patent/JP2004028820A/en
Application granted granted Critical
Publication of JP4322476B2 publication Critical patent/JP4322476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring width in a V groove that is provided on a silicon substrate, is used for mounting optical fibers, and forms a silicon dioxide film by a nondestructive method. <P>SOLUTION: In the method for measuring width in the V groove that is provided on the silicon substrate, is used for mounting the optical fibers, and forms the silicon dioxide film, the edge of the V groove on the surface of the silicon dioxide film is detected as a focus position, and the width in the V groove is measured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、V溝幅の計測方法に関し、さらに詳細には、シリコン基板上に光ファイバ搭載用のV溝を設け、二酸化珪素被膜を形成したもののV溝の幅を計測する方法に関する。
【0002】
【従来の技術】
近年のパソコンやインターネットの普及に伴い、情報伝送需要が急激に増大している。このため、伝送速度の速い光伝送を、パソコン等の末端の情報処理装置まで普及させることが望まれている。これを実現するには、光インターコネクション用に、高性能な光導波路や光合分波器を、安価かつ大量に製造する必要がある。
【0003】
光導波路の材料としては、ガラスや半導体材料等の無機材料と、樹脂が知られている。無機材料により光導波路を製造する場合には、真空蒸着装置やスパッタ装置等の成膜装置により無機材料膜を成膜し、これを所望の光導波路形状にエッチングすることにより製造する方法が用いられる。しかしながら、真空蒸着装置やスパッタ装置は、真空排気設備が必要であるため、装置が大型で高価である。
また、真空排気工程が必要であるため工程が複雑になる。これに対し、樹脂によって光導波路を製造する場合には、成膜工程を、塗布と加熱により大気圧中で行うことができるため、装置及び工程が簡単であるという利点がある。
【0004】
また、光導波路のコア層及びクラッド層を構成する樹脂としては、種々のものが知られているが、ガラス転移温度(Tg)が高く、耐熱性に優れるポリイミドが特に期待されている。ポリイミドにより光導波路のコア層及びクラッド層を形成した場合、長期信頼性が期待でき、半田付けにも耐えることができる。
このようなポリマー光導波路は、例えば、シリコン等の基板上に、下部クラッド層を形成し、この下部クラッド層上に、コア層を形成し、このコア層上にレジスト層を設け、コア形状にパターニングしてコアを形成し、レジスト層除去後、下部クラッド層及びコア表面に、上部クラッド層を形成することにより製造される。これらの層の形成はいずれもスピンコート法を用いて行なうのが一般的である。このように、樹脂によりコア及びクラッド層を形成することにより、簡単な製造工程で樹脂製光導波路を製造することができる。
【0005】
樹脂製光導波路は、一般的には、基板上に、光ファイバ搭載用のV溝を設け、さらに樹脂製の下部クラッド層、光導波路層及び上部クラッド層を積層することにより構成される。このとき、光ファイバ搭載用のV溝と光導波路の位置ずれが予め定められた範囲内に入っているかどうかは、V溝に搭載するファイバと光導波路とのアライメントを精度よく行うために重要である。
この位置ずれには、基板の主平面方向の位置ずれ(横ずれ)と基板の主平面方向に対して垂直な方向の位置ずれ(縦ずれ)がある。縦ずれの測定には、基板を垂直に切断してV溝の断面を露出させ、CCDカメラ等で断面を撮影し、V溝幅を計測する。例えば、図2に示すように、V溝斜面A部のエッジを検出し、そのエッジに外接する径Rの光ファイバ中心位置Cを算出する。次に、B部のエッジを検出することによりV溝トップ面位置を検出する。光ファイバ中心位置CとV溝トップ面位置、すなわち基板面との差dを算出し、このdの値と、基板上に設けられる光導波路のコアの中心位置と基板面との距離とを比較し、その差が所定値より大きい場合にはこれを不良品と判断する。
【0006】
しかしこの方法は、V溝の幅を断面方向から計測するものであり、ウエハ状態の基板上に形成されたV溝の位置ずれ(縦ずれ)をV溝断面を切り出すことなく計測することはできない。従って、ウエハ単位での品質管理が困難であるという問題があることに加え、ウエハ状態の基板上に形成されたV溝断面を切り出す作業が必要である。このため、V溝断面を切り出す必要のない、非破壊法によるV溝幅の計測法が望まれている。
【0007】
【発明が解決しようとする課題】
従って本発明の目的は、非破壊法により、V溝幅を計測する方法、さらに詳細には、シリコン基板上に光ファイバ搭載用のV溝を設け、二酸化珪素被膜を形成したもののV溝の幅を計測する方法を提供することである。
【0008】
【課題を解決するための手段】
本発明は、シリコン基板上に光ファイバ搭載用のV溝を設け、二酸化珪素被膜を形成したもののV溝の幅を計測する方法において、レーザ反射方式のオートフォーカスにより、二酸化珪素被膜表面のV溝のエッジをフォーカス位置として検出し、V溝の幅を計測する方法を提供するものである。
【0009】
【発明の実施の形態】
以下図1を参照しながら本発明を詳細に説明する。
基板1の垂直方向からオートフォーカスによりV溝3の幅を計測する方法には、レーザ反射方式と画像処理方式がある。ところで、ウエハ状の基板1の上面全体には、通常、熱酸化法や気相堆積法等により二酸化珪素被膜が形成されている。この二酸化珪素被膜2はほぼ無色透明であるため、画像処理方式では、この二酸化珪素被膜2の表面を検出しないで、シリコン基板1(青色)の表面のエッジ4、4´をフォーカス位置として検出してしまう。この二酸化珪素被膜2は1μmの厚みを有することから、画像処理方式により検出されるV溝3の幅(2x´)は実際の幅(2x)より約1μm広くなってしまい、正確なV溝幅が計測できず、基板から光ファイバ中心までの正確な距離dを求めることができないという問題がある。
このため本発明では、レーザ反射方式を用いて、二酸化珪素被膜2の表面のレーザ反射量からフォーカス位置5、5´を検出し、V溝3の幅を計測する。これにより、より正確なV溝幅2xが計測できるため、基板面から光ファイバ中心位置Cまでの正確な距離dを求めることが可能になる。
【0010】
V溝3は、シリコン単結晶の基板1を異方性エッチングすることにより形成された深さ約100μmの溝であり、断面はV字型である。
図1に示すように、このV溝3の断面形状は、V溝3の幅を2x、深さをyとすると、x:y=1:√2の関係を有する。V溝が異方性エッチングにより形成されていることからこの比率は一定である。光ファイバの半径をR、V溝3の底から光ファイバの中心位置までの距離をzとすると、z:R=√3:1の関係から、z=√3Rとなる。また、V溝の深さy=√2xであるから、ファイバの中心位置Cと二酸化珪素被膜2の表面との距離、すなわち、基板面から光ファイバ中心位置Cまでの距離dは、z−y=√3R−√2xにより求められる。
レーザの種類は特に限定されず、例えば、780nmレーザを使用することができる。
【0011】
【発明の効果】
本発明方法によれば、V溝の幅を正確に計測し、このV溝幅から、基板面から光ファイバ中心位置Cまでの距離dを算出するため、ウエハ状態の基板上に形成されたV溝の断面を切り出す必要がなく、ウエハ単位での品質管理を容易に行うことができる。
また、本発明方法により計測されるV溝幅の測定精度は±0.1μmであり、テレコンパレータを使用した場合の±0.6μmよりはるかに精度が良く、計測時間は、0.5秒程度であり、画像処理方式の場合の1〜2秒に比較して短時間の計測が可能となる。
【図面の簡単な説明】
【図1】本発明のV溝幅の計測方法を説明するための図面である。
【図2】従来のV溝幅の計測方法を説明するための図面である。
【符号の説明】
1:シリコン基板、2:二酸化珪素被膜、3:V溝、4、4´:シリコン基板上のV溝のエッジ、5、5´:二酸化珪素被膜上のV溝のエッジ、C:光ファイバの中心位置、R:光ファイバの半径、d:基板面から光ファイバ中心位置Cまでの距離、2x:V溝の幅、y:V溝の深さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a V-groove width, and more particularly to a method for providing a V-groove for mounting an optical fiber on a silicon substrate and measuring a V-groove width of a silicon dioxide film formed thereon.
[0002]
[Prior art]
