JP2004028762A - Method and device for ultrasonic flaw detection - Google Patents

Method and device for ultrasonic flaw detection Download PDF

Info

Publication number
JP2004028762A
JP2004028762A JP2002184585A JP2002184585A JP2004028762A JP 2004028762 A JP2004028762 A JP 2004028762A JP 2002184585 A JP2002184585 A JP 2002184585A JP 2002184585 A JP2002184585 A JP 2002184585A JP 2004028762 A JP2004028762 A JP 2004028762A
Authority
JP
Japan
Prior art keywords
couplant
ultrasonic
ultrasonic probe
temperature
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002184585A
Other languages
Japanese (ja)
Inventor
Hiroyasu Morizaki
森▲崎▼ 弘康
Hideki Tani
谷 英樹
Noboru Kai
甲斐 ▲昇▼
Kenro Yasumatsu
安松 建郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002184585A priority Critical patent/JP2004028762A/en
Publication of JP2004028762A publication Critical patent/JP2004028762A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for ultrasonic flaw detection for obtaining a flaw detection result with high sensitivity and accuracy for all times independent of an atmospheric temperature at the time of flaw detection. <P>SOLUTION: In the method for ultrasonic flaw detection, a contact medium 8 is applied to a surface of an inspected body A, and an ultrasonic probe 1 transmitting/receiving an ultrasonic wave is pressed against the contact medium 8 so as to detect flaws in the inspected body A. In a state where the contact medium 8 has a temperature higher than a temperature at the time of detecting the crack, the contact medium 8 having the high temperature is applied to the surface of the inspected body A, and the ultrasonic probe 1 is pressed against the contact medium with the high temperature. In a state where the contact medium 8 has a temperature lower than the temperature at the time of being applied to the inspected body A and being pressed by the ultrasonic probe 1, the ultrasonic probe 1 performs the crack detection of the inspected body A. A device for ultrasonic flaw detection for use in the method is also provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被検査体の表面に接触媒質を塗布し、超音波を送受する超音波探触子を前記接触媒質に押しつけて、前記被検査体の探傷を実行する超音波探傷方法と、その方法を実施するのに使用する超音波探傷装置に関する。
【0002】
【従来の技術】
超音波探触子による探傷において、超音波探触子の感度は、接触媒質の粘性と関係が深いのであるが、従来、接触媒質の粘性に関しては、特別な考慮が払われていなかったのが実情である。
【0003】
【発明が解決しようとする課題】
すなわち、超音波探触子は、接触媒質の粘性が高いほど高感度となり、また、接触媒質の膜厚が薄いほど高感度となることが知られている。しかし、接触媒質の粘性が高くなると、超音波探触子を接触媒質に押しつけて膜厚を薄くするのがむずかしく、逆に、膜厚を薄くするために粘性を低くすると、超音波探触子の感度が低下するという矛盾がある。
しかし、従来、この点に関して特別な考慮が払われておらず、接触媒質の粘性は、探傷時の雰囲気温度に依存されていたので、超音波探触子の感度が一定せず、常に正確な探傷結果を得ることができないという欠点があった。
特に、超音波のうちでも、一般に「SH波」と称される横波は、被検査体の面に平行な横波で、SH波を送受するSH波用超音波探触子では、一般に使用されるマシン油、水、グリセリンなどを接触媒質として使用できず、より高い粘性の接触媒質が必要となるため、上述した欠点が顕著であった。
【0004】
本発明は、このような従来の問題点に着目したもので、その目的は、探傷時の雰囲気温度に支配されることなく、常に高感度で正確な探傷結果を得ることのできる超音波探傷方法と超音波探傷装置を提供することである。
【0005】
【課題を解決するための手段】
請求項1の発明の特徴構成は、被検査体の表面に接触媒質を塗布し、超音波を送受する超音波探触子を前記接触媒質に押しつけて、前記被検査体の探傷を実行する超音波探傷方法であって、前記接触媒質の温度が探傷実行時より高い状態において、その温度の高い接触媒質を前記被検査体の表面に塗布し、かつ、その温度の高い接触媒質に対して前記超音波探触子を押しつけ、前記接触媒質の温度が前記被検査体への塗布時および前記超音波探触子の押しつけ時より低い状態において、前記超音波探触子により前記被検査体の探傷を実行するところにある。
【0006】
請求項1の発明の特徴構成によれば、超音波探触子を接触媒質に押しつけて被検査体の探傷を実行する超音波探傷方法であって、接触媒質の温度が探傷実行時より高い状態において、つまり、接触媒質の粘性が低い状態において、その粘性の低い接触媒質を被検査体の表面に塗布するので、被検査体表面に対する接触媒質の馴染みがよく、かつ、粘性の低い接触媒質に対して超音波探触子を押しつけるので、接触媒質の膜厚を所望どおりに薄くすることができる。
