JP2004028740A - Inspection device for detecting defect or presence/absence of magnetic body or conductor - Google Patents

Inspection device for detecting defect or presence/absence of magnetic body or conductor Download PDF

Info

Publication number
JP2004028740A
JP2004028740A JP2002184204A JP2002184204A JP2004028740A JP 2004028740 A JP2004028740 A JP 2004028740A JP 2002184204 A JP2002184204 A JP 2002184204A JP 2002184204 A JP2002184204 A JP 2002184204A JP 2004028740 A JP2004028740 A JP 2004028740A
Authority
JP
Japan
Prior art keywords
coils
output
resistor
coil
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002184204A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ichiyama
市山 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Original Assignee
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURA GIJUTSU KENKYUSHO KK, Kura Gijutsu Kenkyusho KK filed Critical KURA GIJUTSU KENKYUSHO KK
Priority to JP2002184204A priority Critical patent/JP2004028740A/en
Publication of JP2004028740A publication Critical patent/JP2004028740A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive inspection device for detecting a defect or presence/absence of a magnetic body or metal by proposing an inspection device of a simple structure and a detection circuit. <P>SOLUTION: In the inspection device for detecting abnormality or presence/absence of the magnetic body or conductor, two coils and resistors are combined to form two circuits, and the two circuits are respectively provided with switching elements, and thus a simple oscillation circuit is formed in which circuit an complementary output of a flip-flop circuit reversing an output when potentials at contacts of the resistors and the coils reach a specified level is used to drive the switching element and a pulse string of a duty ratio corresponding to each time constant is outputted. Flaw, defect, metal or the like is detected by passing the output through a low band filter or counting and discriminating a pulse width by a minute time interval to detect change in inductance. The device is constituted of a digitized simple detection circuit. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は,磁性体或いは導体の欠陥或いは有無を識別検知する検査装置に拘わり,特にシンプルな自励発振回路によるインダクタンス差検出回路及びそれを用いた磁気探傷装置,金属片検出回路等の検査装置に拘わる。
【0002】
【従来の技術】
磁気探傷装置,金属片検出装置は何れも励磁フィールドの異常をもたらす源を探知する装置で原理は共通である。前者は金属表面或いは内部の傷,欠陥によりフィールドに異常をもたらし,後者は空間内の金属片,或いは鋼球等の存在によってフィールドの分布に影響を与える事を検知する。これらの検知手段で従来良く用いられているのは励磁フィールド異常検知である。通常は高周波発振器を有し,励磁コイルにより高周波磁界の場を作り,金属表面で生じる渦電流分布の変化,或いは存在によって影響を受ける高周波磁界分布の変化を検出する。これらの装置では高周波発振器,さらに検出回路を必要とするが,アナログ回路量が多く,調整点も多いなどの課題を有している。
【0003】
それらの検出回路にも種々の方式があるが,一般にコイルを含む交流ブリッジを形成して交流信号を加え,電圧或いは電流を監視する,或いはそれぞれのコイルを含む発振回路を有して発振周波数差からインダクタンス変化を検知する等々の方法が採用されている。何れもアナログ回路の量が多く,調整点の多さ或いはノイズに弱い,さらにコスト低減が困難等の課題を有していた。
【0004】
インダクタンスの検出回路をシンプルにする手段として,磁歪式トルクセンサで抵抗,検出コイルとで構成する無安定マルチバイブレータが知られ検討された(例えば特公平06−041889)。それらのインダクタンス変化検出に挙げられた回路例を図10に示すが,トランジスタのベース端子に接続された抵抗がベース電流を制限すると共に時定数を決していて独立に決められないので設定は微妙で発振の安定性に懸念がある。さらにトランジスタ内のベース抵抗も時定数に影響を与えるのでそれらの抵抗,トランジスタのばらつきのために温度によるゼロ点変動が大で使用に耐えなかった。
【0005】
【発明が解決しようとする課題】
そこで本発明の目的は,シンプルな構成の検査装置及び検出回路を提案し,低コストの磁性体或いは金属の欠陥或いは有無を識別検知する検査装置を実現提供することである。
【0006】
【課題を解決するための手段】
請求項1に規定する磁性体或いは導体の異常或いは有無を識別検知する検査装置は,二つのコイルを含む検出部と,磁性体或いは導体を含む被検体と検出部とを相対的に移動走査せしめる走査手段と,検出回路とより構成され,走査手段は被検体を二つのコイルの発生磁界内に置きながら検出部と相対的に移動走査させ,検出回路は前記コイルと抵抗の2組の組み合わせそれぞれに矩形波信号を加えるスイッチング素子と,電圧比較器と,フリップフロップ回路とより構成され,フリップフロップ回路はその相補的出力で前記スイッチング素子を駆動するよう接続され,電圧比較器は抵抗とコイルとの接続点の電位が所定レベルに達したタイミングでフリップフロップ回路の出力状態を逆転させてスイッチング素子のオン,オフ状態を切り替え,二組の抵抗及びコイルの組み合わせに交互に矩形波信号を加えて二組の抵抗及びコイルの組み合わせの時定数に対応して二つのパルス幅を有するパルス列を発振出力させ,低域フィルタを介して電圧出力を得,或いはパルス幅を微小時間間隔で計数識別してインダクタンス差の変化を検知する事により磁性体或いは金属の欠陥或いは有無を識別検知することを特徴とする。
【0007】
請求項2に規定する検査装置は請求項1に規定する検査装置に於いて,二つのコイル或いは二つのコイルが発生する磁界分布を移動走査方向と平行に配置し,正負のパルスが連成した特徴あるダイパルス波形を識別認識して傷,欠陥或いは金属片等の探知精度を向上させる。
【0008】
請求項3に規定する検査装置は請求項1に規定する検査装置に於いて,抵抗,コイル,スイッチング素子の直列接続で構成する二組の回路を電源間に有し,電圧比較器はスイッチング素子がオンとなっている側の抵抗とコイルとの接続点電位が所定のレベルに達した時点でフリップフロップ回路の状態を逆転させてスイッチング素子のオン,オフを切り替える発振回路を有する検出回路で実現する。
【0009】
請求項4に規定する検査装置は請求項1に規定する検査装置に於いて,抵抗とコイルの直列接続にスイッチング素子をコイルに並列接続して構成する二組の回路を電源間に有し,電圧比較器はスイッチング素子がオフとなっている側の抵抗とコイルとの接続点電位が所定のレベルに達した時点でフリップフロップ回路の状態を逆転させてスイッチング素子のオン,オフを切り替える発振回路を有する検出回路で実現する。
【0010】
請求項5に規定する検査装置は請求項1に規定する検査装置に於いて,検出回路を共通の抵抗と二つのコイルとで二組の抵抗及びコイルの組み合わせとし,電圧比較器も一つとして自励発振回路を有する。抵抗及び電圧比較器が一つであるので部品が少なく,またバランスを特に考慮しなくても良い特徴を有する。
【0011】
請求項6に規定する検査装置は,請求項5に於いて抵抗或いは電圧比較器が一つであることを利用して抵抗或いは所定の電圧レベルを可変として検査中に適宜発振周波数を可変として傷,欠陥探知に最適な条件を与えることを可能とする。
【0012】
【作用】
本発明の磁性体或いは金属の検査或いは有無を識別検知する検査装置では,二つのコイルを有して常に他方のコイルが発生する磁界分布をを基準として対照検査する構成とし,二つのコイルと抵抗の二組の組み合わせ回路それぞれにスイッチング素子を配し,抵抗とコイルの接続点電位が所定のレベルに達した時点で出力を反転させるフリップフロップ回路の相補出力でスイッチング素子を駆動させてそれぞれの時定数に対応するデューティ比のパルス列を出力する簡略な発振回路を構成し,出力を低域フィルタを通し,或いはパルス幅を微小時間間隔で計数識別してインダクタンス差の変化を検出して傷,欠陥,或いは金属片等を検知する。ディジタル化に適したシンプルな検出回路で構成され,調整点が少ない特徴を有する。
【0013】
【発明の実施の形態】
以下に本発明による磁性体或いは導体の欠陥或いは有無を識別検知する検査装置について,その実施例及び原理作用等を図面を参照しながら説明する。
【0014】
本発明の検査装置の実施例を説明する前に従来の検査装置に於ける検出回路例を概観してその課題を明らかにする。
図11は一般に用いられている検出回路を簡略化して表してある。同図において,コイル11,12と抵抗111,112とで構成されたブリッジに高周波発振器113から高周波信号を加え,抵抗111,112とコイル11,12とで分圧された電圧をそれぞれ整流・平滑回路114,115で直流電圧に変え,差動増幅器116で差分出力を得る。コイル11,12両端の電圧は差動増幅器116で差分を取るまでにそれぞれ整流・平滑回路114,115を通るのでこれらのゲインバランスを保持するために何らかの調整部は存在し,また高周波発振器113を別途必要とし,その出力も厳密に制御されなければならず回路量は多い。
【0015】
検出回路をシンプルにするためにトルクセンサで提案された検出回路例を図10を用いて説明する。同図において,番号101はコイル11,12のインダクタンス差をデューティ比の異なるパルス列として出力するマルチバイブレータ,番号102は波形整形回路,番号103はデューティ比の異なるパルス列を電圧出力に変える積分回路をそれぞれ示す。コイル11,12はそれぞれトランジスタ104,105の負荷としてそれらのコレクタ端子に接続され,トランジスタ104,105のコレクタ端子は抵抗106を介してそれぞれトランジスタ105,104のベース端子に接続される。コンデンサ107はトランジスタ104,105のスイッチング速度を速めるために用いられる。
【0016】
トランジスタ104,105のベース端子に流入する電流は抵抗106によって制限され,発振の時定数はコイル11,12のインダクタンスと抵抗106によりそれぞれ決まる。したがってマルチバイブレータ101出力の高レベル,低レベルの時間幅はそれぞれコイル11,12のインダクタンスと抵抗106とで決まり,コイル11,12のインダクタンス差は出力パルスのデューティ比として検出できる。しかしトランジスタ104,105のベース電流量は抵抗106にも依存するので抵抗106の選定は独立では無く設定は微妙である。さらにトランジスタ104,105内のベース抵抗は抵抗106と直列になるので時定数に影響する。したがって抵抗106,トランジスタ104,105等のばらつきが直接に出力パルスのデューティ比に影響し,温度によってゼロ点変動を引き起こす等の欠点が目立ち,シンプルな構成ではあるが現在では省みられていない。
【0017】
図1及び図2は本発明の第一の実施例である磁気探傷装置の概略構成を示す。図1(a)は検出部概略を,図1(b)は出力のダイパルス(dipulse)波形を,図2は検出回路13の構成をそれぞれ示す。同図に於いて,磁気探傷装置は2つの検出コイル11,12と,検出回路13と,図示していない走査機構手段と等から構成され,2つの検出コイル11,12は検査対象となる金属の被検体15に近接して配置され,被検体15は走査機構手段により矢印16に沿ってが移動させられる。番号14は出力の引き出し線を示す。
【0018】
図2の検出回路は,抵抗21を介してコイル11,12に交互に矩形波信号を加え,コイル11,12のインダクタンスに対応してデューティ比の異なるパルス列を出力する発振回路部とマイクロコンピュータ2aとで構成する。デューティ比の異なる出力パルス列のパルス幅をマイクロコンピュータ2a内のカウンタで計数識別してインダクタンス差に応じたディジタル出力を得る。