2. Description of the Related Art With the spread of personal computers and the Internet in recent years, demand for information transmission has been rapidly increasing. For this reason, it is desired that optical transmission with a high transmission speed be spread to terminal information processing devices such as personal computers. To achieve this, it is necessary to manufacture high-performance optical waveguides and optical multiplexer / demultiplexers at low cost and in large quantities for optical interconnection.
[0003]
As a material of the optical waveguide, an inorganic material such as glass or a semiconductor material and a resin are known. When an optical waveguide is manufactured from an inorganic material, a method is used in which an inorganic material film is formed by a film forming apparatus such as a vacuum evaporation apparatus or a sputtering apparatus, and the inorganic material film is etched into a desired optical waveguide shape. . However, the vacuum evaporation apparatus and the sputtering apparatus require large-scale evacuation equipment, and are therefore large and expensive.
In addition, since the evacuation step is required, the step becomes complicated. On the other hand, when an optical waveguide is manufactured using a resin, the film formation process can be performed at atmospheric pressure by coating and heating, so that there is an advantage that the apparatus and the process are simple.
[0004]
Various resins are known as resins constituting the core layer and the cladding layer of the optical waveguide. Polyimides having a high glass transition temperature (Tg) and excellent heat resistance are particularly expected. When the core layer and the clad layer of the optical waveguide are formed of polyimide, long-term reliability can be expected, and it can withstand soldering.
For such a polymer optical waveguide, for example, a lower clad layer is formed on a substrate such as silicon, a core layer is formed on the lower clad layer, a resist layer is provided on the core layer, and a core shape is formed. It is manufactured by patterning to form a core, removing the resist layer, and then forming an upper clad layer on the lower clad layer and the core surface. In general, all of these layers are formed using a spin coating method. As described above, by forming the core and the clad layer with the resin, the resin optical waveguide can be manufactured by a simple manufacturing process.
[0005]
A resin optical waveguide is generally formed by providing a V-groove for mounting an optical fiber on a substrate, and further laminating a resin lower clad layer, an optical waveguide layer, and an upper clad layer. At this time, whether or not the positional deviation between the V-groove for mounting the optical fiber and the optical waveguide is within a predetermined range is important for accurately aligning the fiber mounted on the V-groove with the optical waveguide. is there.
The positional deviation includes a positional deviation (lateral deviation) in the main plane direction of the substrate and a positional deviation (vertical deviation) in a direction perpendicular to the main plane direction of the substrate. To measure the vertical deviation, the substrate is cut vertically to expose the cross section of the V groove, and the cross section is photographed with a CCD camera or the like, and the V groove width is measured. For example, as shown in FIG. 2, the edge of the slope A of the V-groove is detected, and the optical fiber center position C having a diameter R circumscribing the edge is calculated. Next, the position of the V-groove top surface is detected by detecting the edge of the portion B. The difference d between the optical fiber center position C and the V-groove top surface position, that is, the substrate surface, is calculated, and the value of d is compared with the distance between the center position of the core of the optical waveguide provided on the substrate and the substrate surface. If the difference is larger than a predetermined value, the difference is determined to be defective.
[0006]
However, in this method, the width of the V-groove is measured from the cross-sectional direction, and the displacement (vertical deviation) of the V-groove formed on the substrate in a wafer state cannot be measured without cutting out the V-groove cross-section. . Therefore, in addition to the problem that it is difficult to control the quality of each wafer, it is necessary to cut out a V-groove cross section formed on the substrate in a wafer state. Therefore, there is a demand for a non-destructive V-groove width measurement method that does not require cutting out the V-groove cross section.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method of measuring a V-groove width by a non-destructive method, and more specifically, to provide a V-groove for mounting an optical fiber on a silicon substrate and forming a V-groove width on a silicon dioxide film. Is to provide a method for measuring