そして、接触媒質の温度が被検査体への塗布時および超音波探触子の押しつけ時より低い状態において、つまり、接触媒質の粘性が高い状態において、超音波探触子により被検査体の探傷を実行するので、高感度での探傷が可能となる。
その結果、周囲の雰囲気温度に支配されることがなく、たとえ超音波探触子がSH波用の超音波探触子であっても、常に高感度で正確な探傷結果を得ることができる。
【0007】
請求項2の発明の特徴構成は、上記の超音波探傷方法であって、前記接触媒質の温度が前記被検査体への塗布時および前記超音波探触子の押しつけ時より低い状態において、前記超音波探触子を走査しながら前記被検査体の探傷を実行するところにある。
【0008】
請求項2の発明の特徴構成によれば、上記の超音波探傷方法であって、接触媒質の温度が被検査体への塗布時および超音波探触子の押しつけ時より低い状態において、超音波探触子を走査しながら被検査体の探傷を実行するので、効率のよい探傷が可能となる。
すなわち、接触媒質の粘性が高い状態で超音波探触子を走査することになるが、上述したように接触媒質の膜厚を薄くした後に走査することになるので、比較的容易にその薄い膜厚を維持しながら走査することができ、したがって、高感度で正確な探傷を維持しながら効率のよい探傷が可能となる。
【0009】
請求項3の発明の特徴構成は、超音波を送受する超音波探触子と、接触媒質を収納する接触媒質収納部と、その接触媒質収納部内の接触媒質を前記超音波探触子と被検査体との間に供給する供給手段を有する超音波探傷装置であって、前記接触媒質の温度を調整する温度調整手段を備えているところにある。
【0010】
請求項3の発明の特徴構成によれば、超音波を送受する超音波探触子と、接触媒質を収納する接触媒質収納部と、その接触媒質収納部内の接触媒質を超音波探触子と被検査体との間に供給する供給手段を有する超音波探傷装置であって、接触媒質の温度を調整する温度調整手段を備えているので、必要な場合には、その温度調整手段によって接触媒質の温度を高くし粘性を低くして、被検査体の表面に塗布し、あるいは、超音波探触子を押しつけることができ、被検査体表面に対して馴染みのよい状態で接触媒質の膜厚を所望どおりに薄くすることができる。そして、必要な場合には、その温度調整手段によって接触媒質の温度を低くし粘性を高くして、超音波探触子により被検査体の探傷を実行することができ、高感度での探傷が可能となり、たとえSH波用超音波探触子による探傷であっても、周囲の雰囲気温度に支配されることなく、常に高感度で正確な探傷結果を得ることができる。
【0011】
請求項4の発明の特徴構成は、上記の超音波探傷装置であって、前記温度調整手段が、前記超音波探触子に設けられているところにある。
【0012】
請求項4の発明の特徴構成によれば、上記の超音波探傷装置であって、温度調整手段が、超音波探触子に設けられているので、必要な場合には、超音波探触子部分において接触媒質の粘性を高くしたり低くしたりして所望どおりに調整することができる。
【0013】
請求項5の発明の特徴構成は、上記の超音波探傷装置であって、前記温度調整手段が、前記接触媒質収納部に設けられているところにある。
【0014】
請求項5の発明の特徴構成によれば、上記の超音波探傷装置であって、温度調整手段が、接触媒質収納部に設けられているので、必要な場合には、接触媒質収納部において接触媒質の粘性を調整して、その接触媒質を超音波探触子と被検査体との間へ供給することができるとともに、接触媒質の粘性を低くした場合には、超音波探触子への接触媒質の供給を円滑に行うことができる。
特に、上述したように温度調整手段を超音波探触子に設け、それに加えて、接触媒質収納部にも設ける場合には、超音波探触子への接触媒質の供給を円滑に行いながら、その超音波探触子部分において接触媒質の粘性を所望どおりに調整することが可能となる。
【0015】
請求項6の発明の特徴構成は、超音波を送受する超音波探触子を有する超音波探傷装置であって、前記超音波探触子が、その超音波探触子と被検査体との間に介在される接触媒質の温度を調整する温度調整手段を備えているところにある。
【0016】
請求項6の発明の特徴構成によれば、超音波を送受する超音波探触子を有する超音波探傷装置であって、超音波探触子が、その超音波探触子と被検査体との間に介在される接触媒質の温度を調整する温度調整手段を備えているので、この場合にも、必要に応じて温度調整手段により接触媒質の温度を調整することによって、接触媒質の粘性を調整することができ、したがって、たとえSH波用超音波探触子による探傷であっても、周囲の雰囲気温度に支配されることなく、常に高感度で正確な探傷結果を得ることができる。
【0017】
請求項7の発明の特徴構成は、上記の超音波探傷装置であって、前記温度調整手段が、ペルチェ素子であるところにある。
【0018】
請求項7の発明の特徴構成によれば、上記の超音波探傷装置であって、温度調整手段が、ペルチェ素子であるから、接触媒質収納部や超音波探触子への組み付けが容易で、しかも、ペルチェ素子への供給電流の向きを変えるだけで、接触媒質の温度を高くしたり低くしたり自由に調整することができる。
【0019】
【発明の実施の形態】
本発明による超音波探傷方法および装置につき、その実施の形態を図面に基づいて説明する。
本発明による探傷方法および装置では、超音波のうちでも、一般に「SH波」と称される横波、つまり、被検査体の面に平行な横波を送受するSH波用の超音波探触子が使用され、そのSH波用超音波探触子1は、図1および図2に示すように、SH波を発信し、かつ、その反射波を受信する振動子2を内装する探触子本体4を備え、探触子本体4の被検査体への探触面は、被検査体としてのステンレス管Aの周面に沿う円弧状に形成されている。
【0020】
探触子本体4の探触面側には、厚みtが10μm程度の空間を置いてステンレス管Aの周面に沿う円弧状のアクリル樹脂層5が配設され、それによって、アクリル樹脂層5の探触面側には、厚みtが10μm程度の接触媒質用の収納空間6が形成されて、その収納空間6には、供給手段としての可撓性チューブ7を介して、例えば、ソニコートSHN−B25(日合アセチレン株式会社製)のような高粘性の接触媒質8を収納する接触媒質収納部としての接触媒質容器9が接続されている。
探触子本体4の探触面側には、さらに、接触媒質用収納空間6の周囲に隣接する状態で、その収納空間6内に供給収納された接触媒質8の温度を調整する温度調整手段としての探触子側ペルチェ素子10が配設され、そのペルチェ素子10には、電源供給用のリード線11が接続され、さらに、接触媒質8の温度を検出する温度センサ用のリード線12も設けられている。
【0021】
前記接触媒質容器9は、図3に示すように、一端側に開閉機構13付きの出口14を有するアルミニウム製の筒状体で構成され、他端側には押圧板15とスプリング16が配設されて、スプリング16の弾性力により押圧板15を介して接触媒質8を出口14側へ押し出し、かつ、可撓性チューブ7を介して、接触媒質容器9内の接触媒質8をSH波用超音波探触子1の収納空間6内に供給するように構成されている。