【0019】
検出回路の構成及び動作を図3に示す各部波形を参照しながら説明する。抵抗21は一端を電源側+Vに,他端をコイル11,12に接続され,コイル11,12の他端はそれぞれスイッチング素子25,26に接続される。スイッチング素子25,26は入力が高レベルでオフに,入力が低レベルでオンとしてコイル11,12の一端を接地する。抵抗21とコイル11,12の接続点は電圧比較器28に入力され,電圧比較器28はその接続点の電位(番号2dで示す)を所定の電圧レベル(図2の+Vb,図3の番号32で示す)と比較し,所定の電圧レベルより低下したら高レベルに出力2eを変化させる。電圧比較器28の出力2eはフリップフロップ27に入力し,フリップフロップ27は出力2eが低レベルから高レベルに変化するエッジで出力2b,2cをそれぞれ反転させる。出力2b,2cは一方が低レベルで有れば他方は高レベルとなるような相補出力である。出力2b,2cはそれぞれスイッチング素子25,26に入力される。番号29は所定の電圧レベルを設定する回路を示す。
【0020】
今,スイッチング素子25,26はそれぞれオン,オフに変化したとすると,電流は抵抗21,コイル11,スイッチング素子25を流れようとするが,コイル11を直ちには電流が流れず,接続点2dの電位は高レベルとなる。時間経過と共にコイル11を流れる電流が増すと,抵抗21での電圧降下は大となり,接続点2dの電位は低下する。接続点2dの電位が所定の電圧レベルより低下した時点で電圧比較器28の出力2eは高レベルに転じてフリップフロップ27の状態を逆転させ,スイッチング素子25,26はそれぞれオフ,オンに切り替わり,抵抗21,コイル12,スイッチング素子26を電流が流れようとする。コイル12に電流は直ちに流れないので接続点2dは高レベルとなり,電圧比較器28の出力2eは低レベルとなる。時間経過と共に電流が増し,接続点2dの電位が低下し,所定の電圧レベルより低下すると電圧比較器28の出力2eが高レベルに転じフリップフロップ27の状態を反転させ,これを繰り返す。
【0021】
フリップフロップ27の出力2cはデューティ比がコイル11,12のインダクタンス差に対応するパルス列を出力し,低レベルのパルス幅T1はコイル12のインダクタンスに,高レベルのパルス幅T2はコイル11のインダクタンスにそれぞれ比例する。マイクロコンピュータ2aはT1,T2をそれぞれ内蔵するカウンタで微小時間間隔で計数してディジタル化し,インダクタンス差に対応するディジタル出力を得る。
【0022】
上に説明した検出回路は電源が入れば自動的に発振を始め,検出コイル11,12から交流磁束17を発生させる。交流磁束17は金属である被検体15の表面から内部に浸透しようとするが,被検体15表面には交流磁束の変化を妨げるような方向に渦電流が流れ,検出コイル11,12のインダクタンスを見かけ上減少させる。ここで被検体15表面に傷が存在すると前記渦電流は流れにくくなり,検出コイル11,12のインダクタンスの減少傾向は弱められることになり,見かけ上のインダクタンスは増大する。そして被検体15表面の傷が検出コイル11の磁界分布内に有れば検出コイル11のインダクタンスが通常より大となる。
【0023】
磁気探傷装置では本来有ってはならない傷或いは欠陥等の有無を確認する装置であるから当然に傷或いは欠陥の密度は低く,仮に検出コイル11の真下に傷が存在しても検出コイル12の真下の被検体15面にも傷が存在する確率は非常に小さい筈である。逆もまた同様である。図1(a)に示す検出回路13は検出コイル11,12のインダクタンス差の検出回路を基本にしているので互いに他方の検出コイル側を基準としながら被検体15の傷,欠陥有無を検査することになる。留意すべきは検出コイル11,12と被検体15との関係を出来るだけ同一条件に維持しながら相対的に移動させる走査機構手段とすることである。
【0024】
本実施例で検出コイル11,12の配列は被検体15の移動方向16に沿っている。したがって,もし被検体15表面に傷があり,検出コイル11のインダクタンス変化として検知された場合,被検体15の移動時間,検出コイル11,12間の距離によって決まる時間の後には検出コイル12にもインダクタンスの変化として現れる筈である。図1(b)は検出回路13で検知されたインダクタンス差の変化の様子を示している。横軸18は時間を,縦軸19はインダクタンス差を示す。番号1aは被検体15表面に傷が無く,検出コイル11,12のインダクタンスが平衡な場合の出力レベルを示している。番号1b,1cはそれぞれ被検体15表面の傷が検出コイル11のインダクタンスを変化させ,次に検出コイル12のインダクタンスを変化させた事を示す。傷のサイズ,検出コイル11,12のサイズ,相対位置関係にも依存するが,インダクタンス差の変化は図1(b)のように2つのパルスが連続したダイパルス(dipulse)波形として現れる。
【0025】
本発明の磁気探傷装置に於いて,2つの検出コイル11,12と被検体15との配置条件は同一とすべきであるが,上に示したようにダイパルス波形が現れることを前提として磁気探傷装置を構成すれば,2つの検出コイル11,12と被検体15との配列条件を緩和できるし,またノイズ等妨害信号に対して検出確認の精度を向上できる。これらのダイパルス波形の識別確認は図2のマイクロコンピュータ2a内のプログラム処理により精密に識別可能であるが,電圧波形として観察するには出力2cを抵抗及びコンデンサで構成した積分回路を使用する。
【0026】
図2に於いて,抵抗22は抵抗21に並列接続してコイル11,12に接続される共通の抵抗を変えて発振周波数を変化させるために配置してある。番号23はFETを番号24はFETを駆動するためのインバータを示している。金属面に加えられる交流磁界17は渦電流のために表面から浸透する深さは限られるが,周波数を低くすれば奥深くまで浸透させることが出来る。一方で検出感度は高周波数で大となるので検査に最適な条件は存在する。図2に示す第一の実施例では発振周波数を可変として計測中に適宜周波数を変え,或いは周期的に周波数を変えて計測の精度を上げることが出来るよう構成している。マイクロコンピュータ2aと接続されたDA変換器で所定の電圧レベル+Vbを可変としても実現できる。
【0027】
この第一の実施例の検出回路では,二組の抵抗及びコイルの組み合わせに矩形波信号を加え,その応答波形からパルスを生成しているが,抵抗及び電圧比較器はそれぞれ一つであり,バランス調整の必要が無く容易に精度を確保できる。
【0028】
図4は,マイクロコンピュータ2aによって金属表面の傷,欠陥を検知するプログラム例をフローチャートで示した例である。
【0029】
[1.]のステップでマイクロコンピュータ2aの指示でFET23をオン或いはオフとして抵抗22を抵抗21と並列接続するか否かを制御して発振周波数を設定する。
【0030】
[2.],[3.]のステップにおいて,マイクロコンピュータ2a内のカウンターを用いて低レベルの時間幅T1,高レベルの時間幅T2を微小時間間隔で計数してディジタル化する。[4.]で時間幅T1,T2を前回の値と比較検証し,その差が予め定めた所定の値以上で有れば異常として[7.]で処理し,所定の値以下で有れば正常として[5.]のステップに進む。
【0031】
[5.]ではT1/T2からインダクタンス差を算出し,[6.]のステップでは時間に沿ったインダクタンス差の変化状況からダイパルス波形の有無を識別監視し,[1.]に戻って測定を継続する。ダイパルス波形の識別から傷或いは欠陥の存在を検知されると,それらのサイズはダイパルス波形の積分或いは微分した値から算出する。インダクタンス差の算出はT1/T2の代わりにパルス列のデューティ比を示す(T1−T2)/(T1+T2)或いはT1/(T1+T2)としても良いが,何れもT1/T2の関数であるから結局は同じ事である。
【0032】
[7.]は時間幅T1,T2の異常処理ルーチンであり,T1,T2を過去の履歴と比較検証して過去の変動履歴から異常状態の頻度,連続性等を調べて偶発的な誤りか,固定的な誤りかを判断する。誤りが確率的であり,頻度も少なければ偶発性と判断して[1.]に進んで計測を繰り返す。誤りの頻度が高く,連続性が高いと判断すれば固定障害と見なして[8.]で上位システムに警告し,計測作業を停止する。
【0033】
図1,図2,図3,図4で示したように本発明の第一の実施例によれば,アナログ回路部分は殆ど無く,ディジタル処理で計測を行うことが出来るので検出回路は無調整で機能し,また検出器の異常判断等も行うことが出来る。
【0034】
図5は本発明の第二の実施例であるワイヤロープの磁気探傷装置を示す。図5(a)は検出部を,図5(b)は検出回路を示す。同図に於いて,ワイヤロープ51の磁気探傷装置はフェライト等の磁性体で構成されたE字コア52に検出コイル55,56を巻回し,それらの検出コイル55,56を一部とする検出回路とで構成する。ワイヤーロープ51はエレベータ,クレーン等に装着され,矢印57に示すよう移動するものとするが,ワイヤロープ51の移動方向にE字コア52の2つの空隙部53,54が対向するよう配置する。
【0035】
検出回路は検出コイル55,56によりE字コア52を励磁し,発生磁束は2つの空隙部53,54から漏れ出てワイヤロープ51を介してまたE字コア52に戻る。ワイヤロープ51は通常は鋼線の撚り線であるので磁束を良く通すが,過大の張力が加えられると撚り線の一部から破断を始め,ワイヤロープ51中を磁束は通りにくくなる。検出コイル55の側の磁気回路中にワイヤロープ51の一部破断部が含まれると検出コイル55のインダクタンスは減少し,両検出コイル55,56間にアンバランスが発生する。その結果は検出回路からはデューティ比の異なるパルス列として出力され,積分回路で電圧に変換される。
【0036】
検出コイル56の磁気回路中に現れたワイヤロープ51の一部破断部は時間的に遅れて検出コイル55の磁気回路中を通過するので積分回路の出力端に現れる電圧波形は第一の実施例で示したと同様なダイパルス波形となる。この出力波形を監視し,特徴のあるダイパルス波形を認識すればワイヤロープ51の一部破断を容易に識別出来るのでノイズ他による誤検出を防ぐことが出来る。
【0037】
図5(b)に示す検出回路は,図6の各部波形を参照しながら説明する。抵抗58,コイル55,スイッチング素子5aは直列に接続されて電源+Vと接地間に配置され,同様に抵抗59,コイル56,スイッチング素子5bが接続配置される。スイッチング素子5a,5bは図2の25,26と同じく高レベルの入力でオフに,低レベルの入力でオンとなる。
【0038】
スイッチング素子5a,5bはナンド素子5c,5dの入出力端子をクロス結合させて構成したフリップフロップ回路の相補的な出力で駆動するよう接続される。ナンド素子5c,5dより構成されるフリップフロップ回路は抵抗58とコイル55の接続点5mが所定の電圧レベル(+Vb,図6では62で示す)より低下するとフリップフロップ回路の出力5j,5kがそれぞれ高,低のレベルとなり,抵抗59とコイル56の接続点5nが所定の電圧レベルより低下するとフリップフロップ回路の出力5j,5kがそれぞれ低,高のレベルとなるよう接続されている。番号5e,5fはそれぞれ接続点5m,5nと接続される電圧比較器を,番号5gは所定の電圧レベルを設定する回路を示す。
【0039】
フリップフロップ回路の出力5j,5kが高,低のレベルとなると,スイッチング素子5aはオフに,スイッチング素子5bはオンとなる。接続点5mは抵抗58を介して電源+Vに接続されて高レベルとなり,接続点5nは抵抗59を介して電源+Vに,コイル56,スイッチング素子5bを介して接地される。コイル56にただちには電流が流れないので接続点5nの電位は高く留まるが,時間経過と共にコイル56に電流が流れ,抵抗59による電圧降下が大となって電位は徐々に低下する。所定の電圧レベル62に達すると,電圧比較器5fの出力は低レベルとなってナンド素子5c,5dで構成するフリップフロップ回路の出力5j,5kを低,高のレベルに転じさせ,スイッチング素子5a,5bをそれぞれオン,オフとする。接続点5nは抵抗59を介して電源+Vに接続されて高レベルとなり,接続点5mは抵抗58を介して電源+Vに,コイル55,スイッチング素子5aを介して接地される。コイル55にただちには電流が流れないので接続点5mの電位は高く留まるが,時間経過と共にコイル55に電流が流れ,抵抗58による電圧降下が大となって電位は徐々に低下する。所定の電圧レベル62に達すると,電圧比較器5eの出力は低レベルとなってナンド素子5c,5dで構成するフリップフロップ回路の出力5j,5kを高,低のレベルに転じさせ,スイッチング素子5a,5bをそれぞれオフ,オンとして繰り返す。
【0040】
出力5kの低レベルの区間T1はコイル56,抵抗59により,高レベルの区間T2はコイル55,抵抗58によるので抵抗とコンデンサで構成した低域フィルタ5hを通して平準化して電圧出力5pとする。コイル55,コイル56のインダクタンスの大小は電圧出力5pの低高に対応する。
【0041】
図7は本発明の第三の実施例である鋼球検出装置を示す。第二の実施例を示した図5に於いて,ワイヤロープ51を樹脂製中空円筒71,その樹脂製中空円筒71中を移動する鋼球72,73等で入れ替えた構造である。番号74は鋼球の移動方向を示し,鋼球72,73は一つの鋼球が異なる時間に位置する態様を示す。
【0042】
磁気空隙部53,すなわちコイル55の磁気回路中に鋼球73があると磁気抵抗は減少するので検出コイル55のインダクタンスは増大する。同様に鋼球72ではコイル56のインダクタンスが増大することになる。従って,出力波形は図7(b)に示すようにダイパルス波形となり,ノイズの影響を排除して精度良く検出できることになる。
【0043】
検出回路の構成及び動作を図8の各部波形を参照しながら説明する。抵抗75,76は一端を電源側+Vに,他端をそれぞれコイル55,56に接続され,コイル55,56の他端はそれぞれ接地される。コイル55,56にはそれぞれスイッチング素子77,78が並列にに接続される。スイッチング素子77,78の機能は図2の25,26と同様でそれぞれの入力にはインバータ79,7aの出力7d,7eに接続され,インバータ79,7aの入力には抵抗76とコイル56との接続点7g,抵抗75とコイル55との接続点7fがそれぞれ接続される。インバータ79,7aは接続点7g,7fをインバータ内に内蔵する基準電圧レベル(図8では番号82で示す)と比較して基準電圧レベルより低下すると,高レベルの出力を出すので電圧比較器79とスイッチング素子77,電圧比較器7aとスイッチング素子78とはそれぞれ実質的なインバータを形成し,互いの入出力端をクロス結合されているのでフリップフロップ回路を構成する。