[0008]
[Means for Solving the Problems]
The present invention relates to a method for measuring the width of a V-groove of a silicon dioxide film formed by providing a V-groove for mounting an optical fiber on a silicon substrate. Is detected as a focus position, and the width of the V-groove is measured.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to FIG.
There are a laser reflection method and an image processing method for measuring the width of the V-groove 3 by autofocusing from the vertical direction of the substrate 1. Incidentally, a silicon dioxide film is usually formed on the entire upper surface of the wafer-like substrate 1 by a thermal oxidation method, a vapor deposition method, or the like. Since the silicon dioxide film 2 is almost colorless and transparent, the image processing method does not detect the surface of the silicon dioxide film 2 but detects the edges 4, 4 'of the surface of the silicon substrate 1 (blue) as the focus position. Would. Since the silicon dioxide film 2 has a thickness of 1 μm, the width (2x ′) of the V-groove 3 detected by the image processing method is about 1 μm wider than the actual width (2x), and the accurate V-groove width Cannot be measured, and an accurate distance d from the substrate to the center of the optical fiber cannot be obtained.
For this reason, in the present invention, the focus positions 5, 5 'are detected from the amount of laser reflection on the surface of the silicon dioxide film 2 using the laser reflection method, and the width of the V-groove 3 is measured. As a result, the V groove width 2x can be measured more accurately, so that an accurate distance d from the substrate surface to the optical fiber center position C can be obtained.
[0010]
The V groove 3 is a groove having a depth of about 100 μm formed by anisotropically etching the silicon single crystal substrate 1 and has a V-shaped cross section.
As shown in FIG. 1, the sectional shape of the V-groove 3 has a relationship of x: y = 1: √2, where the width of the V-groove 3 is 2x and the depth is y. This ratio is constant since the V-groove is formed by anisotropic etching. Assuming that the radius of the optical fiber is R and the distance from the bottom of the V-groove 3 to the center of the optical fiber is z, z = √3R from the relation of z: R = √3: 1. Further, since the depth y of the V-groove is y = √2x, the distance between the center position C of the fiber and the surface of the silicon dioxide coating 2, that is, the distance d from the substrate surface to the center position C of the optical fiber is zy. = √3R-√2x.
The type of laser is not particularly limited, and for example, a 780 nm laser can be used.
[0011]
【The invention's effect】
According to the method of the present invention, the width of the V-groove is accurately measured and the distance d from the substrate surface to the optical fiber center position C is calculated from the V-groove width. There is no need to cut out the cross section of the groove, and quality control can be easily performed in wafer units.
The measurement accuracy of the V-groove width measured by the method of the present invention is ± 0.1 μm, which is much better than ± 0.6 μm when a telecomparator is used, and the measurement time is about 0.5 seconds. Thus, the measurement can be performed in a shorter time as compared with 1 to 2 seconds in the case of the image processing method.
[Brief description of the drawings]
FIG. 1 is a drawing for explaining a method of measuring a V-groove width according to the present invention.
FIG. 2 is a drawing for explaining a conventional V groove width measuring method.
[Explanation of symbols]
1: silicon substrate, 2: silicon dioxide coating, 3: V groove, 4, 4 ': edge of V groove on silicon substrate, 5, 5': edge of V groove on silicon dioxide coating, C: optical fiber Center position, R: radius of optical fiber, d: distance from substrate surface to optical fiber center position C, 2x: width of V groove, y: depth of V groove