その接触媒質容器9の外周部には、容器9内に収納された接触媒質8の温度を調整する温度調整手段としての容器側ペルチェ素子17が配設され、さらに、その容器側ペルチェ素子17の外周部は、断熱材18により被覆されている。
そして、容器側ペルチェ素子17にも、電源供給用のリード線19が接続されるとともに、接触媒質8の温度を検出する温度センサ用のリード線20が設けられて、この接触媒質容器9側の各リード線19,20とSH波用超音波探触子1側のリード線11,12とが、装置全体を制御する制御装置21に接続されている。
【0022】
つぎに、この装置を使用してステンレス管Aを探傷する探傷方法について説明する。
制御装置をONすると、接触媒質容器9側に接続された温度センサ用リード線20からの信号に基づいて接触媒質容器9内の接触媒質8の温度が測定されると同時に、電源供給用リード線19を介して容器側ペルチェ素子17に電流が供給され、例えば、その容器側ペルチェ素子17により接触媒質8が加熱されて適正温度、つまり、比較的低い粘性に維持される。
その後、人為操作によって、SH波用超音波探触子1を被検査体であるステンレス管Aの周面に接触させて接触媒質容器9の開閉機構13を開くことにより、接触媒質容器9内の接触媒質8が、可撓性チューブ7を介してSH波用超音波探触子1の収納空間6に供給されて、ステンレス管Aの表面に塗布される。
【0023】
このSH波用超音波探触子1側においても、温度センサ用リード線12からの信号に基づいて接触媒質8の温度が測定されると同時に、電源供給用リード線11を介して探触子側ペルチェ素子10に電流が供給されて、SH波用超音波探触子1の収納空間6内の接触媒質8が比較的高い温度に維持される。
この接触媒質8の温度が比較的高い状態において、SH波用超音波探触子1をステンレス管Aの表面に人為的に押しつけることにより、探触子本体4の探触面がステンレス管Aの表面に接触して、アクリル樹脂層5の表面とステンレス管Aの表面との間に厚みtが10μm程度の接触媒質8の層が介在される。
【0024】
その後、探触子側ペルチェ素子10によって収納空間6内の接触媒質8が冷却されて、ステンレス管Aへの塗布時およびSH波用超音波探触子1の押しつけ時よりも比較的低い温度、つまり、高い粘性に維持され、収納空間6内の接触媒質8が高い粘性に維持された状態で、振動子2が振動されて超音波を発信するとともに、その反射波を振動子2が受信することにより、ステンレス管Aの探傷が実行され、その探傷結果が制御装置21に記憶されるとともに、必要に応じてディスプレイに表示される。
そして、ステンレス管Aの複数個所において、この動作を何度か繰り返すことによって必要な探傷を実行するか、可能な場合には、収納空間6内の接触媒質8の温度が比較的低い状態において、SH波用超音波探触子1を人為的に走査して必要な探傷を実行するのであり、その走査中に収納空間6内の接触媒質8の量が不足すると、可撓性チューブ7を介して接触媒質容器9から接触媒質8が自動的に補充される。
【0025】
〔別実施形態〕
(1)先の実施形態では、本発明による探傷方法に関し、SH波用超音波探触子1の収納空間6に接触媒質8を供給してステンレス管Aの表面に自動的に塗布する方法を示したが、ステンレス管Aの表面に比較的温度の高い接触媒質8を人為的に塗布し、かつ、その温度の高い接触媒質8にSH波用超音波探触子1を押しつけ、その後、SH波用超音波探触子1に設けた探触子側ペルチェ素子10により接触媒質8を冷却するか、あるいは、自然冷却を待って探傷を実行することもできる。
【0026】
(2)先の実施形態では、本発明による探傷装置に関し、SH波用超音波探触子1として、発信用と受信用を兼用するひとつの振動子2を備えた探触子を示したが、発信用振動子と受信用振動子を各別に備えた探触子にも適用することができ、さらに、発信振動子のみを備えたSH波用超音波探触子と受信振動子のみを備えたSH波用超音波探触子に適用することもできる。
また、SH波用超音波探触子1と接触媒質容器9を別体に構成して可撓性チューブ7により接続した例を示したが、SH波用超音波探触子1に接触媒質容器9を一体的に組み付けて実施することもでき、さらに、温度調整手段の一例としてペルチェ素子10,17を示したが、他の温度調整装置に置き換えて実施することもできる。
【0027】
(3)先の実施形態では、被検査体の一例としてステンレス管Aを示したが、本発明による探傷方法および探傷装置が対象とする被検査体は、ステンレス製の管Aに限るものではなく、各種金属の管は勿論のこと、金属製の板材や棒材などの各種の物品に対して適用可能であり、さらに、送受する超音波についても、特に「SH波」のみに限るものではない。
【図面の簡単な説明】
【図1】超音波探傷装置の全体を示す斜視図
【図2】SH波用超音波探触子の断面図
【図3】接触媒質容器の断面図
【符号の説明】
1     超音波探触子
7     供給手段
8     接触媒質
9     接触媒質収納部
10,17 温度調整手段としてのペルチェ素子
A     被検査体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an ultrasonic flaw detection method for applying a couplant to the surface of a test object, pressing an ultrasonic probe for transmitting and receiving ultrasonic waves against the couplant, and performing flaw detection on the test object, and The invention relates to an ultrasonic flaw detector used to carry out the method.
[0002]
[Prior art]
In flaw detection using an ultrasonic probe, the sensitivity of the ultrasonic probe is closely related to the viscosity of the couplant, but conventionally, no special consideration was given to the viscosity of the couplant. It is a fact.
[0003]
[Problems to be solved by the invention]
That is, it is known that the ultrasonic probe has higher sensitivity as the viscosity of the couplant is higher, and has higher sensitivity as the thickness of the couplant is thinner. However, when the viscosity of the couplant increases, it is difficult to reduce the film thickness by pressing the ultrasonic probe against the couplant, and conversely, when the viscosity is reduced to reduce the film thickness, the ultrasonic probe There is a contradiction that the sensitivity of the device decreases.