【0044】
今,スイッチング素子77はオフに変化したとすると,電流は抵抗75,コイル55を流れようとするが,コイル55を直ちには電流が流れず,接続点7fの電位は高レベルとなる。インバータ7aの出力7eは低レベルとなり,スイッチング素子78をオンとする。時間経過と共にコイル55を流れる電流が増すと,抵抗75での電圧降下は大となり,接続点7fの電位は低下する。接続点7fの電位が基準電圧レベルより低下した時点でインバータ7aの出力7eは高レベルに転じてスイッチング素子78はオフに切り替わり,抵抗76,コイル56を電流が流れようとする。コイル56に電流は直ちに流れないので出力7gは高レベルとなり,インバータ79の出力7dは低レベルとなり,スイッチング素子77はオンとなる。時間経過と共にコイル56を流れる電流が増し,抵抗76の電位降下が大となって出力7gの電位が低下し,基準電圧レベルより低下するとインバータ79の出力7dが高レベルに転じスイッチング素子77をオフに転じさせて,これを繰り返す。
【0045】
出力7eの低レベルの区間T1はコイル55,抵抗75により,高レベルの区間T2はコイル56,抵抗76によるのでインバータ7bを介して積分回路7cに入力させ,平準化させて電圧出力7hを得る。
【0046】
図7(b)は鋼球72,73の通過に伴って出力7hに現れるダイパルス波形を示す。番号7kは鋼球72,73がコイル55,56から離れているときの平衡レベルを示し,番号7mは鋼球73が検出コイル55のインダクタンスに影響し,番号7nは鋼球72がコイル56のインダクタンスに影響した結果を示す。このダイパルス波形識別から精度の高い鋼球検出が出来る。
【0047】
鋼球検出の検出回路では精度をそれほどには必要としないので低コストに構成できる論理回路素子のインバータ79,7aを用い,スイッチング素子はノンインバータのオープンコレクタ素子として全ての素子を論理回路素子で簡略に構成した。精度を要するので有れば上記インバータを電圧比較器とする。
【0048】
図9は本発明の第四の実施例である金属片検出装置を示す。食品中の金属異物,或いは衣服製品中の金属針等の検出確認に使用される。2つの検出コイル93,94はその面が平行にならないよう互いに傾けて配置され,検出コイル93,94を含む検出回路で構成している。被検体91は2つの検出コイル93,94を挿通して番号92で示されるよう移動させる。検出回路は図2に示す第一の実施例と同じであるが,抵抗22,FET23,インバータ24等の周波数を変化せしめる回路要素は省略されている。
【0049】
この金属片検出装置は本来有ってはならない食品中の金属異物或いは衣服中に残された金属針等が存在しないことを確認するのが主目的であるから,それら金属異物或いは金属針等は希にしか存在しない。図9(a)に示す検出装置は検出コイル93,94のインダクタンス差検出回路を基本にしているので互いに他方の検出コイル側を基準参照としながら被検体91中の金属異物或いは金属針等有無を検査することになる。この点は第一の実施例に示した磁気探傷装置と考え方は同様である。
【0050】
金属異物が検出コイル93或いは94のフィールド中に存在すると,渦電流効果によりその検出コイルのインダクタンスを減少せしめる。金属異物が磁性体であると逆にインダクタンスを増大させる。したがって,金属異物が検出コイル94を,そして検出コイル93を通過したとするとそのインダクタンス変化の様子は図9(b)に示すようになる。番号96は検出コイル93,94に何ら金属異物が係わっていない時のインダクタンス差を示し,番号97は検出コイル94近傍に金属異物が存在して影響を及ぼしている時,番号98は検出コイル93近傍に金属異物が存在している時のインダクタンス差の様子である。図1(b)に示すように典型的なダイパルス波形とならなかったのは検出コイル93,94が互いに傾いていて金属異物の影響が異なるからである。識別部を構成するマイクロコンピュータ2aは番号96で示すインダクタンス差を基準にして変化するインダクタンス差のレベルを監視して金属異物の存在を検知する。その際,完全にではないが,番号97,98の変化の様子,被検体91の移動速度,検出コイル93,94間の距離等から確認することは可能でノイズ等の影響を軽減は出来る。番号95は時間を示す。
【0051】
このような金属片検出装置に於いて,検出対象となる食品中の金属異物或いは衣服中に残された金属針等は必ずしも球形では無く,またそれが被検体91中に存在する方向も一様では無い。磁束の方向,交流磁束の周波数,金属異物のサイズ及び方向の分布等の間で検出に最適の条件は存在するが,常に維持する事は難しい。それらを確実に検出できるよう検出コイル93,94は互いに傾けて配置したのであるが,さらに図2で示す第一の実施例の検出回路で説明したように図9(a)に示す第四の実施例でも抵抗21を実質的に変えることで検出コイルの励磁周波数を変化走査せしめ,多様なそれら金属異物或いは金属針等に対して検出に最適な励磁周波数が存在するよう制御して検出の精度を向上させることが出来る。
【0052】
以上に実施例を用いて本発明の原理動作等を説明した。本実施例において,説明を判りやすくするためにディジタル論理回路用の素子をできるだけ用いて実施例の検出回路を構成したが,スイッチング素子をトランジスタ単体,或いはインバータをトランジスタで置き換えるような変更を行っても上記実施例に相当する機能を持たせることは可能である。本発明の趣旨を変えない範囲で材料或いは回路素子の変更等が可能なことは当然であって上記の説明が本発明の範囲を限定するわけではない。
【0053】
【発明の効果】
実施例で説明したように本発明の磁性体或いは金属の欠陥或いは有無を識別検知する検査装置によれば,2つのコイルを含む簡単な自励発振回路によりインダクタンスの差をデューティ比の異なるパルス列として出力し,積分回路或いはカウンタ等によってデューティ比の異なるパルス列を電圧出力或いはデジタル出力として2つのコイルのインダクタンス差の変化を知ることが出来,金属の傷,欠陥或いは金属片の有無を検知出来る。本発明の検査装置に於ける検出回路はアナログ回路部分は少なく,ほぼ無調整で機能するのでIC化も容易である。
【図面の簡単な説明】
【図1】本発明の第一の実施例である磁気探傷装置
【図2】第一の実施例の検出回路
【図3】図2の各部波形
【図4】本発明の第一の実施例におけるプログラムフロー図
【図5】本発明の第二の実施例であるワイヤロープ磁気探傷装置
【図6】図5の各部波形
【図7】本発明の第三の実施例である鋼球検出装置
【図8】図7の各部波形
【図9】本発明の第四の実施例である金属針検出装置
【図10】従来提案されたマルチバイブレータ検出回路
【図11】従来提案されたブリッジ方式の検出回路
【符号の説明】
11,12・・検出コイル,    13・・・検出回路,
14・・・出力の引き出し線,   15・・・被検体,
16・・・移動方向,       17・・・交流磁束,
18・・・時間,         19・・・インダクタンス差,
1a,1b,1c・・インダクタンス差の変化,
21,22・・抵抗,       23・・・FET,
24・・・インバータ,      25,26・・スイッチング素子,
27・・・フリップフロップ,   28・・・電圧比較器,
29・・・所定の電圧レベル設定回路,
2a・・・マイクロコンピュータ,
2b,2c・・フリップフロップ27の出力,
2d・・・抵抗21とコイル11,12との接続点,
2e・・・電圧比較器28の出力,
31・・・時間,           32・・・所定の電圧レベル,
51・・・ワイヤロープ,     52・・・E字コア,
53,54・・空隙部,      55,56・・検出コイル,
57・・・移動方向,
58,59・・抵抗,       5a,5b・・スイッチング素子,
5c,5d・・ナンド素子,    5e,5f・・電圧比較器,
5g・・・所定の電圧レベル設定回路,
5h・・・低域フィルタ,
5j,5k・・ナンド素子5c,5dの出力
5m・・・抵抗58とコイル55の接続点,
5n・・・抵抗59とコイル56の接続点,
5p・・・電圧出力,
61・・・時間,         62・・・所定の電圧レベル,
71・・・樹脂製中空円筒,    72,73・・鋼球,
74・・・移動方向,
75,76・・抵抗,       77,78・・スイッチング素子,
79,7a・・インバータ,    7b・・・インバータ,
7c・・・積分回路,
7d,7e・・インバータ79,7aの出力
7f・・・抵抗75とコイル55との接続点,
7g・・・抵抗76とコイル56との接続点,
7h・・・積分回路の出力,    7j・・・時間,
7k,7m,7n・・出力レベル,
81・・・時間,         82・・・所定の電圧レベル,
91・・・被検体,        92・・・移動方向,
93,94・・検出コイル,    95・・・時間,
96,97,98・・インダクタンス差,
101・・・マルチバイブレータ,   102・・・波形整形回路,
103・・・積分回路,        104,105・・トランジスタ,
106・・・抵抗,          107・・・コンデンサ
108・・・抵抗,          109・・・コンデンサ,
111,112・・抵抗,       113・・高周波発振器,
114,115・・整流・平滑回路,  116・・・差動増幅器
[0001]
[Industrial applications]
The present invention relates to an inspection apparatus for discriminating and detecting a defect or presence or absence of a magnetic substance or a conductor, and particularly to an inductance difference detection circuit using a simple self-excited oscillation circuit and an inspection apparatus such as a magnetic flaw detection apparatus and a metal piece detection circuit using the same. Be concerned.
[0002]
[Prior art]
Both the magnetic flaw detection device and the metal piece detection device are devices for detecting a source causing an abnormality in the excitation field, and have the same principle. The former detects abnormalities in the field due to scratches or defects on the metal surface or inside, and the latter detects that the distribution of the field is affected by the presence of metal fragments or steel balls in the space. An excitation field abnormality detection that has been often used in these detection means is well known. Usually, a high-frequency oscillator is provided, a high-frequency magnetic field is generated by an exciting coil, and a change in an eddy current distribution generated on a metal surface or a change in a high-frequency magnetic field distribution affected by the presence is detected. These devices require a high-frequency oscillator and a detection circuit, but have problems such as a large amount of analog circuits and many adjustment points.
[0003]
There are various types of detection circuits. Generally, an AC bridge including a coil is formed and an AC signal is applied to monitor the voltage or current, or an oscillation circuit including each coil has an oscillation frequency difference. For example, a method of detecting a change in inductance from the above is adopted. Each of them has a problem that the amount of analog circuits is large, the number of adjustment points is large, the noise is weak, and the cost reduction is difficult.
[0004]