Claims (1)

シリコン基板上に光ファイバ搭載用のV溝を設け、二酸化珪素被膜を形成したもののV溝の幅を計測する方法において、レーザ反射方式のオートフォーカスにより、二酸化珪素被膜表面のV溝のエッジをフォーカス位置として検出し、V溝の幅を計測する方法。In a method of providing a V-groove for mounting an optical fiber on a silicon substrate and measuring the width of the V-groove of a silicon dioxide film formed, the edge of the V-groove on the surface of the silicon dioxide film is focused by a laser reflection type autofocus. A method of detecting the position and measuring the width of the V-groove.
JP2002186175A 2002-06-26 2002-06-26 Measuring method of V groove width Expired - Fee Related JP4322476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186175A JP4322476B2 (en) 2002-06-26 2002-06-26 Measuring method of V groove width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186175A JP4322476B2 (en) 2002-06-26 2002-06-26 Measuring method of V groove width

Publications (2)

Publication Number Publication Date
JP2004028820A true JP2004028820A (en) 2004-01-29
JP4322476B2 JP4322476B2 (en) 2009-09-02

Family

ID=31181596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186175A Expired - Fee Related JP4322476B2 (en) 2002-06-26 2002-06-26 Measuring method of V groove width

Country Status (1)

Country Link
JP (1) JP4322476B2 (en)

Also Published As

Publication number Publication date
JP4322476B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP2009086238A (en) Planar lightwave circuit, manufacturing method thereof, and optical waveguide device
US7778504B2 (en) Optical waveguide device and manufacturing method thereof
JP3903606B2 (en) Optical signal transmission system and manufacturing method thereof
JP4061640B2 (en) Method for manufacturing polymer optical waveguide device having inclined core end face
US6744953B2 (en) Planar optical waveguide with alignment structure
US6907178B2 (en) Optoelectronic assembly with embedded optical and electrical components
JP4304713B2 (en) Manufacturing method of optical waveguide device
JP4322476B2 (en) Measuring method of V groove width
JP2001281479A (en) High-polymer optical waveguide element and method for manufacturing the same
JP2007093747A (en) Optical waveguide film and method for manufacturing optical waveguide film
JPH07151940A (en) Optical coupling structure and its production
JPH07134216A (en) Production of tapered waveguide
JP3855259B2 (en) Optical waveguide device manufacturing method and substrate
JP2006030224A (en) Optical waveguide and optical coupling device
JP4218068B2 (en) Optical waveguide device
JP2006243516A (en) Manufacturing method of v-shaped groove integrated type optical waveguide
JP3791007B2 (en) Optical waveguide device and measurement method
JP2009098432A (en) Device for converting laminated multi-channel optical path and method of manufacturing the same
US20220413220A1 (en) Optical waveguides and methods for producing
JP3503025B2 (en) Optical waveguide substrate with alignment marker
JP4253828B2 (en) OPTICAL WAVEGUIDE HAVING COATING LAYER EXPRESSING CORE POSITION, ITS MANUFACTURING METHOD, AND OPTICAL COMPONENT
JP4151073B2 (en) Optical element and manufacturing method thereof
JP2004151391A (en) Optical module and its manufacturing method
JP2000321451A (en) Hybrid optical waveguide circuit chip
JP2003279777A (en) Manufacturing method of light guide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060724

A02 Decision of refusal

Effective date: 20070625

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20070824

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20071005

Free format text: JAPANESE INTERMEDIATE CODE: A911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071002

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090603

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120612

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130612

LAPS Cancellation because of no payment of annual fees