However, conventionally, no special consideration has been given to this point, and the viscosity of the couplant has been dependent on the ambient temperature at the time of flaw detection. There is a drawback that a flaw detection result cannot be obtained.
In particular, among ultrasonic waves, a transverse wave generally referred to as “SH wave” is a transverse wave parallel to the surface of the object to be inspected, and is generally used in an SH wave ultrasonic probe that transmits and receives SH waves. Since the machine oil, water, glycerin and the like cannot be used as a couplant, and a couplant having a higher viscosity is required, the above-mentioned disadvantages are remarkable.
[0004]
The present invention focuses on such a conventional problem, and its object is to provide an ultrasonic flaw detection method capable of always obtaining highly sensitive and accurate flaw detection results without being affected by the ambient temperature at the time of flaw detection. And an ultrasonic flaw detector.
[0005]
[Means for Solving the Problems]
A feature of the invention according to claim 1 is that a couplant is applied to the surface of the object to be inspected, and an ultrasonic probe for transmitting and receiving ultrasonic waves is pressed against the couplant to perform flaw detection of the object to be inspected. An ultrasonic flaw detection method, wherein in a state where the temperature of the couplant is higher than that at the time of flaw detection execution, a couplant having a higher temperature is applied to the surface of the test object, and When an ultrasonic probe is pressed, and the temperature of the couplant is lower than when applied to the object to be inspected and when the ultrasonic probe is pressed, the ultrasonic probe detects the flaw of the object to be inspected. Where to run.
[0006]
According to the characteristic configuration of the first aspect of the present invention, there is provided an ultrasonic flaw detection method in which an ultrasonic probe is pressed against a couplant to perform flaw detection on an object to be inspected. In other words, in the state where the viscosity of the couplant is low, the low-viscosity couplant is applied to the surface of the test object, so that the couplant is familiar with the surface of the test object and has a low viscosity. Since the ultrasonic probe is pressed against this, the thickness of the couplant can be reduced as desired.
Then, in a state where the temperature of the couplant is lower than the time of application to the test object and the time of pressing the ultrasonic probe, that is, in a state where the viscosity of the couplant is high, the ultrasonic probe detects the flaw of the test object. Is performed, flaw detection with high sensitivity becomes possible.
As a result, the flaw detection result can always be obtained with high sensitivity without being influenced by the ambient atmosphere temperature, even if the ultrasonic probe is an ultrasonic probe for SH waves.