As a means for simplifying the inductance detection circuit, an astable multivibrator comprising a magnetostrictive torque sensor and a resistance and a detection coil has been known and studied (for example, Japanese Patent Publication No. 06-041889). FIG. 10 shows an example of a circuit cited for detecting the inductance change. The setting is delicate and oscillating because the resistance connected to the base terminal of the transistor limits the base current and never sets the time constant independently. Concerns about the stability of Further, since the base resistance in the transistor also affects the time constant, the zero point variation due to the temperature is large due to the variation of the resistance and the transistor, so that the transistor cannot be used.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to propose an inspection apparatus and a detection circuit having a simple configuration, and to realize and provide a low-cost inspection apparatus that discriminates and detects a defect or presence or absence of a magnetic substance or a metal.
[0006]
[Means for Solving the Problems]
An inspection apparatus for identifying and detecting abnormality or presence or absence of a magnetic substance or a conductor defined in claim 1 relatively moves and scans a detection unit including two coils, and an object and a detection unit including a magnetic substance or a conductor. The scanning means comprises a scanning means and a detection circuit, wherein the scanning means moves and scans the subject relative to the detection unit while being placed in the magnetic field generated by the two coils, and the detection circuit comprises two combinations of the coil and the resistor. , A voltage comparator, and a flip-flop circuit. The flip-flop circuit is connected to drive the switching element with its complementary output, and the voltage comparator includes a resistor, a coil, Inverts the output state of the flip-flop circuit at the timing when the potential at the connection point reaches a predetermined level, and switches the switching element on and off , A rectangular wave signal is alternately applied to the combination of the two sets of resistors and coils, and a pulse train having two pulse widths corresponding to the time constant of the combination of the two sets of resistors and coils is oscillated and output, and passed through the low-pass filter. It is characterized in that a magnetic substance or a metal defect or presence or absence is detected by detecting a change in inductance by detecting a voltage output by counting a pulse width at minute time intervals and detecting a change in inductance difference.
[0007]
The inspection device according to claim 2 is the inspection device according to claim 1, wherein two coils or a magnetic field distribution generated by the two coils are arranged parallel to the moving scanning direction, and positive and negative pulses are coupled. A distinctive dipulse waveform is identified and recognized to improve the detection accuracy of a flaw, defect, metal piece, or the like.
[0008]
An inspection device according to claim 3 is the inspection device according to claim 1, wherein two sets of circuits configured in series with a resistor, a coil, and a switching element are provided between the power supplies, and the voltage comparator is a switching element. A detection circuit having an oscillation circuit that switches the switching element on and off by reversing the state of the flip-flop circuit when the potential of the connection point between the resistor and the coil on the side where is turned on reaches a predetermined level I do.
[0009]
According to a fourth aspect of the present invention, there is provided the inspection apparatus of the first aspect, further comprising two sets of circuits between a power supply and configured by connecting a switching element in parallel to the coil in series connection of the resistor and the coil. The voltage comparator reverses the state of the flip-flop circuit when the potential at the connection point between the resistor and the coil on the side where the switching element is turned off reaches a predetermined level, and switches the switching element on and off. This is realized by a detection circuit having
[0010]
According to a fifth aspect of the present invention, in the inspection apparatus of the first aspect, the detection circuit is a combination of two sets of resistors and coils with a common resistor and two coils, and has one voltage comparator. It has a self-excited oscillation circuit. Since there is only one resistor and voltage comparator, the number of parts is small and the balance does not need to be considered.
[0011]
In the inspection apparatus defined in claim 6, the resistance or the predetermined voltage level is made variable by utilizing the single resistor or voltage comparator in claim 5, and the oscillation frequency is made variable during the inspection as appropriate. Thus, it is possible to provide optimum conditions for defect detection.
[0012]
[Action]
The inspection apparatus for inspecting or detecting the presence or absence of a magnetic substance or metal according to the present invention has a configuration in which two coils are used and a comparison inspection is always performed based on the magnetic field distribution generated by the other coil. A switching element is arranged in each of the two sets of combinational circuits, and when the potential of the connection point between the resistor and the coil reaches a predetermined level, the output is inverted when the switching element is driven by the complementary output of the flip-flop circuit. Constructs a simple oscillation circuit that outputs a pulse train with a duty ratio corresponding to a constant, outputs the signal through a low-pass filter, or counts and identifies the pulse width at minute time intervals to detect changes in the inductance difference to detect scratches and defects. Or a metal piece or the like is detected. It is composed of a simple detection circuit suitable for digitization, and has the feature of having few adjustment points.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment and a principle operation of an inspection apparatus for discriminating and detecting a defect or presence or absence of a magnetic substance or a conductor according to the present invention will be described with reference to the drawings.