[0007]
The characteristic configuration of the invention according to claim 2 is the ultrasonic flaw detection method, wherein the temperature of the couplant is lower at the time of application to the test object and at the time of pressing the ultrasonic probe. The flaw detection of the inspection object is performed while scanning the ultrasonic probe.
[0008]
According to the characteristic configuration of the invention of claim 2, the ultrasonic flaw detection method described above, wherein the ultrasonic wave is applied in a state where the temperature of the couplant is lower than the time of application to the test object and the time of pressing the ultrasonic probe. Since flaw detection of the inspection object is performed while scanning the probe, efficient flaw detection is possible.
That is, the ultrasonic probe is scanned in a state where the viscosity of the couplant is high. However, since the scanning is performed after the thickness of the couplant is reduced as described above, the thin film is relatively easily formed. Scanning can be performed while maintaining the thickness, and thus efficient inspection can be performed while maintaining high sensitivity and accurate inspection.
[0009]
The characteristic configuration of the invention according to claim 3 is that the ultrasonic probe that transmits and receives ultrasonic waves, the couplant storage unit that stores the couplant, and the couplant in the couplant storage unit are covered with the ultrasonic probe. An ultrasonic flaw detector having a supply means for supplying a gas to an inspection object, the apparatus having a temperature adjusting means for adjusting the temperature of the couplant.
[0010]
According to the characteristic configuration of the invention of claim 3, the ultrasonic probe for transmitting and receiving ultrasonic waves, the couplant storage portion for storing the couplant, and the ultrasonic probe for the couplant in the couplant storage portion. An ultrasonic flaw detector having a supply unit for supplying a material to be inspected and an object to be inspected, which is provided with a temperature adjusting unit for adjusting the temperature of the couplant, and if necessary, the couplant is provided by the temperature adjusting unit. Can be applied to the surface of the object to be inspected, or the ultrasonic probe can be pressed against the surface of the object to be inspected. Can be made as thin as desired. Then, if necessary, the temperature of the couplant can be lowered and its viscosity increased by its temperature adjusting means, and the ultrasonic probe can perform flaw detection on the object to be inspected. This makes it possible to always obtain a highly sensitive and accurate flaw detection result without being influenced by the ambient temperature, even if the flaw detection is performed by the SH wave ultrasonic probe.
[0011]
According to a fourth aspect of the present invention, in the ultrasonic flaw detector, the temperature adjusting means is provided on the ultrasonic probe.
[0012]
According to the characteristic configuration of the invention of claim 4, in the ultrasonic flaw detector, since the temperature adjusting means is provided in the ultrasonic probe, if necessary, the ultrasonic probe The viscosity of the couplant can be increased or decreased in the part to adjust as desired.
[0013]
According to a fifth aspect of the present invention, in the ultrasonic flaw detector, the temperature adjusting means is provided in the couplant storage portion.
[0014]
According to the fifth aspect of the present invention, in the above ultrasonic flaw detector, since the temperature adjusting means is provided in the couplant storage part, if necessary, the contact in the couplant storage part is provided. By adjusting the viscosity of the medium, the contact medium can be supplied between the ultrasonic probe and the test object, and when the viscosity of the contact medium is reduced, the ultrasonic probe The supply of the couplant can be performed smoothly.
In particular, as described above, the temperature adjusting means is provided in the ultrasonic probe, and in addition, in the case where the temperature adjusting means is also provided in the couplant storage section, while smoothly supplying the couplant to the ultrasonic probe, It becomes possible to adjust the viscosity of the couplant at the ultrasonic probe portion as desired.
[0015]
A feature configuration of the invention according to claim 6 is an ultrasonic flaw detector having an ultrasonic probe for transmitting and receiving an ultrasonic wave, wherein the ultrasonic probe is provided between the ultrasonic probe and the object to be inspected. There is a temperature adjusting means for adjusting the temperature of the couplant interposed therebetween.
[0016]
According to the characteristic configuration of the invention of claim 6, there is provided an ultrasonic flaw detector having an ultrasonic probe for transmitting and receiving an ultrasonic wave, wherein the ultrasonic probe comprises the ultrasonic probe and the object to be inspected. In this case, the viscosity of the couplant is adjusted by adjusting the temperature of the couplant by means of the temperature adjuster as necessary. Adjustment is possible, and therefore, even with flaw detection using the SH wave ultrasonic probe, a highly sensitive and accurate flaw detection result can always be obtained without being affected by the surrounding ambient temperature.
[0017]
A feature of the invention according to claim 7 is the ultrasonic flaw detector, wherein the temperature adjusting means is a Peltier element.
[0018]
According to the characteristic configuration of the invention of claim 7, in the above ultrasonic flaw detector, since the temperature adjusting means is a Peltier element, it is easy to assemble to the couplant storage portion or the ultrasonic probe, Moreover, the temperature of the couplant can be freely adjusted to be higher or lower only by changing the direction of the supply current to the Peltier element.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an ultrasonic flaw detection method and apparatus according to the present invention will be described with reference to the drawings.