[0014]
Before describing an embodiment of the inspection apparatus of the present invention, an example of a detection circuit in a conventional inspection apparatus will be overviewed and its problem will be clarified.
FIG. 11 is a simplified diagram of a commonly used detection circuit. In the figure, a high-frequency signal is applied from a high-frequency oscillator 113 to a bridge constituted by coils 11 and 12 and resistors 111 and 112, and voltages divided by the resistors 111 and 112 and the coils 11 and 12 are rectified and smoothed, respectively. Circuits 114 and 115 convert the voltage to a DC voltage, and a differential amplifier 116 obtains a differential output. Since the voltages at both ends of the coils 11 and 12 pass through the rectifier / smoothing circuits 114 and 115, respectively, before the difference is obtained by the differential amplifier 116, there is some adjustment section for maintaining the gain balance between them. It is required separately, and its output must be strictly controlled, and the amount of circuits is large.
[0015]
An example of a detection circuit proposed for a torque sensor to simplify the detection circuit will be described with reference to FIG. In the figure, reference numeral 101 denotes a multivibrator for outputting the inductance difference between the coils 11 and 12 as pulse trains having different duty ratios, reference numeral 102 denotes a waveform shaping circuit, and reference numeral 103 denotes an integrating circuit for converting pulse trains having different duty ratios to voltage outputs. Show. The coils 11 and 12 are connected to their collector terminals as loads of the transistors 104 and 105, respectively. The collector terminals of the transistors 104 and 105 are connected to the base terminals of the transistors 105 and 104 via the resistor 106, respectively. The capacitor 107 is used to increase the switching speed of the transistors 104 and 105.
[0016]
The current flowing into the base terminals of the transistors 104 and 105 is limited by the resistor 106, and the time constant of oscillation is determined by the inductance of the coils 11 and 12 and the resistor 106, respectively. Therefore, the time widths of the high level and the low level of the output of the multivibrator 101 are determined by the inductances of the coils 11 and 12 and the resistor 106, respectively, and the difference between the inductances of the coils 11 and 12 can be detected as the duty ratio of the output pulse. However, since the base current amount of the transistors 104 and 105 also depends on the resistor 106, the selection of the resistor 106 is not independent and the setting is delicate. Furthermore, the base resistance in the transistors 104 and 105 is in series with the resistance 106, and thus affects the time constant. Therefore, the disadvantage that the variation of the resistor 106, the transistors 104 and 105, etc. directly affects the duty ratio of the output pulse and causes a zero point variation depending on the temperature is conspicuous. Although the configuration is simple, it is not omitted at present.
[0017]
1 and 2 show a schematic configuration of a magnetic flaw detector according to a first embodiment of the present invention. FIG. 1A shows the outline of the detection unit, FIG. 1B shows the output dipulse waveform, and FIG. 2 shows the configuration of the detection circuit 13, respectively. Referring to FIG. 1, the magnetic flaw detector includes two detection coils 11, 12, a detection circuit 13, a scanning mechanism (not shown), and the like. The two detection coils 11, 12 are a metal to be inspected. The subject 15 is moved along the arrow 16 by the scanning mechanism means. Numeral 14 indicates an output lead line.
[0018]
The detection circuit shown in FIG. 2 includes an oscillator circuit section which alternately applies rectangular wave signals to the coils 11 and 12 via a resistor 21 and outputs a pulse train having a different duty ratio in accordance with the inductance of the coils 11 and 12, and a microcomputer 2a. It consists of The pulse widths of the output pulse trains having different duty ratios are counted and identified by a counter in the microcomputer 2a to obtain a digital output according to the inductance difference.
[0019]
The configuration and operation of the detection circuit will be described with reference to the waveforms of each part shown in FIG. One end of the resistor 21 is connected to the power supply side + V, the other end is connected to the coils 11 and 12, and the other ends of the coils 11 and 12 are connected to switching elements 25 and 26, respectively. The switching elements 25 and 26 are turned off when the input is at a high level and turned on when the input is at a low level, and ground one ends of the coils 11 and 12. The connection point between the resistor 21 and the coils 11 and 12 is input to a voltage comparator 28, and the voltage comparator 28 changes the potential of the connection point (indicated by number 2d) to a predetermined voltage level (+ Vb in FIG. 2, and number in FIG. 3). 32, the output 2e is changed to a high level when the voltage drops below a predetermined voltage level. The output 2e of the voltage comparator 28 is input to the flip-flop 27, and the flip-flop 27 inverts the outputs 2b and 2c at the edge when the output 2e changes from the low level to the high level. The outputs 2b and 2c are complementary outputs such that if one is at a low level, the other is at a high level. Outputs 2b and 2c are input to switching elements 25 and 26, respectively. Numeral 29 indicates a circuit for setting a predetermined voltage level.
[0020]
Now, assuming that the switching elements 25 and 26 are turned on and off, respectively, the current tries to flow through the resistor 21, the coil 11, and the switching element 25, but the current does not immediately flow through the coil 11 and the current at the connection point 2d. The potential becomes a high level. When the current flowing through the coil 11 increases with time, the voltage drop at the resistor 21 increases, and the potential at the connection point 2d decreases. When the potential at the node 2d falls below a predetermined voltage level, the output 2e of the voltage comparator 28 switches to a high level to reverse the state of the flip-flop 27, and the switching elements 25 and 26 are switched off and on, respectively. A current flows through the resistor 21, the coil 12, and the switching element 26. Since no current flows through the coil 12 immediately, the connection point 2d goes high, and the output 2e of the voltage comparator 28 goes low. As the time increases, the current increases, the potential at the node 2d decreases, and when the voltage drops below a predetermined voltage level, the output 2e of the voltage comparator 28 changes to a high level, inverting the state of the flip-flop 27, and repeating this.
[0021]
The output 2c of the flip-flop 27 outputs a pulse train whose duty ratio corresponds to the difference between the inductances of the coils 11 and 12, and the low-level pulse width T1 corresponds to the inductance of the coil 12, and the high-level pulse width T2 corresponds to the inductance of the coil 11. Each is proportional. The microcomputer 2a counts and digitizes at minute time intervals by counters incorporating T1 and T2, respectively, and obtains a digital output corresponding to the inductance difference.
[0022]
The detection circuit described above automatically starts oscillating when the power is turned on, and generates an AC magnetic flux 17 from the detection coils 11 and 12. The AC magnetic flux 17 tries to penetrate from the surface of the subject 15 which is a metal, but an eddy current flows on the surface of the subject 15 in such a direction as to hinder the change of the AC magnetic flux, and the inductance of the detection coils 11 and 12 is reduced. Reduce apparently. Here, if a flaw exists on the surface of the subject 15, the eddy current becomes difficult to flow, and the tendency of the inductance of the detection coils 11, 12 to decrease is weakened, and the apparent inductance increases. If the scratch on the surface of the subject 15 exists in the magnetic field distribution of the detection coil 11, the inductance of the detection coil 11 becomes larger than usual.
[0023]
The magnetic flaw detector is a device for confirming the presence or absence of a flaw or defect, which should not exist originally. Therefore, the density of the flaw or defect is naturally low, and even if a flaw exists directly below the detection coil 11, the detection coil 12 The probability that a scratch exists on the surface of the subject 15 directly below should be very small. The reverse is also true. Since the detection circuit 13 shown in FIG. 1A is based on a detection circuit for detecting an inductance difference between the detection coils 11 and 12, it is necessary to inspect the subject 15 for scratches and defects with reference to the other detection coil side. become. It should be noted that a scanning mechanism means for relatively moving the detection coils 11, 12 and the subject 15 while maintaining the same conditions as much as possible.
[0024]
In this embodiment, the arrangement of the detection coils 11 and 12 is along the moving direction 16 of the subject 15. Therefore, if the surface of the subject 15 has a flaw and is detected as a change in inductance of the detection coil 11, the detection coil 12 is not moved after a time determined by the moving time of the subject 15 and the distance between the detection coils 11 and 12. It should appear as a change in inductance. FIG. 1B shows how the inductance difference detected by the detection circuit 13 changes. The horizontal axis 18 indicates time, and the vertical axis 19 indicates the inductance difference. Reference numeral 1a indicates an output level when the surface of the subject 15 has no scratch and the inductances of the detection coils 11 and 12 are balanced. The numbers 1b and 1c respectively indicate that the scratch on the surface of the subject 15 changed the inductance of the detection coil 11 and then changed the inductance of the detection coil 12. Depending on the size of the flaw, the size of the detection coils 11 and 12, and the relative positional relationship, the change in the inductance difference appears as a dipulse waveform in which two pulses are continuous as shown in FIG.
[0025]
In the magnetic flaw detector of the present invention, the arrangement conditions of the two detection coils 11, 12 and the subject 15 should be the same, but the magnetic flaw detection is performed on the premise that a dipulse waveform appears as shown above. If the apparatus is configured, the arrangement condition between the two detection coils 11 and 12 and the subject 15 can be eased, and the accuracy of detection confirmation for interference signals such as noise can be improved. Although the identification and confirmation of these dipulse waveforms can be accurately identified by the program processing in the microcomputer 2a in FIG. 2, to observe as a voltage waveform, an integrating circuit having the output 2c constituted by a resistor and a capacitor is used.
[0026]
In FIG. 2, a resistor 22 is connected in parallel with the resistor 21 and arranged to change the oscillation frequency by changing a common resistor connected to the coils 11 and 12. Reference numeral 23 indicates an FET, and reference numeral 24 indicates an inverter for driving the FET. The AC magnetic field 17 applied to the metal surface has a limited depth of penetration from the surface due to eddy currents, but can be penetrated deeper by lowering the frequency. On the other hand, since the detection sensitivity becomes large at a high frequency, there is an optimum condition for the inspection. In the first embodiment shown in FIG. 2, the oscillation frequency is made variable so that the frequency can be changed appropriately during the measurement, or the frequency can be changed periodically to improve the accuracy of the measurement. The predetermined voltage level + Vb can be made variable by a DA converter connected to the microcomputer 2a.
[0027]
In the detection circuit of the first embodiment, a square wave signal is added to a combination of two sets of resistors and coils, and a pulse is generated from the response waveform. Accuracy can be easily secured without the need for balance adjustment.
[0028]
FIG. 4 is a flowchart showing an example of a program for detecting scratches and defects on the metal surface by the microcomputer 2a.