In the flaw detection method and device according to the present invention, among the ultrasonic waves, a transverse wave generally called “SH wave”, that is, an ultrasonic probe for SH wave that transmits and receives a transverse wave parallel to the surface of the test object is used. As shown in FIG. 1 and FIG. 2, the ultrasonic probe for SH wave 1 is a probe main body 4 having a transducer 2 for transmitting an SH wave and receiving the reflected wave. The probe surface of the probe main body 4 on the object to be inspected is formed in an arc shape along the peripheral surface of the stainless steel tube A as the object to be inspected.
[0020]
An arc-shaped acrylic resin layer 5 along the peripheral surface of the stainless steel tube A is disposed on the probe surface side of the probe main body 4 with a space having a thickness t of about 10 μm. A contact space 6 for a couplant having a thickness t of about 10 μm is formed on the side of the probe surface, and the storage space 6 is provided with a flexible tube 7 as a supply means, for example, a Sonicoat SHN. A couplant container 9 is connected as a couplant storage unit for storing a highly viscous couplant 8 such as -B25 (manufactured by Nichiai Acetylene Co., Ltd.).
Temperature adjustment means for adjusting the temperature of the couplant 8 supplied and stored in the storage space 6 in a state adjacent to the couplant storage space 6 on the probe surface side of the probe body 4. The probe-side Peltier element 10 is disposed, a lead wire 11 for power supply is connected to the Peltier element 10, and a lead wire 12 for a temperature sensor for detecting the temperature of the couplant 8 is also provided. Is provided.
[0021]
As shown in FIG. 3, the couplant container 9 is formed of an aluminum cylindrical body having an outlet 14 with an opening / closing mechanism 13 at one end, and a pressing plate 15 and a spring 16 at the other end. Then, the couplant 8 is pushed out toward the outlet 14 via the pressing plate 15 by the elastic force of the spring 16, and the couplant 8 in the couplant container 9 is transferred through the flexible tube 7 to the supersonic wave. The ultrasonic probe 1 is configured to be supplied into the storage space 6.
A container-side Peltier device 17 as a temperature adjusting means for adjusting the temperature of the couplant 8 housed in the container 9 is provided on the outer peripheral portion of the couplant container 9. The outer peripheral portion is covered with a heat insulating material 18.
A lead wire 19 for power supply is also connected to the container-side Peltier element 17, and a lead wire 20 for a temperature sensor for detecting the temperature of the couplant 8 is provided. The leads 19 and 20 and the leads 11 and 12 on the side of the SH wave ultrasonic probe 1 are connected to a control device 21 for controlling the entire apparatus.
[0022]
Next, a flaw detection method for flaw detection of the stainless steel tube A using this apparatus will be described.
When the control device is turned on, the temperature of the couplant 8 in the couplant 9 is measured based on a signal from the temperature sensor lead 20 connected to the couplant 9 and the power supply lead. An electric current is supplied to the container-side Peltier element 17 via 19, and for example, the couplant 8 is heated by the container-side Peltier element 17 and maintained at an appropriate temperature, that is, a relatively low viscosity.
Thereafter, the SH probe 1 is brought into contact with the peripheral surface of the stainless steel tube A as an object to be inspected by an artificial operation to open and close the opening / closing mechanism 13 of the couplant container 9. The couplant 8 is supplied to the storage space 6 of the SH wave ultrasonic probe 1 via the flexible tube 7 and applied to the surface of the stainless steel tube A.
[0023]
Also on the side of the SH wave ultrasonic probe 1, the temperature of the couplant 8 is measured based on the signal from the temperature sensor lead wire 12, and at the same time, the probe is connected via the power supply lead wire 11. A current is supplied to the side Peltier element 10, and the couplant 8 in the storage space 6 of the SH wave ultrasonic probe 1 is maintained at a relatively high temperature.
In a state where the temperature of the couplant 8 is relatively high, the SH wave ultrasonic probe 1 is artificially pressed against the surface of the stainless steel tube A, so that the probe surface of the probe main body 4 is made of the stainless steel tube A. In contact with the surface, a layer of the couplant 8 having a thickness t of about 10 μm is interposed between the surface of the acrylic resin layer 5 and the surface of the stainless steel tube A.
[0024]
Thereafter, the couplant 8 in the storage space 6 is cooled by the probe-side Peltier element 10, and has a relatively lower temperature than when the stainless steel tube A is applied and when the SH wave ultrasonic probe 1 is pressed. In other words, the vibrator 2 is vibrated and emits ultrasonic waves, and the vibrator 2 receives the reflected wave in a state where the viscosity is maintained at a high level and the couplant 8 in the storage space 6 is maintained at a high viscosity. Thus, the flaw detection of the stainless steel tube A is performed, and the flaw detection result is stored in the control device 21 and displayed on the display as needed.
Then, in a plurality of places of the stainless steel tube A, the necessary flaw detection is performed by repeating this operation several times, or, if possible, in a state where the temperature of the couplant 8 in the storage space 6 is relatively low, A necessary flaw detection is executed by artificially scanning the SH wave ultrasonic probe 1. If the amount of the couplant 8 in the storage space 6 becomes insufficient during the scanning, the probe is passed through the flexible tube 7. The couplant 8 is automatically replenished from the couplant container 9.