[0029]
[1. In step [1], the oscillation frequency is set by controlling whether the resistor 22 is connected in parallel with the resistor 21 by turning on or off the FET 23 in accordance with the instruction of the microcomputer 2a.
[0030]
[2. ], [3. ], The low-level time width T1 and the high-level time width T2 are counted and digitized at minute time intervals using a counter in the microcomputer 2a. [4. ], The time widths T1 and T2 are compared and verified with the previous values. ], And if the value is equal to or less than a predetermined value, it is determined as normal [5. ] Step.
[0031]
[5. ], The inductance difference is calculated from T1 / T2, and [6. In step [1], the presence or absence of a dipulse waveform is identified and monitored from the change in the inductance difference over time, and [1. ] And continue the measurement. When the presence of a flaw or defect is detected from the identification of the dipulse waveform, their size is calculated from the integrated or differentiated value of the dipulse waveform. The calculation of the inductance difference may be (T1-T2) / (T1 + T2) or T1 / (T1 + T2) indicating the duty ratio of the pulse train instead of T1 / T2. However, since both are functions of T1 / T2, they are ultimately the same. Is the thing.
[0032]
[7. ] Is an abnormality processing routine for the time widths T1 and T2. T1 and T2 are compared and verified with the past history, and the frequency and continuity of the abnormal state are checked from the past fluctuation history to determine whether the error is an accidental error or a fixed error. Is determined to be an error. If the error is probabilistic and the frequency is low, it is determined to be accidental [1. ] And repeat the measurement. If it is determined that the error frequency is high and the continuity is high, it is regarded as a fixed failure [8. ] To alert the higher-level system and stop the measurement work.
[0033]
As shown in FIGS. 1, 2, 3 and 4, according to the first embodiment of the present invention, there is almost no analog circuit part, and measurement can be performed by digital processing. Function, and can also determine the abnormality of the detector.
[0034]
FIG. 5 shows a magnetic inspection apparatus for a wire rope according to a second embodiment of the present invention. FIG. 5A shows a detection unit, and FIG. 5B shows a detection circuit. In the figure, a magnetic flaw detector of a wire rope 51 winds detection coils 55 and 56 around an E-shaped core 52 made of a magnetic material such as ferrite, and detects the detection coils 55 and 56 as a part. It consists of a circuit. The wire rope 51 is mounted on an elevator, a crane, or the like, and moves as indicated by an arrow 57. The wire rope 51 is arranged so that the two gaps 53 and 54 of the E-shaped core 52 face in the moving direction of the wire rope 51.
[0035]
The detection circuit excites the E-shaped core 52 by the detection coils 55 and 56, and the generated magnetic flux leaks out of the two gaps 53 and 54 and returns to the E-shaped core 52 via the wire rope 51. Since the wire rope 51 is usually a stranded wire of a steel wire, it passes the magnetic flux well. However, when an excessive tension is applied, the wire starts to break from a part of the stranded wire and the magnetic flux hardly passes through the wire rope 51. If a partly broken portion of the wire rope 51 is included in the magnetic circuit on the side of the detection coil 55, the inductance of the detection coil 55 decreases, and imbalance occurs between the detection coils 55 and 56. The result is output from the detection circuit as a pulse train having a different duty ratio, and is converted into a voltage by the integration circuit.
[0036]
Since a partly broken portion of the wire rope 51 that appears in the magnetic circuit of the detection coil 56 passes through the magnetic circuit of the detection coil 55 with a time delay, the voltage waveform that appears at the output terminal of the integration circuit is the first embodiment. A dipulse waveform similar to that shown in FIG. By monitoring the output waveform and recognizing a characteristic dipulse waveform, a partial break of the wire rope 51 can be easily identified, so that erroneous detection due to noise or the like can be prevented.
[0037]
The detection circuit shown in FIG. 5B will be described with reference to the waveforms at various points in FIG. The resistor 58, the coil 55, and the switching element 5a are connected in series and arranged between the power supply + V and the ground. Similarly, the resistor 59, the coil 56, and the switching element 5b are connected and arranged. The switching elements 5a and 5b are turned off by a high-level input and turned on by a low-level input, similarly to 25 and 26 in FIG.
[0038]
The switching elements 5a and 5b are connected so as to be driven by complementary outputs of a flip-flop circuit configured by cross-connecting the input / output terminals of the NAND elements 5c and 5d. When the connection point 5m between the resistor 58 and the coil 55 falls below a predetermined voltage level (+ Vb, indicated by 62 in FIG. 6), the outputs 5j and 5k of the flip-flop circuit respectively include the NAND elements 5c and 5d. When the connection point 5n between the resistor 59 and the coil 56 drops below a predetermined voltage level, the outputs 5j and 5k of the flip-flop circuit are connected to the low and high levels, respectively. Numbers 5e and 5f indicate voltage comparators connected to the connection points 5m and 5n, respectively, and number 5g indicates a circuit for setting a predetermined voltage level.
[0039]
When the outputs 5j and 5k of the flip-flop circuit go to high and low levels, the switching element 5a turns off and the switching element 5b turns on. The connection point 5m is connected to the power supply + V via the resistor 58 to be at a high level, and the connection point 5n is connected to the power supply + V via the resistor 59, and is grounded via the coil 56 and the switching element 5b. Since the current does not immediately flow through the coil 56, the potential at the connection point 5n remains high, but the current flows through the coil 56 with the passage of time, and the voltage drop due to the resistor 59 increases, and the potential gradually decreases. When the voltage reaches the predetermined voltage level 62, the output of the voltage comparator 5f goes low, and the outputs 5j and 5k of the flip-flop circuit composed of the NAND elements 5c and 5d are switched to low and high levels, and the switching element 5a , 5b are turned on and off, respectively. The connection point 5n is connected to the power supply + V via the resistor 59 and goes high, and the connection point 5m is grounded via the resistor 58 to the power supply + V, the coil 55 and the switching element 5a. Since the current does not immediately flow through the coil 55, the potential at the connection point 5m remains high, but the current flows through the coil 55 with the passage of time, and the voltage drop due to the resistor 58 increases, and the potential gradually decreases. When the voltage reaches the predetermined voltage level 62, the output of the voltage comparator 5e goes low, and the outputs 5j and 5k of the flip-flop circuit composed of the NAND elements 5c and 5d are switched to high and low levels, and the switching element 5a , 5b are turned off and on, respectively.
[0040]
Since the low-level section T1 of the output 5k is determined by the coil 56 and the resistor 59, and the high-level section T2 is determined by the coil 55 and the resistor 58, they are leveled through a low-pass filter 5h composed of a resistor and a capacitor to obtain a voltage output 5p. The magnitude of the inductance of the coil 55 and the coil 56 corresponds to the level of the voltage output 5p.
[0041]
FIG. 7 shows a steel ball detecting device according to a third embodiment of the present invention. In FIG. 5 showing the second embodiment, the structure is such that the wire rope 51 is replaced with a hollow cylinder 71 made of resin and steel balls 72 and 73 moving in the hollow cylinder 71 made of resin. Numeral 74 indicates the moving direction of the steel ball, and steel balls 72 and 73 indicate the manner in which one steel ball is located at different times.
[0042]
When the steel ball 73 is present in the magnetic gap 53, that is, in the magnetic circuit of the coil 55, the magnetic resistance decreases and the inductance of the detection coil 55 increases. Similarly, in the steel ball 72, the inductance of the coil 56 increases. Accordingly, the output waveform becomes a dipulse waveform as shown in FIG. 7B, and the detection can be performed with high accuracy while eliminating the influence of noise.
[0043]
The configuration and operation of the detection circuit will be described with reference to the waveforms of each part in FIG. The resistors 75 and 76 have one end connected to the power supply side + V and the other end connected to the coils 55 and 56, respectively, and the other ends of the coils 55 and 56 are respectively grounded. Switching elements 77 and 78 are connected in parallel to the coils 55 and 56, respectively. The functions of the switching elements 77 and 78 are the same as those of the switching elements 25 and 26 in FIG. 2, and their inputs are respectively connected to the outputs 7d and 7e of the inverters 79 and 7a. A connection point 7g and a connection point 7f between the resistor 75 and the coil 55 are connected. The inverters 79 and 7a compare the connection points 7g and 7f with a reference voltage level (indicated by reference numeral 82 in FIG. 8) built in the inverter and output a high-level output when the voltage drops below the reference voltage level. And the switching element 77, and the voltage comparator 7a and the switching element 78, respectively, form a substantial inverter, and their input and output terminals are cross-coupled to each other to form a flip-flop circuit.
[0044]
Now, assuming that the switching element 77 is turned off, the current tries to flow through the resistor 75 and the coil 55, but the current does not immediately flow through the coil 55, and the potential at the connection point 7f becomes a high level. The output 7e of the inverter 7a goes low, turning on the switching element 78. When the current flowing through the coil 55 increases with time, the voltage drop at the resistor 75 increases, and the potential at the connection point 7f decreases. When the potential at the connection point 7f falls below the reference voltage level, the output 7e of the inverter 7a changes to a high level, the switching element 78 switches off, and current flows through the resistor 76 and the coil 56. Since the current does not immediately flow through the coil 56, the output 7g goes high, the output 7d of the inverter 79 goes low, and the switching element 77 turns on. As time elapses, the current flowing through the coil 56 increases, the potential drop of the resistor 76 increases, and the potential of the output 7g decreases. When the potential drops below the reference voltage level, the output 7d of the inverter 79 turns to a high level to turn off the switching element 77. And repeat this.
[0045]
The low-level section T1 of the output 7e is provided by the coil 55 and the resistor 75, and the high-level section T2 is provided by the coil 56 and the resistor 76. Therefore, the output 7e is input to the integration circuit 7c via the inverter 7b and leveled to obtain the voltage output 7h. .
[0046]
FIG. 7B shows a dipulse waveform that appears at the output 7h as the steel balls 72 and 73 pass. The number 7k indicates the equilibrium level when the steel balls 72 and 73 are apart from the coils 55 and 56, the number 7m indicates the steel ball 73 affects the inductance of the detection coil 55, and the number 7n indicates the steel ball 72 The result which influenced the inductance is shown. Steel ball detection with high accuracy can be performed from this dipulse waveform identification.