[0025]
[Another embodiment]
(1) In the above embodiment, the flaw detection method according to the present invention relates to a method for supplying the couplant 8 to the storage space 6 of the SH wave ultrasonic probe 1 and automatically applying the couplant 8 to the surface of the stainless steel tube A. As shown, the couplant 8 having a relatively high temperature is artificially applied to the surface of the stainless steel tube A, and the ultrasonic probe 1 for SH wave is pressed against the couplant 8 having the high temperature. The probe 8 can be cooled by the probe-side Peltier element 10 provided in the wave ultrasonic probe 1, or the flaw detection can be performed after natural cooling.
[0026]
(2) In the above embodiment, the flaw detector according to the present invention has been described as a probe having one vibrator 2 for transmitting and receiving, as the SH wave ultrasonic probe 1. The present invention can be applied to a probe having a transmitting transducer and a receiving transducer separately, and further comprising only an SH wave ultrasonic probe having only a transmitting transducer and only a receiving transducer. Also, the present invention can be applied to an ultrasonic probe for SH waves.
Further, the example in which the SH wave ultrasonic probe 1 and the couplant material container 9 are separately formed and connected by the flexible tube 7 is shown. 9, the Peltier elements 10 and 17 are shown as an example of the temperature adjusting means, but the temperature adjusting means may be replaced with another temperature adjusting device.
[0027]
(3) In the above embodiment, the stainless steel tube A is shown as an example of the inspected object. However, the inspected object targeted by the flaw detection method and the flaw detection apparatus according to the present invention is not limited to the stainless steel tube A. The present invention can be applied to various articles such as metal plates and rods as well as various metal tubes, and the transmitted and received ultrasonic waves are not limited to the “SH wave”. .
[Brief description of the drawings]
FIG. 1 is a perspective view showing the entire ultrasonic flaw detector. FIG. 2 is a cross-sectional view of an SH wave ultrasonic probe. FIG. 3 is a cross-sectional view of a couplant container.
DESCRIPTION OF SYMBOLS 1 Ultrasonic probe 7 Supply means 8 Coupling medium 9 Coupling medium storage part 10, 17 Peltier element A as temperature adjusting means

Claims (7)

被検査体の表面に接触媒質を塗布し、超音波を送受する超音波探触子を前記接触媒質に押しつけて、前記被検査体の探傷を実行する超音波探傷方法であって、
前記接触媒質の温度が探傷実行時より高い状態において、その温度の高い接触媒質を前記被検査体の表面に塗布し、かつ、その温度の高い接触媒質に対して前記超音波探触子を押しつけ、
前記接触媒質の温度が前記被検査体への塗布時および前記超音波探触子の押しつけ時より低い状態において、前記超音波探触子により前記被検査体の探傷を実行する超音波探傷方法。
An ultrasonic flaw detection method for applying a couplant to the surface of a test object, pressing an ultrasonic probe for transmitting and receiving ultrasonic waves against the couplant, and performing flaw detection of the test object,
In a state where the temperature of the couplant is higher than that at the time of the flaw detection, the couplant having the higher temperature is applied to the surface of the test object, and the ultrasonic probe is pressed against the couplant having the higher temperature. ,
An ultrasonic flaw detection method in which the ultrasonic probe performs flaw detection on the object under test when the temperature of the couplant is lower than when applied to the object to be tested and when the ultrasonic probe is pressed.
前記接触媒質の温度が前記被検査体への塗布時および前記超音波探触子の押しつけ時より低い状態において、前記超音波探触子を走査しながら前記被検査体の探傷を実行する請求項1に記載の超音波探傷方法。In a state where the temperature of the couplant is lower than the time of application to the object to be inspected and the time of pressing of the ultrasonic probe, flaw detection of the object to be inspected is performed while scanning the ultrasonic probe. 2. The ultrasonic flaw detection method according to 1. 超音波を送受する超音波探触子と、接触媒質を収納する接触媒質収納部と、その接触媒質収納部内の接触媒質を前記超音波探触子と被検査体との間に供給する供給手段を有する超音波探傷装置であって、
前記接触媒質の温度を調整する温度調整手段を備えている超音波探傷装置。
An ultrasonic probe for transmitting and receiving ultrasonic waves, a couplant storage section for storing the couplant, and a supply unit for supplying the couplant in the couplant storage section between the ultrasonic probe and the test object An ultrasonic flaw detector having:
An ultrasonic flaw detector comprising a temperature adjusting means for adjusting the temperature of the couplant.
前記温度調整手段が、前記超音波探触子に設けられている請求項3に記載の超音波探傷装置。The ultrasonic flaw detector according to claim 3, wherein the temperature adjusting means is provided on the ultrasonic probe. 前記温度調整手段が、前記接触媒質収納部に設けられている請求項3または4に記載の超音波探傷装置。The ultrasonic flaw detector according to claim 3 or 4, wherein the temperature adjusting means is provided in the couplant storage portion. 超音波を送受する超音波探触子を有する超音波探傷装置であって、
前記超音波探触子が、その超音波探触子と被検査体との間に介在される接触媒質の温度を調整する温度調整手段を備えている超音波探傷装置。
An ultrasonic flaw detector having an ultrasonic probe for transmitting and receiving ultrasonic waves,
An ultrasonic flaw detector wherein the ultrasonic probe includes a temperature adjusting means for adjusting a temperature of a couplant interposed between the ultrasonic probe and the test object.