[0047]
The detection circuit for steel ball detection does not require much accuracy, so the inverters 79 and 7a of logic circuit elements which can be configured at low cost are used, and all the switching elements are non-inverter open-collector elements using logic circuit elements. It was configured simply. If accuracy is required, the inverter is used as a voltage comparator.
[0048]
FIG. 9 shows a metal piece detecting device according to a fourth embodiment of the present invention. It is used for detecting and confirming metal foreign substances in food or metal needles in clothing products. The two detection coils 93 and 94 are arranged to be inclined with respect to each other so that their surfaces are not parallel to each other, and are configured by a detection circuit including the detection coils 93 and 94. The subject 91 is moved as indicated by reference numeral 92 through the two detection coils 93 and 94. The detection circuit is the same as that of the first embodiment shown in FIG. 2, but the circuit elements for changing the frequency, such as the resistor 22, the FET 23 and the inverter 24, are omitted.
[0049]
The main purpose of this metal piece detection device is to confirm that there is no metal foreign matter in foods or metal needles left in clothes which should not be originally present. Only rarely exists. Since the detection device shown in FIG. 9A is based on an inductance difference detection circuit of the detection coils 93 and 94, the presence or absence of a metal foreign object or a metal needle in the subject 91 is determined with reference to the other detection coil side. Will be inspected. This is the same as the concept of the magnetic flaw detector shown in the first embodiment.
[0050]
If metallic foreign matter is present in the field of the detection coil 93 or 94, the inductance of the detection coil is reduced by the eddy current effect. Conversely, if the metallic foreign substance is a magnetic substance, the inductance increases. Therefore, if the metal foreign matter passes through the detection coil 94 and the detection coil 93, the state of the inductance change is as shown in FIG. 9B. Reference numeral 96 indicates an inductance difference when no metallic foreign matter is involved in the detection coils 93 and 94, reference numeral 97 indicates the presence of metallic foreign matter in the vicinity of the detection coil 94 and exerts an influence, and reference numeral 98 indicates the detection coil 93. It is a state of an inductance difference when a metallic foreign substance exists in the vicinity. The reason why the typical dipulse waveform was not obtained as shown in FIG. 1B is that the detection coils 93 and 94 are inclined with respect to each other and the influence of the foreign metal is different. The microcomputer 2a constituting the identification unit monitors the level of the inductance difference that changes based on the inductance difference indicated by reference numeral 96, and detects the presence of the metallic foreign matter. At this time, it is possible, but not completely, to check the state of change of the numbers 97 and 98, the moving speed of the subject 91, the distance between the detection coils 93 and 94, and the like, thereby reducing the influence of noise and the like. Numeral 95 indicates time.
[0051]
In such a metal piece detecting device, the metal foreign matter in the food to be detected or the metal needle left in the clothes is not necessarily spherical, and the direction in which it exists in the subject 91 is uniform. Not. There are optimum conditions for detection among the direction of the magnetic flux, the frequency of the AC magnetic flux, the size and direction distribution of the metallic foreign matter, but it is difficult to always maintain it. The detection coils 93 and 94 are arranged to be inclined with respect to each other so that they can be reliably detected. However, as described in the detection circuit of the first embodiment shown in FIG. 2, the fourth detection coil shown in FIG. Also in the embodiment, the excitation frequency of the detection coil is changed and scanned by substantially changing the resistance 21, and control is performed so that the excitation frequency optimal for detection exists for various metal foreign matters or metal needles, and the detection accuracy is controlled. Can be improved.
[0052]
The principle operation and the like of the present invention have been described using the embodiments. In this embodiment, in order to make the description easy to understand, the detection circuit of the embodiment is constituted by using elements for the digital logic circuit as much as possible. However, a change is made such that the switching element is replaced by a single transistor or the inverter is replaced by a transistor. Can also have a function corresponding to the above embodiment. Naturally, it is possible to change materials or circuit elements without changing the spirit of the present invention, and the above description does not limit the scope of the present invention.
[0053]
【The invention's effect】
As described in the embodiment, according to the inspection apparatus of the present invention for discriminating and detecting a defect or presence or absence of a magnetic substance or a metal, a simple self-excited oscillation circuit including two coils converts a difference in inductance into a pulse train having a different duty ratio. A pulse train having a different duty ratio is output as a voltage output or a digital output by an integrating circuit, a counter, or the like, whereby the change in the inductance difference between the two coils can be known, and the presence or absence of a metal flaw, defect, or metal piece can be detected. The detection circuit in the inspection apparatus of the present invention has a small number of analog circuits and functions almost without adjustment.
[Brief description of the drawings]
FIG. 1 is a magnetic flaw detector according to a first embodiment of the present invention.
FIG. 2 is a detection circuit according to a first embodiment;
FIG. 3 is a waveform of each part in FIG. 2;
FIG. 4 is a program flow diagram in the first embodiment of the present invention.
FIG. 5 is a wire rope magnetic flaw detector according to a second embodiment of the present invention.
6 is a waveform of each part in FIG.
FIG. 7 is a steel ball detecting device according to a third embodiment of the present invention.
8 is a waveform of each part in FIG. 7;
FIG. 9 shows a metal needle detecting device according to a fourth embodiment of the present invention.
FIG. 10 shows a conventionally proposed multivibrator detection circuit.
FIG. 11 shows a conventionally proposed bridge detection circuit.
[Explanation of symbols]
11, 12 ··· detection coil, 13 ··· detection circuit,
14 ... lead line of output, 15 ... subject,
16: moving direction, 17: AC magnetic flux,
18 ... time, 19 ... inductance difference,
1a, 1b, 1c... Change in inductance difference,
21, 22,... Resistance, 23 ... FET,
24 ··· Inverter, 25, 26 ··· Switching element,
27: flip-flop, 28: voltage comparator,
29: predetermined voltage level setting circuit,
2a: microcomputer,
2b, 2c ··· Output of flip-flop 27,
2d: connection point between the resistor 21 and the coils 11, 12;
2e... The output of the voltage comparator 28,
31 ... time, 32 ... predetermined voltage level,
51 ... wire rope, 52 ... E-shaped core,
········ 53,54 ··· Void, 55,56 · · · Detection coil,
57 ... moving direction,
58, 59 .. resistance, 5a, 5b .. switching element,
5c, 5d, NAND element, 5e, 5f, voltage comparator,
5g: predetermined voltage level setting circuit,
5h: low-pass filter,
5j, 5k... Output of NAND elements 5c and 5d
5m: connection point between the resistor 58 and the coil 55,
5n: connection point between the resistor 59 and the coil 56,
5p ... voltage output,
61 ... time, 62 ... predetermined voltage level,
71 ・ ・ ・ Resin hollow cylinder, 72, 73 ... steel ball,
74 ... moving direction,
75, 76 .. resistance, 77, 78 .. switching element,
79, 7a · · · inverter, 7b · · · inverter
7c ... integration circuit,
7d, 7e ··· output of inverters 79 and 7a
7f: connection point between the resistor 75 and the coil 55,
7g: connection point between the resistor 76 and the coil 56,
7h: output of the integrating circuit, 7j: time,
7k, 7m, 7n output level,
81: time, 82: predetermined voltage level,
91: subject, 92: moving direction,
93, 94 ··· Detection coil, 95 ··· Time,
96, 97, 98 ... inductance difference,
101: multivibrator, 102: waveform shaping circuit,
103 ... integration circuit, 104,105-transistor,
106: resistor, 107: capacitor
108: resistor, 109: capacitor,
111, 112 resistance, 113 high frequency oscillator,
114, 115 ··· Rectifying / smoothing circuit, 116 ··· Differential amplifier

Claims (6)

二つのコイルを含む検出部と,磁性体或いは導体を含む被検体と検出部とを相対的に移動走査せしめる走査手段と,検出回路とより構成され,走査手段は被検体を二つのコイルの発生磁界内に置きながら検出部と相対的に移動走査させ,検出回路は前記コイルと抵抗の2組の組み合わせそれぞれに矩形波信号を加えるスイッチング素子と,電圧比較器と,フリップフロップ回路とより構成され,フリップフロップ回路はその相補的出力で前記スイッチング素子を駆動するよう接続され,電圧比較器は抵抗とコイルとの接続点の電位が所定レベルに達したタイミングでフリップフロップ回路の出力状態を逆転させてスイッチング素子のオン,オフ状態を切り替え,二組の抵抗及びコイルの組み合わせに交互に矩形波信号を加えて二組の抵抗及びコイルの組み合わせの時定数に対応して二つのパルス幅を有するパルス列を発振出力させ,低域フィルタを介して電圧出力を得,或いはパルス幅を微小時間間隔で計数識別してインダクタンス差の変化を検知する事により磁性体或いは導体の欠陥或いは有無を識別検知することを特徴とする検査装置A detection unit including two coils, a scanning unit for relatively moving and scanning the object including the magnetic material or the conductor and the detection unit, and a detection circuit, wherein the scanning unit generates the object by generating two coils. The scanning circuit is moved relative to the detecting unit while being placed in a magnetic field, and the detecting circuit is composed of a switching element for applying a rectangular wave signal to each of the two combinations of the coil and the resistor, a voltage comparator, and a flip-flop circuit. , The flip-flop circuit is connected to drive the switching element with its complementary output, and the voltage comparator reverses the output state of the flip-flop circuit at the timing when the potential at the connection point between the resistor and the coil reaches a predetermined level. The switching element is switched on and off by switching, and a rectangular wave signal is alternately applied to the combination of the two sets of resistors and coils, and the two sets of resistors and A pulse train having two pulse widths is oscillated and output according to the time constant of the combination of the pulses, and a voltage output is obtained through a low-pass filter. An inspection apparatus characterized by detecting and detecting a defect or the presence or absence of a magnetic substance or a conductor by detecting. 