前記温度調整手段が、ペルチェ素子である請求項3〜6のいずれか1項に記載の超音波探傷装置。The ultrasonic flaw detector according to any one of claims 3 to 6, wherein the temperature adjusting unit is a Peltier element.
JP2002184585A 2002-06-25 2002-06-25 Method and device for ultrasonic flaw detection Pending JP2004028762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184585A JP2004028762A (en) 2002-06-25 2002-06-25 Method and device for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184585A JP2004028762A (en) 2002-06-25 2002-06-25 Method and device for ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JP2004028762A true JP2004028762A (en) 2004-01-29

Family

ID=31180467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184585A Pending JP2004028762A (en) 2002-06-25 2002-06-25 Method and device for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JP2004028762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232133A (en) * 2010-04-27 2011-11-17 Ihi Inspection & Instrumentation Co Ltd Inspection method by using guide wave using coagulation of liquid layer
JP2013029492A (en) * 2011-05-20 2013-02-07 Ge Sensing & Inspection Technologies Gmbh Multi-part mounting device for ultrasonic transducer
KR101248444B1 (en) * 2011-08-09 2013-03-28 (재) 한국건설품질연구원 Supporting device for concrete ultrasonic tester
CN103675109A (en) * 2013-12-18 2014-03-26 武汉大学 Coupled system used for contact type detection of variable curvature component and based on ultrasonic phased array technology
JP2019015652A (en) * 2017-07-10 2019-01-31 神鋼検査サービス株式会社 Flaw detection system and application device
CN114113318A (en) * 2021-11-04 2022-03-01 北京强度环境研究所 Ultrasonic detection device for weld quality in low-temperature environment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232133A (en) * 2010-04-27 2011-11-17 Ihi Inspection & Instrumentation Co Ltd Inspection method by using guide wave using coagulation of liquid layer
JP2013029492A (en) * 2011-05-20 2013-02-07 Ge Sensing & Inspection Technologies Gmbh Multi-part mounting device for ultrasonic transducer
KR101248444B1 (en) * 2011-08-09 2013-03-28 (재) 한국건설품질연구원 Supporting device for concrete ultrasonic tester
CN103675109A (en) * 2013-12-18 2014-03-26 武汉大学 Coupled system used for contact type detection of variable curvature component and based on ultrasonic phased array technology
CN103675109B (en) * 2013-12-18 2015-11-18 武汉大学 Based on the variable curvature member contact formula detection coupled system of ultrasonic phased array technology
JP2019015652A (en) * 2017-07-10 2019-01-31 神鋼検査サービス株式会社 Flaw detection system and application device
JP7042043B2 (en) 2017-07-10 2022-03-25 神鋼検査サービス株式会社 Flaw detection system and coating equipment
CN114113318A (en) * 2021-11-04 2022-03-01 北京强度环境研究所 Ultrasonic detection device for weld quality in low-temperature environment
CN114113318B (en) * 2021-11-04 2023-05-23 北京强度环境研究所 Ultrasonic welding seam quality detection device for low-temperature environment

Similar Documents

Publication Publication Date Title
JP4392420B2 (en) System and method for multi-mode flexible excitation in sonic infrared imaging
US9625273B2 (en) Thickness measurement apparatus and method thereof
EP0840110A2 (en) Nondestructive testing:transient depth thermography
DK1051700T3 (en) Multiple element ultrasonic contact transducers
JPH07318336A (en) Method and equipment to check pipeline with ultrasonic wave
US3315520A (en) Ultrasonic measurement apparatus
JP2004028762A (en) Method and device for ultrasonic flaw detection
JP2005077320A (en) Ultrasonic probe, flaw detection device for turbine blade and its flaw detection method
Fay et al. Thermoacoustic sensor for ultrasound power measurements and ultrasonic equipment calibration
JP2007248394A (en) Nondestructive inspection method and device therefor
JP2004191143A (en) Ultrasonic sensor operation jig and ultrasonic inspection system
JP3709559B2 (en) Dry contact high frequency ultrasonic transmission method and apparatus therefor, and dry contact high frequency ultrasonic inspection method and apparatus therefor
JP2002277448A (en) Scale thickness measuring apparatus and method
JP2008261889A (en) Imaging method of internal defect by ultrasonic wave, and its device
JP3571473B2 (en) Angle beam ultrasonic inspection method and apparatus
JP4014979B2 (en) Ultrasonic inspection equipment
JP7180494B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP2004020335A (en) Ultrasonic flaw detecting apparatus
JP2002214205A (en) Ultrasonic flaw detector
JP2004212308A (en) Method and apparatus for inspecting weld
JP2611084B2 (en) How to select an ultrasonic probe
Titov et al. Measurements of velocity and attenuation of leaky waves using an ultrasonic array
JP2008107101A (en) Nondestructive inspection method
JP3754555B2 (en) Method and apparatus for detecting flaws on the surface and inside of the leading edge of a turbine blade
JP2005098842A (en) Method for measuring pouring depth of repairing material to crack