請求項1記載の検査装置に於いて,検出部の二つのコイル或いは二つのコイルに起因する磁界分布は被検体との前記相対的な移動走査方向と平行に配置され,検出回路はインダクタンス差の変化に対応して出力に現れるダイパルス波形を識別して被検体の欠陥或いは有無の検知精度を向上することを特徴とする検査装置2. The inspection apparatus according to claim 1, wherein the two coils of the detection unit or the magnetic field distribution caused by the two coils are arranged in parallel with the direction of relative movement scanning with the object, and the detection circuit detects the inductance difference. An inspection apparatus characterized in that a dipulse waveform appearing in an output corresponding to a change is identified to improve the detection accuracy of a defect or presence / absence of an object. 請求項1記載の検査装置に於いて,検出回路は抵抗とコイルとスイッチング素子の直列接続した二組の回路を電源間に配置し,フリップフロップ回路はその相補的出力で前記スイッチング素子を駆動するよう接続され,電圧比較器はスイッチング素子がオンとなっている側のコイルと抵抗との接続点の電位が所定レベルに達したタイミングでフリップフロップ回路の出力を反転させ,フリップフロップ回路の相補的な出力によりスイッチング素子のオン,オフ状態を切り替えて二組の抵抗及びコイルの組み合わせに交互に矩形波信号を加えて二つのコイルそれぞれのインダクタンス差に対応するデューティ比のパルス列を発振出力させ,低域フィルタを介して電圧出力を得,或いはパルス幅を微小時間間隔で計数識別してインダクタンス差の変化を検知する事により磁性体或いは導体の欠陥或いは有無を識別検知することを特徴とする検査装置2. The inspection apparatus according to claim 1, wherein the detection circuit includes two sets of circuits, each of which includes a resistor, a coil, and a switching element connected in series, between a power supply, and the flip-flop circuit drives the switching element with its complementary output. The voltage comparator inverts the output of the flip-flop circuit at the timing when the potential at the connection point between the coil and the resistor on the side where the switching element is on reaches a predetermined level. The switching element is switched on and off by an appropriate output, a rectangular wave signal is alternately applied to the combination of the two resistors and the coil, and a pulse train having a duty ratio corresponding to the inductance difference between the two coils is oscillated and output. Voltage output through a bandpass filter, or counting and identifying the pulse width at minute time intervals Inspection apparatus characterized by identifying detect defects or presence of magnetic or conductive by detecting the reduction 請求項1記載の検査装置に於いて,検出回路は抵抗とコイルの直列接続にスイッチング素子をコイルに並列に接続した二組の回路を電源間に配置し,フリップフロップ回路はその相補的出力で前記スイッチング素子を駆動するよう接続され,電圧比較器はスイッチング素子がオフとなっている側のコイルと抵抗との接続点の電位が所定レベルに達したタイミングでフリップフロップ回路の出力を反転させ,フリップフロップ回路の相補的な出力によりスイッチング素子のオン,オフ状態を切り替えて二組の抵抗及びコイルの組み合わせに交互に矩形波信号を加えて二つのコイルそれぞれのインダクタンス差に対応するデューティ比のパルス列を発振出力させ,低域フィルタを介して電圧出力を得,或いはパルス幅を微小時間間隔で計数識別してインダクタンス差の変化を検知する事により磁性体或いは導体の欠陥或いは有無を識別検知することを特徴とする検査装置2. The inspection apparatus according to claim 1, wherein the detection circuit includes two sets of circuits in which a resistor and a coil are connected in series and a switching element is connected in parallel to the coil, and the flip-flop circuit has a complementary output. The voltage comparator is connected to drive the switching element, and the voltage comparator inverts the output of the flip-flop circuit at the timing when the potential at the connection point between the coil and the resistor on the side where the switching element is off reaches a predetermined level; A pulse train having a duty ratio corresponding to the inductance difference between the two coils by alternately applying a rectangular wave signal to the combination of two sets of resistors and coils by switching the ON / OFF state of the switching element by the complementary output of the flip-flop circuit. Oscillates and outputs a voltage through a low-pass filter, or counts and identifies the pulse width at very short time intervals. Inspection apparatus characterized by identifying detect defects or presence of magnetic or conductive by detecting a change in inductance difference 請求項1記載の検査装置において,検出回路は共通の抵抗と二つのコイルそれぞれとを2組の抵抗及びコイルの組み合わせとし,共通の抵抗の一端は電源側に接続して他端は二つのコイルと接続し,抵抗と接続しない前記二つのコイルの端点はスイッチング素子にそれぞれ接続して抵抗と前記二つのコイルの接続点には電圧比較器を接続し,何れかのスイッチング素子がオン状態になった後に共通の抵抗とコイルとの接続点電位が前記電源電位から所定のレベルに達したタイミングでフリップフロップ回路の出力を反転させ,フリップフロップ回路の相補的な出力により二つのスイッチング素子のオン,オフ状態を反転制御して二つのコイルそれぞれのインダクタンス差に対応するデューティ比のパルス列を発振出力させ,低域フィルタを介して電圧出力を得,或いはパルス幅を微小時間間隔で計数識別してインダクタンス差の変化を検知する事により磁性体或いは導体の欠陥或いは有無を識別検知することを特徴とする検査装置2. The inspection device according to claim 1, wherein the detection circuit is a combination of two sets of resistors and coils each including the common resistor and the two coils, and one end of the common resistor is connected to the power supply side and the other end is connected to the two coils. The ends of the two coils which are not connected to a resistor are connected to switching elements respectively, and a voltage comparator is connected to a connection point between the resistor and the two coils, and one of the switching elements is turned on. After that, the output of the flip-flop circuit is inverted at the timing when the potential of the connection point between the common resistor and the coil reaches the predetermined level from the power supply potential, and the two switching elements are turned on and off by the complementary outputs of the flip-flop circuit. By inverting the off state, a pulse train having a duty ratio corresponding to the inductance difference between the two coils is oscillated and output, and is passed through a low-pass filter. The resulting voltage output Te, or inspection apparatus characterized by identifying detect defects or presence of magnetic or conductive by a pulse width by detecting the change of inductance difference counted identified in short time intervals 請求項5記載の検査装置において,検出回路は,前記共通の抵抗の可変手段或いは電圧比較器の所定レベルの可変手段をさらに有してパルス周期を可変として検査中にパルス周期の変更を可能としたことを特徴とする磁性体或いは導体の欠陥或いは有無を識別検知する検査装置6. The inspection apparatus according to claim 5, wherein the detection circuit further includes a means for varying the common resistance or a means for varying a predetermined level of the voltage comparator so that the pulse cycle is variable and the pulse cycle can be changed during the inspection. Inspection apparatus for identifying and detecting defects or presence or absence of a magnetic substance or a conductor
JP2002184204A 2002-06-25 2002-06-25 Inspection device for detecting defect or presence/absence of magnetic body or conductor Pending JP2004028740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184204A JP2004028740A (en) 2002-06-25 2002-06-25 Inspection device for detecting defect or presence/absence of magnetic body or conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184204A JP2004028740A (en) 2002-06-25 2002-06-25 Inspection device for detecting defect or presence/absence of magnetic body or conductor

Publications (1)

Publication Number Publication Date
JP2004028740A true JP2004028740A (en) 2004-01-29

Family

ID=31180176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184204A Pending JP2004028740A (en) 2002-06-25 2002-06-25 Inspection device for detecting defect or presence/absence of magnetic body or conductor

Country Status (1)

Country Link
JP (1) JP2004028740A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363757C (en) * 2004-11-23 2008-01-23 清华大学 Impulse excitation electromagnetic resonance safety inspection method and device
JP2008530569A (en) * 2005-02-21 2008-08-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting an object enclosed in a medium, and measuring apparatus for carrying out the detection method
CN100439904C (en) * 2004-10-28 2008-12-03 上海交通大学 Intelligent metal detector
JP2020034509A (en) * 2018-08-31 2020-03-05 株式会社島津製作所 Inspection device for magnetic material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439904C (en) * 2004-10-28 2008-12-03 上海交通大学 Intelligent metal detector
CN100363757C (en) * 2004-11-23 2008-01-23 清华大学 Impulse excitation electromagnetic resonance safety inspection method and device
JP2008530569A (en) * 2005-02-21 2008-08-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting an object enclosed in a medium, and measuring apparatus for carrying out the detection method
JP2011075574A (en) * 2005-02-21 2011-04-14 Robert Bosch Gmbh Method for detecting object enclosed in medium and measuring device for conducting this detection method
JP4700699B2 (en) * 2005-02-21 2011-06-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting an object enclosed in a medium, and measuring apparatus for carrying out the detection method
JP2020034509A (en) * 2018-08-31 2020-03-05 株式会社島津製作所 Inspection device for magnetic material
JP7119788B2 (en) 2018-08-31 2022-08-17 株式会社島津製作所 Inspection equipment for magnetic materials

Similar Documents

Publication Publication Date Title
US4611127A (en) Electronic sensor for static magnetic field
US6636035B2 (en) Position measuring device and error detecting method for the same, and electromagnetic induction position detecting device
US6181127B1 (en) Method and circuit for checking the width of the air gap in a speed sensor
JPH0685626B2 (en) Winding temperature detector for brushless DC motor
JP2002243513A (en) Measuring device and inspecting method for measuring operation of measuring device
JP2020008500A (en) Magnetic body inspection system, magnetic body inspection apparatus, and magnetic body inspection method
JPH08166397A (en) Method and device for detecting rotating speed
JPH0149898B2 (en)
JP2004028740A (en) Inspection device for detecting defect or presence/absence of magnetic body or conductor
JP2019168253A (en) Magnetic body inspection system, magnetic body inspection device and magnetic body inspection method
JP2012508559A (en) Method for detecting the operating state of an electric stepping motor
JP2003215108A (en) Inductance difference detecting circuit, and magnetic flaw detector and metal piece detection device using the inductance difference detecting circuit
US6937943B2 (en) Device and method for system and process supervision in a magneto-inductive sensor
JP3664055B2 (en) Torque sensor control device
JP2004184257A (en) Detection circuit for minute difference for two sets of resistors or coils or capacitors, and position-detecting device and identification inspection device for defector existence of conductor using the circuit
JP2005210146A (en) Minute difference detecting circuit between two circuit elements, position detecting device employing same, and discrimination detecting device for detecting fault or presence/absence of magnetic body or conductor
US6304075B1 (en) Magnetic resonance sensor
JP4409765B2 (en) Micro power magnetometer
JP3717753B2 (en) Magnetic sensor sensitivity calibration device
JP2002527718A5 (en)
JPH10267951A (en) Method and circuit for detection of abnormality in forward sensor and reverse sensor
JP2008211762A (en) Detecting device and detecting method
JP2004198292A (en) Inductance sensing circuit and position detector, test device for identifying defect of conductive material or its presence or absence, and torque sensor using the same
JP2002181670A (en) Facility diagnosing device
JP2000241215A (en) Electromagnetic flow meter